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A Complete Parameterization of All Positive 
Rational Extensions of a Covariance Sequence 
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Abstract-In this paper we formalize the observation that 
filtering and interpolation induce complementary, or “dual,” 
decompositions of the space of positive real rational functions 
of degree less than or equal to n. From this basic result about 
the geometry of the space of positive real functions, we are able 
to deduce two complementary sets of conclusions about positive 
rational extensions of a given partial covariance sequence. On the 
one hand, by viewing a certain fast filtering algorithm as a nonlin- 
ear dynamical system defined on this space, we are able to develop 
estimates on the asymptotic behavior of the Schur parameters of 
positive rational extensions. On the other hand we are also able 
to provide a characterization of all positive rational extensions 
of a given partial covariance sequence. Indeed, motivated by its 
application to signal processing, speech processing, and stochastic 
realization theory, this characterization is in terms of a complete 
parameterization using familiar objects from systems theory and 
proves a conjecture made by Georgiou. Our basic result, however, 
also enables us to analyze the robustness of this parameterization 
with respect to variations in the problem data. The methodology 
employed is a combination of complex analysis, geometry, linear 
systems, and nonlinear dynamics. 

I. INTRODUCTION 
IVEN a partial covariance sequence of length n, the G problem of finding all positive rational extensions of 

degree at most n is a fundamental open problem with impor- 
tant applications in signal processing and speech processing 
[361, [301, [401, [22], [18], [35], [47], [39] and in stochastic 
realization theory and system identification [4], [56], [44], 
[45]. Such extension problems, of course, have a long history. 
Indeed, if one suppresses the rationality, the degree, or the 
positivity requirement, then the problem becomes considerably 
easier and solutions are known. 

On the one hand, the problem of finding all positive 
real functions interpolating the given covariance sequence 
is known as the Carathtodory extension problem, dating from 
[ 191 and [20]. CarathCodory gave conditions for the existence 
of such an extension, conditions which were later reformulated 
by Toeplitz [55] in terms of positive definiteness of what is 
now known as the Toeplitz matrix of the covariance sequence. 
The problem of parameterizing all such solutions was solved 
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by Schur [52]. In particular, given a covariance sequence, 
one obtains a parameterization of all interpolating positive 
real functions in terms of all extensions of a corresponding 
partial sequence of Schur parameters satisfying inequalities 
known as the “Schur conditions.” Since the set of rational 
positive extensions of given degree is a finite dimensional 
manifold embedded in the set of infinite sequences satisfying 
the Schur conditions, however, finite sets of inequalities will 
not be sufficient to characterize rational positive extensions, 
underscoring the difficulty of using the Schur parameterization 
to directly characterize rationality. While a linear fractional 
parameterization of all positive real rational interpolants can be 
found, e.g., in [6], the degree of the interpolants represented in 
this parameterization may only be estimated except in certain 
special cases. 

On the other hand, this problem can also be approached in 
the purely algebraic context of the partial realization problem 
[371, [381, [51], 1321, [91, [2], with the additional constraint 
given by positivity, a point of view pioneered by Kalman 
[36]. Indeed, in [40], Kimura refines the linear fractional 
parameterization of positive real rational interpolants to incor- 
porate the degree constraints at the expense of maintaining 
positivity. Solutions to the partial realization problem with 
the additional constraint of stability have also been obtained 
[3], [50]. In contrast to the Schur parameterization, however, 
parameterizations of partial realizations guarantee rationality 
(or even stability) of the appropriate degree, but do leave open 
the problem of characterizing positivity. 

In this paper, we present several contributions to the ra- 
tional covariance extension problem, including some basic 
asymptotics on the Schur parameters of rational positive 
extensions and a complete parameterization of all positive 
rational extensions of a given partial covariance sequence. 
These results follow as immediate corollaries of a more 
fundamental theorem concerning the geometry of the space of 
positive real rational functions of degree at most n. Building 
on earlier work in the literature, this result involves a blend of 
analytic and algebraic methods, explaining the extensive use 
of geometric concepts in the formulation of our main result. 

The space P, of positive real rational functions of degree 
at most n may be identified by viewing coefficients of the 
rational function as parameters, with an open subset of 2n- 
dimensional Euclidean space. Our main result begins with the 
observation that filtering and interpolation define two “dual” or 
“complementary” decompositions of this space. Very briefly, 
the recent global analysis of certain fast filtering algorithms 
[41]-[43] as nonlinear dynamical systems [14]-[ 161 defined 
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on P,, partition P, into leaves of a foliation, where the leaves 
consist of the stable manifolds of the filtering algorithms. On 
the other hand, each choice of “window,” consisting of the first 
n correlation coefficients or equivalently Schur parameters, 
also defines a leaf of a second foliation of P,. Our main 
result is that these two decompositions are complementary in 
the sense that these foliations are everywhere transverse. 

From this basic result on the geometry of positive real 
rational functions, we derive several corollaries. First of all, 
while Schur parameters do characterize all meromorphic pos- 
itive real covariance extensions, the basic question of which 
extensions are rational is open. Partial results in this direction 
are provided in [30] in terms of asymptotic properties of 
the Schur parameter sequence. For example, it is noted that 
for rational modeling filters, the Schur sequence is square 
summable and asymptotically rational. As it turns out, these 
properties are a consequence of more general asymptotic 
properties which we derive from the foliation of P, into stable 
manifolds for the fast filtering algorithm. 

As a second corollary, we give a complete bianalytic 
parameterization of all positive, rational extensions of a given 
degree. Our derivation proves a conjecture due to Georgiou 
[30], yielding a complete parameterization of rational positive 
real extensions in terms of the choice of zeros of the associated 
spectral density. 

Obtaining such a complete parameterization ultimately boils 
down to the existence and uniqueness of solutions to a system 
of nonlinear equations, with inequality constraints reflecting 
the positivity requirements. In such settings, several questions 
arise for both analytical and numerical reasons: How many 
solutions exist, and are there a priori bounds on the norm 
of solutions given bounds on the norm of the data? In this 
connection, degree theory is a very powerful methodology 
derived earlier in this century, motivated by the study of 
solvability of algebraic and transcendental equations [49], 
[53]. Using an innovative application of topological degree 
theory, Georgiou was able to prove existence of a positive 
rational extension for any desired choice of spectral density 
zero structure. To provide a bona fide parameterization of all 
positive rational extensions, however, one would need to know 
that this correspondence is also unique. 

Although a very useful tool for the study of existence, 
degree theory cannot be used, in general, to enumerate so- 
lutions to equations. Indeed, the definition of degree for 
differentiable functions involves sums of the signs of Jacobian 
determinants of the relevant function and these typically can 
assume either positive or negative values. Our main result on 
the transversality of the two basic foliations of P, implies 
that these Jacobians can never vanish and hence can only be 
positive, reflecting the positivity of the associated covariance 
sequence. Thus, a simple argument using differentiable degree 
theory allows us to conclude from our main result that the 
correspondence studied by Georgiou is actually a complete 
bianalytic parameterization. 

In fact, our proof of the Georgiou conjecture actually 
shows more, namely that the problem of parameterizing ra- 
tional covariance extensions by means of covariance data and 
modeling filter zeros is well posed. Recall that a problem 

is well posed if solutions exist, are unique, and depend 
continuously on the data of the problem, so that small (or a 
priori bounded) perturbations in the problem data give rise to 
small (or a priori bounded) perturbations in the solution. The 
issue of small perturbations is typically addressed by showing 
that the appropriate Jacobian is everywhere nonsingular. A 
priori boundedness of solutions, phrased in a coordinate-free 
formulation, follow from the fact that the appropriate maps are 
proper, i.e., the solution set to a compact set of problem data is 
also compact. For example, spectral factorization is well posed, 
as we will illustrate for polynomials in Section III. For the 
rational covariance extension problem, we do more, obtaining 
continuity by proving analyticity. This increased regularity of 
solutions is important for reasons of analysis, approximation, 
and computation. 

The analytic dependence of solutions on the data of the 
rational covariance extension problem also suggests several 
interesting questions concerning the analysis and computation 
of stochastic realizations of a rational covariance extension. 
This analysis requires some new ideas and is too involved 
to be included as a corollary. It turns out, however, that the 
modeling filters and the data in their state-space realizations 
can be determined from the covariance data and modeling filter 
zeros by solving a nonstandard Riccati equation [ 113-[ 131. 
This formulation also sheds some light on the important open 
problem of computing the minimal degree of partial stochastic 
realizations. 

The body of the paper is organized as follows. In Section 
11, we state our main result about the geometry of positive real 
functions. In this section we also review some relevant features 
of the dynamics of a fast filtering algorithm and present some 
geometric constructions which are preliminary to the proof of 
our main result. The corollaries outline the consequences of 
the main result for rational covariance extensions, in terms of 
Schur parameters, modeling filters, and spectral densities. 

In Section 111, for the sake of illustration, we consider a 
simple special case of the parameterization conjecture, namely, 
the spectral factorization problem for polynomials. As well 
known as this result is, this derivation serves as a hint to the 
general methodology and also allows us to review basic degree 
theory and its use in determining well posedness in a familiar 
setting. 

In his important paper [52], Schur also established a result 
asserting that the correspondence between partial covariance 
sequences and Schur sequences is birational and entire, for 
each finite window. A starting point for our proof is an exten- 
sion, discussed in Section IV, of Schur’s birational change of 
coordinates to include other data in the problem. We complete 
the proof of the transversality result for P,, by geometrically 
characterizing the tangent spaces of each of the leaves in terms 
of polynomials with particular properties. From an application 
of complex analysis and the positivity of the covariance 
sequence, it follows that the foliations defined by filtering and 
by interpolation are everywhere transverse. 

In Section V, we conclude the paper by deriving some 
consequences of the main theorem and its proof, thereby giving 
proofs of the remaining assertions stated in Section 111. By 
using this interpretation of filtering as a nonlinear dynamical 
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system, we deduce a partial result concerning which sequences 
of Schur parameters correspond to rational positive extensions. 
Moreover, the proof given for spectral factorization in Section 
I1 can be easily extended to prove well posedness for the case 
of general correlation coefficients. 

To set notation and for the sake of completeness, we 
give a proof of both existence and uniqueness, verifying that 
the technical hypotheses (e.g., properness) underlying degree 
theory are satisfied. That degree theory applies in this case 
reposes upon the fact that a priori bounds on the parameters 
in a modeling filter for a partial sequence are implied by a 
priori bounds on the zeroes of the candidate spectral density. 
This follows from a filtering interpretation, since such a priori 
bounds are inversely proportional to the Kalman filter steady 
state estimation error, which is bounded away from zero in a 
continuous manner. 

Existence follows from a calculation of the degree for the 
maximum entropy filter, about which a great deal is known. 
Positivity of the appropriate Jacobian, and hence uniqueness 
of the parameterization, follows immediately from our main 
transversality result. Analyticity of the inverse, and hence well 
posedness of the problem, follows from the inverse function 
theorem. 

11. STATEMENT OF THE MAIN RESULT AND ITS COROLLARIES 

One of the goals of this paper is to provide a complete 
parameterization of all positive rational extensions of a given 
partial covariance sequence. Given a partial sequence 

( 1 , c 1 , . * . , c n ) ;  c; := E{y(t+i)y(t)} (2.1) 

of real correlation coefficients for a stationary stochastic 
process {y(t)}tEz (normalized so that CO = l ) ,  a strictly 
positive real' rational function satisfying 

CC 

v(z) = 1/2 + ~ i z - ~ ;  2; = ci for i = 1 ~ 2 , .  . . , n 
i=l 

(2.2) 

and having degree at most n is said to be a positive rational 
extension of sequence (2.1). The problem of finding all such 
positive rational extensions is a fundamental open problem 
with important applications in signal processing and in speech 
processing (see, e.g., [36], [301, 1401, [221, [181, 1471, [391). 
Ideally, one would like a complete parameterization of such 
extensions given in systems theoretic terms. 

Of course the function v has a representation 

(2.3) 

where a ( z ) ,  b ( z )  are monic degree n polynomials having all 
roots inside the unit disc, i.e., where a and b are Schur 
polynomials. Moreover, v(z) must satisfy 

Re{v(z)} > 0 for IzI = 1 (2.4) 

' A  function U(.) is strictly positive real if it is analytic for 121 2 1 and 
satisfies U(.) + v( 1/z) > 0 on the unit circle; it is positive real if it is analytic 
for 121 > 1 and satisfies U(.) + v ( l / z )  1 0 at each point of the unit circle 
where v has no Dole. 

and therefore 

Re{v(z)} > 0 for IzI 2 1. 

One can also formulate this problem in terms of modeling 
filters w(z) for the partial covariance sequence (1, c1 , c2, . . . , 
cn), i.e., minimum-phase stable rational functions w of degree 
at most n which satisfy 

v(2) + v( l /z )  = w(z)w(l/z) (2.5) 

for some positive real solution to the problem described above. 
Each w(z) is a stable minimum-phase spectral factor for a 
spectral density 

00 

qz) = 1 + q z i  + 2-2); 
i=l 

(2.6) 

corresponding to a positive rational extension of the given 
partial covariance sequence (2.1). 

Such extension problems have a long history. In fact, if one 
drops either the rationality, the bound on the degree, or the 
positivity requirement, then the problem becomes considerably 
easier and solutions are known. On the one hand, the problem 
of finding all positive real functions v(z), analytic outside the 
unit disc, which satisfy (2.2) is known as the CarathCodory 
extension problem, dating from [19] and [20]. The problem 
of parameterizing all such solutions was solved by Schur [52] 
and has exerted an important influence on classical function 
theory, interpolation theory, and operator theory. On the other 
hand, this problem can also be approached in the purely 
algebraic context of the partial realization problem, with the 
additional constraint given by positivity. Indeed, following 
Kalman (see, e.g., [36]) one can view v(z) as the transfer 
function of the sequence (2.1), thought of as a sequence of 
Markov parameters. 

Concerning the CarathCodory extension problem, it is well 
known [33], [52] that to any sequence ( l , c ~ , c ~ , ~ ~ ~ , c m )  
one can bijectively assign a sequence (70, y1 , . . . , ?,,,-I) of 
Schur parameters defined in terms of the Szego polynomials 
{ cpo ( z )  , cpi(z) ,cp2 (2) , . . . } , a family of monic polynomials 

E .  - c .  2 - 1 for i = 1,2;..,72 

cpt(z) = Z t  + c p t d - l  + . . . + cptt 

which are orthogonal on the unit circle [l], [33]. The Schur 
parameters are then given by 

t 1 
"It = Vt,t-kCk+l 

k=O 
(2.7) 

where (TO,  T I ,  r2, . . .) and the coefficients {cpti} can be deter- 
mined recursively [ 11 by 

Tt+l  = (1 - $)rt; To = 1 (2.8) 

and the Szegtk-Levinson equations 
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(2.16) 

with cpt ( z )  being the reversed polynomials 

cp;(z) = cpttzt + cpt,t-lzt-l + . . . + 1. 

Moreover [52], the Schur parameters satisfy the condition 

lyil< 1, i = O,1, . . . , m - 1 (2.10) 

if and only if the Toeplitz matrix 

r 1 c1 ... Cm 1 

lcm cm-l .:.. 1 ' 1  
is positive definite. Furthermore, there is a bijection [52] 
between the class of positive real functions w(z) and the class 
of sequences (yo, y1,y2, . . . ) satisfying 

ly i l< l  for i = O , 1 , 2 , . - . .  (2.12) 

In particular, given sequence (2.1), one obtains a parame- 
terization of all positive real functions w(z) satisfying (2.2), 
in terms of all extensions (y,, y,+l, . . .) of the corresponding 
partial sequence (yo,yl, . . . m-1) of Schur parameters sat- 
isfying (2.12). Using Schur's method, it is also possible [6, 
Chapter 221 to give a parameterization of all rational, positive 
real, interpolating functions, but incorporating bounds on the 
degree (as arise in the formulation of the rational covariance 
extension problem) has only been achieved at the expense of 
the positivity constraint (see e.g., [40]). This parameterization, 
which we shall refer to as the Kimura-Georgiou parameteri- 
zation, was originally derived from different points of view. 

Briefly, to the sequence (yo,y1,. . . , y,-1) one can associate 
the Szego polynomials of the first and second kind, two bases 
for the vector space of polynomials of degree less than or equal 
to n. The Szego polynomials of the first kind are the orthog- 
onal polynomials, { cpo ( z )  , cp1(z) , . . cp, (z) } , defined above, 
and those of the second kind, {$o (2) , $1 ( z ) ,  . . . , $, (2) }, are 
merely the first kind polynomials corresponding to (-70, 
-71, . . . , -?,-I), the Schur sequence obtained by switching 
signs. More explicitly, the Szego polynomials of the second 
kind are generated by the recursion 

$t+l(.) = z$t(z)  + rt$t*(z); $o(z )  = 1 
$;+lb) =$t*(z) + 7tz$t(z);  $ ; ( z )  = 1. (2.13) 

If the sequence (70,y1, . . . ,Y,-~)  satisfies (2.12), then 
Kimura [40] and Georgiou [30] independently showed that 
any positive real ~ ( z ) ,  of degree at most n, satisfying (2.2) 
has a representation 

where al, ~ 2 , .  . . , a, are real numbers. In fact, it was shown 
in 1301 and later also in [15] that the representation in (2.14) 
of rational functions with fixed Schur parameters holds for all 
a, regardless of positivity. 

We now give a geometric interpretation of the 
Kimura-Georgiou parameterization. It will be convenient 
to regard polynomials a(.) as points in various Euclidean 

spaces, using the sequence of coefficients, denoted by a as 
parameters. Thus, if a(.) has degree n, then a is a vector 
in Rn+l .  If, in addition, U ( Z )  is monic of degree n, then we 
shall emphasize this point and suppress the monic leading 
coefficient, so that a ( z )  is represented as a vector a in W. 
Consider the open subset P, c R2" of pairs (a,b) of monic 
polynomials such that 

1 b ( z )  w(z) = -- 
2 4 2 )  

is strictly positive real. We first note (see Section IV) that 
the Kimura-Georgiou parameterization induces a birational 
diffeomorphic change of coordinates, from (a, b)-coordinates 
to (a,?)-coordinates, on P,. We next introduce the subset 
P,(y) of P,, obtained by fixing a partial Schur sequence (yo, 
71,. . . , 7,-1) with Iyil< 1, i = 1,2, ... , n - 1. Thus, P,(y) 
is parameterized by choices of a such that 

-- 1 b ( z )  - - 1 $ n ( z )  + Ql$n-l(.Z) + . . . + an$o(z> 
2 cp,(Z) -t alcp,-l(z) + .. . + c-r,cpo(z) 

- 
2 a ( z )  

is positive real. Geometrically, the decomposition 

P, = UP&) 
Y 

then the dynamical system 

a(t  + 1) = A(y( t ) )a( t ) ,  a(0) = a (2.17a) 

y ( t  + 1) = G(cr(t + l))y(t) ,  y(0) = y (2.17b) 
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t '  is the global stable manifold in P,, at (am , 0), and it plays an 
important role in the geometry of the space P,. More explic- 
itly, denote by at and bt the monic polynomials corresponding 
to the updated vectors a( t )  and b ( t ) .  Then X a m  is described 
by a system 

F i ( a , y ) = o  i = l , 2 , . . . , n  

of nonlinear equations. These are derived in [16] by eliminat- 
ing rt in the n + 1 algebraic relations 

Fig. 1. 

initiated at (a, y) evolves on an invariant manifold X,_ and 
converges to (am, 0), where am E P,(O) = S,, the space of 
monic Schur polynomials of degree n [16]. 

This dynamical system is essentially the Kalman filter 
rewritten in a universal form so that the system and covariance 
data appear in the initial conditions. It also has the feature 
that the Kalman gain may be computed recursively as the 
dynamical system evolves. More precisely, consider a linear 
stochastic system 

Zt+i = Fxt + But 
yt = hlxt + d'ut (2.18) 

driven by (normalized) white noise {ut} ,  where xt is an n- 
dimensional state process, yt is a scalar output process, and, 
for simplicity, (h, F) is in observer-canonical form. Then 
the linear least-squares estimate it given the observed data 
yo, 91, . . . , yt-1 is generated by the Kalman filter 

i t + l  = i t  + Ict(yt - hli t ) -  , io = o .  (2.19) 

Now, suppose @(z) is the spectral density of the process { y t }  
and w(z) is its positive real part, i.e., the unique positive real 
function such that U(.) + w(z-') = a(.). Using as initial 
conditions the corresponding (a, y) in the Kimura-Georgiou 
parameterization (2.14), we may propagate (a( t), y (t)) or, 
in (a, b)-coordinates ( a ( t ) ,  b ( t ) ) ,  using the dynamical system 
(2.17). Then, as explained in more detail in [16], the Kalman 
gain is given by 

Ict = $(t) - a(t)] - a(0) .  (2.20) 

As it turns out [16], the invariant manifold 

WS(a, ,  0) = X a m  n Pn 

or, equivalently 

+ _ _ _ _  - a,(z) 4 - 7  - r,- 
1 b t ( z )  1 bt(.-1) 
2 ut(.) 2 at(z-1) at(.) at(.-1) 
-__ 

where rt is defined by (2.8). 
It is shown in [16] that the infinite Schur sequence (yo, 

y1,72, . . .) corresponding to (a, y) E P, is generated by 
(2.17) via 

Y k ( t )  = Y t + k  (2.22) 

and hence the sequence (a@),  y(t))tEz is completely con- 
tainedinP,.Since ~ y ~ ~ < l f o r i = 0 , 1 , 2 , . . . , r o = l  2r1 
2 r2 2 -. . ,  and it can be shown [16] that rt -+ r,>O as 
t + oc. 

The global stable manifold W" ( am, 0) at ( 5 , 0) is depicted 
as a subset of PI in Fig. 1 .  Also depicted is PI (i) and a closed 
curve, exterior to Pl whose importance we will discuss later. 

In general the decomposition of P, as a union of the global 
stable manifolds Ws(am,O) defines a second foliation R of 
P,. As Fig. 1 suggests, the leaves of the foliations r and 
R are transverse, i.e., at a point of intersection of the leaves 
of these two foliations the corresponding tangent spaces are 
complementary subspaces. Indeed, using the characterization 
of the tangent spaces to the stable manifold W" (a, , 0) 
developed in [ 161, in Section IV we prove that the intersection 
of Ws(a,, 0) with Pn(y) is in fact always transverse. In such 
a case, one says that two foliations are complementary. 

Main Theorem: The positive real region P, is connected 
and invariant under the filtering algorithm (2.17), which is 
globally convergent on P,. In fact, P, is foliated by the 
stable manifolds WS(a,,O) of the equilibrium set Pn(0) .  
The set P,, is also foliated into leaves given by the sub- 
manifolds P,(y). Moreover, these foliations, r and 52, are 
complementary. 

r 1  

2 1 - Yn-2 

0 

... 

... 

... 

(2.15) 
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There are several important corollaries of our main theorem. 
The first is related to asymptotic properties of the Schur 
parameter sequence. That the Schur sequence of a rational 
modeling filter tends to zero has been noted by several authors, 
some of whom derive asymptotic estimates also implying 
absolute or conditional summability (see e.g., [8] and [31]). 
For example, it is noted in [30] that for rational modeling filters 
the Schur sequence is square summable and asymptotically 
rational. In fact, the Schur sequence is actually in I, for 
any p satisfying p 2 1. As it turns out, these properties are 
a consequence of stable manifold theory for the dynamical 
system (2.17), and they can be strengthened in the form of 
lower and upper bounds on the decay rates of the Schur 
sequence. We shall use vector norms defined by a positive 
definite matrix P ,  i.e., in terms of quantities 

11x11; = X'PX. 

Corollary 2.1: Given a positive sequence (1, c1, . . . , cn), 
and consequently a sequence of Schur parameters (70, 
71, . . . 7"-1) satisfying (2.12), consider the positive real 
function v(z) corresponding to a sequence of Schur parameters 
YO , , 72, - . . satisfying 

.i.i = 72, 2 = 0,1, . . . , 71 - 1 

and 

1.i.i I < 1, 2 = 0,1 ,2 ,  . . . . 

Then a necessary condition for v to be rational is 

];vi1 = O(Y) 

for some X E [ O , l ) .  In fact, X is the maximum of the 
moduli of the zeroes of the corresponding polynomial a, (2). 

Moreover, if v(z) is rational of degree at most n, then, for 
some m,l 5 m 5 n, and some sufficiently large T, there 
exist XI, A2 E (0,l)  and a positive definite m x m matrix P so 
that the vector sequence y ( t )  = (+t ,  ;Yt+l,. . . , +t+m-l)', t = 
0 , 1 , 2 , 3 , .  . . , satisfies 

X1ll7(t)llP I IMt+ 1)llP I X 2 l l r ( t ) l l p  (2.23) 

for all t 2 T, where 11x11; := x'Px. 
Since the set of rational positive extensions of degree n is 

a finite dimensional manifold embedded in the "infinite cube" 
of extensions satisfying (2.12), it cannot be characterized by 
a finite set of inequalities in (7o,y1,. . . ,?,-I), which would 
define an open (and hence infinite dimensional) subspace (in 
the product topology). Moreover, inequalities (2.23) show 
that the set of rational positive extensions of degree n is a 
finite dimensional manifold embedded in &, as observed by 
Georgiou [30] using different methods. Since the inequalities 
(2.23) define a subset of C z  with a nonempty interior, for 
the same reason they will not be sufficient to characterize 
rational positive extensions. These observations illustrate the 
difficulty of using inequalities in the Schur parameters to 
directly characterize rationality, as suggested by Kalman [36]. 

In contrast to the Schur parameterization, the Kimura- 
Georgiou parameterization (2.14) guarantees that v(z) will be 
rational of degree n, but leaves open the rather challenging 

problem of characterizing positivity in terms of the a parame- 
ters. Such a characterization would be especially interesting 
if it expressed the design freedom available in the choice 
of suitable a-parameters in familiar systems theoretic terms. 
For example, the desirability of obtaining a parameterization 
of partial stochastic realizations in terms of poles or zeros 
of a candidate spectral density has been noted by several 
authors [57], [7] and has important applications to signal 
and to speech processing. (See, e.g., [34].) In this direction, 
Burg developed an algorithm for computing the partial Schur 
parameter sequence from observed data and then proposed 
considering the modeling filter obtained from the simple 
extension 

(%yo,y1, ' .  'yn-17°, O, O7. ")' 

In harmony with Proposition 2.1, this extension does in fact 
yield a rational, strictly positive real vo(z) having degree n, 
corresponding to the choice 

in the Kimura-Georgiou parameterization (2.14). The associ- 
ated modeling filter wo(z) is known as the maximum entropy 
filter, since it can be obtained by maximum entropy methods 
(see, e.g., [34], [26], [5]). This filter is also sometimes referred 
to as the autoregressive (AR) model since, as we shall see 
below, the maximal entropy filter wg(z) corresponds to a 
spectral density 

@o(z )  = wo(z>wo(l/z> 

with no zeros. Due to its simplicity, this solution is widely 
used but for many reasons (arising, for example, in speech 
processing [22], in spectral analysis [48], and in recursive 
prediction and identification [47], [7]), it is desirable to allow 
for solutions to (2.2) corresponding to modeling filters with 
nontrivial zeros. 

Indeed, several algorithms which yield more general mod- 
eling filters are now available. Such filters satisfy 

(2.24) 

where 

d(z,  2- l )  = do + dl(z + Z-') + .  . . + d,(zn + Z-") (2.25) 

is a pseudopolynomial which is positive on the unit circle. 
Earlier work by Dewilde and Dym [24], [25] gave a systematic 
construction, starting with a nonrational v(z) satisfying (2.12), 
of a rational modeling filter with prescribed zeros, but for 
which the interpolation condition (2.2) will not be satisfied. 

On the other hand, Georgiou's work on the covariance 
extension problem focused on the freedom in choosing zeros of 
the spectral density while retaining the interpolation constraint 
(2.2). Using degree theory, in 1983 Georgiou [29] proved that 
for any sequence (2.1) and any choice of pseudopolynomial 
d satisfying 

d(z, z-') > o for (21 = 1 (2.26) 
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and having degree less than or equal to n, there is a rational 
positive real function w(z) satisfying condition (2.2). If such 
a w were unique, as conjectured by Georgiou [30], then this 
result would lead to a complete parameterization, in the desired 
systems theoretic terms, of all rational positive real interpolants 
U(.) of the sequence (2.1). 

In geometric terms, we denote by V, the set of pseudopoly- 
nomials having degree at most n and satisfying (2.26). In this 
language, Georgiou's conjecture is equivalent to the assertion 
that the mapping of (n + 1)-manifolds 

f: w+ x Pn(Y) + 2% 

defined via 

is one-one and onto. In fact, our main theorem implies that this 
factorization problem is well posed, i.e., f is one-one, onto, 
and has an analytic (and hence continuous) global inverse. 

Corollary 2.2: Let (1, c1, . . . , e,) be a positive sequence, 
i.e., a sequence satisfying the condition T, > 0. Then, the 
mapping f is a proper analytic bijection with an analytic 
inverse. 

Our proof of Corollary 2.2 will repose on the fact that 
Jac(f) never vanishes on W+ x Pn(y). Of course, f is defined 
on all of {ao} x P,, and the kernel of its Jacobian at a 
point (ao, a, y) consists of the tangent space to the invariant 
manifold WS(a,, 0). Therefore to say that Jac(f) does not 
vanish on {ao}  x P,(y) at the point (ao, a, y) is to say that no 
vector tangent to P,, (y) at (a, y) is also tangent to W" (a,, O), 
which is part of our main result. Fig. 1 illustrates that this is 
true for the case n = 1. Indeed, the closed curve in Fig. 1 is 
in fact the circle in R2 exterior to PI on which the Jacobian 
vanishes. Of course, in higher dimensions the hypersurface on 
which the Jacobian vanishes becomes much more complex. 
Nonetheless, our main result proves that this hypersurface 
never intersects P,. 

Corollary 2.3: Let (1, c1, . . . , cn) be a positive sequence, 
i.e., a sequence satisfying the condition T, > 0. Then, to any 
pseudopolynomial d(z, z-') of degree less than or equal to n, 
which is positive on the unit circle, there corresponds one and 
only one strictly positive real rational function (2.3) of degree 
at most n which satisfies (2.2) and 

d(z ,  z-') w(z) + w(z-1) = a i 2  (2.27) 
a(z)a(z-l) 

where ~ ( z )  is a monic Schur polynomial and a0 is a positive 
real number. Conversely, to any strictly positive real rational 
function (2.3) satisfying (2.2), there exists a pseudopolynomial 
d ( z ,  z-'), uniquely defined up to multiplication by a positive 
number, with the properties described above. Moreover, the 
solution depends analytically on the covariance data and the 
choice of pseudopolynomial. 

This result allows for an interesting interpretation and 
refinement concerning the corresponding parameterization of 
modeling filters. Corresponding to each positive pseudopoly- 
nomial d(z ,  z - ' ) ,  as defined in this theorem, there corresponds 

a unique spectral density 

d(z ,  z-1) 
@ ( z )  = a;' U( z)a(z-1) 

such that 

w(z) + w(z-1) = @(z) .  

w(z>w(z-1) = a(.) 
Although the spectral factorization problem 

does not have a unique solution, there is exactly one spectral 
factor w which is a modeling filter in the sense defined earlier. 
Such a w is stable and minimum phase in the sense that all 
zeros lie in the open unit disc and the numerator polynomial 
has degree n. Consequently, p := w(00) # 0. For example, in 
this representation the numerator polynomial of the maximum 
entropy modeling filter wg(z) will be pzn, but, as far as the 
question of shaping the process { ~ ( t ) } ~ ~ z  from white noise is 
concerned, the power zn may be deleted. With this in mind, 
we are ready to state the following corollary. 

Corollary 2.4: Let (1, cl, . . . , G)  be a given positive partial 
covariance sequence. Then given any Schur polynomial 

U(.) = zn + o1zn-1 + . . . + on 

there exists a unique monic Schur polynomial a(z)  of degree 
n and a unique p E (0,1] such that 

is a minimum phase spectral factor of a spectral density @ ( z )  
satisfying 

M _ _  

@(z) = 1 + &(zi + z-2); 
i=l 
E i  = ci for a = 1,2,...,n . 

In particular, the solutions of the rational positive extension 
problem are in one-one correspondence with self-conjugate 
sets of n points (counted with multiplicity) lying in the open 
unit disc, i.e., with all possible zero structures of modeling 
filters. Moreover, the modeling filter depends analytically on 
the covariance data and the choice of zeros of the spectral 
density. 

Well posedness can be expressed in terms of the commu- 
tative diagram 

R+ x Prl (y)zvn  
g \  / * h  
w+ x srl 

where 

h(a0, a) = a;d(z)a(z-1) 

arises in spectral factorization (see Section 111) and where 

g = h-' o f .  
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the space of all Schur polynomials 

a(z) = zn + a1zn-1 + . . . + an (3.2) 

as the Schur region S,. In this context, the spectral factoriza- 
tion problem is whether the function 

Fig. 2. 
f: R+ x S, + v, (3.3) 

defined via 

The function g can also be expressed as a function f ( a 0 ,  U )  = a;u(z)u(z-1) 

g(ao7a7r)  = (ao7aCO) is one-one and onto. Since R+ x S, C R x R" and D, C Rn+' 
are open connected subsets, this problem can be approached 
using differential analysis. For example, a tangent vector 
(WO, w) to R+ x S, at a point (ao, U )  E R+ x S, corresponds 
to a pair (WO, v) where WO E R and v is a polynomial 

where a, can be defined in terms of the dynamical system 
in (a,y)-coordinates [16] and where T, = p2 in Corollary 
2.4. In particular 

O < r , < l  andso O < p L 1  (2.28) 
w(z) = w1zn--1+ . . . + 

as claimed in Corollary 2.4. 
of degree less than or equal to n - 1. In particular, for 

an Of 2.4, Fig' depicts the 'On- (ao, E Fp+ S, a sufficiently small E > 0, (ao +Ewe, a+ 
cw) E R+ x S,. The Jacobian matrix of f at a point (ao, a), 'pen 'Z(y) and ' 2 1  for = ( i 7  $1. 

These sets form the domain and codomain of the map g, 
restricted to the surface defined by a. = 1, for this case. 
Corollary 2.4 asserts that any a such that ( a , y )  E Pz(y) 

denoted by Jac~,,,,)(f), assigns to a tangent vector (w0,w)  

the directional derivative of f in the direction (WO, w), i.e., 
. ,  . .  

1 
E+O E 

Jac~,,,,,(f>(vo,v) = lim -{f(ao + cw07 a + - f(% a ) ) .  determines [for example, via the convergence of the dynamical 
system (2.17)] a (limit) a,(z) which is a Schur polynomial. 
Conversely, for any point a, in &, there is one and only 
one (a, b) E Pz(y) and hence one, and only one, a such that 

Explicitly 

(a ,  y) E Pz(y) that defines it modeling filter W(Z) having the 
zeros of a,(.). + 2a,w,a(z)a(z-l). 

~aq,,, ,)(f)(vo, U )  = a&(z>u(z-') + a(z-'>+>I 

111. SPECTRAL FACTOIUZA~ON AND DEGREE THEORY 

In this section, we describe the general proof of Corollary 
2.3 in the context of the much simpler problem when 7 := 
(yo, y i l . .  . , m-1) = 0. When y = 0,  the Szego polynomials 
coincide with the standard monomials {zi}, and the rational 
covariance extension problem reduces to a geometric proof 
of a very familiar problem, spectral factorization for poly- 
nomials. This analysis gives us an opportunity to introduce, 
in a very familiar context, the basic concepts from degree 
theory, a very powerful methodology derived earlier in this 
century motivated by the study of solvability of algebraic and 

We define the operator S(a) :  V, -+ W, from the vector 
space V, of polynomials having degree less than or equal to 
n into the vector space W, of symmetric pseudopolynomials 
of degree less than or equal to n via 

(3.4) S(a)v  = u(z)w(z-1) + a(.-')U(.). 
In this notation, we have 

Jac(,,,,)(f)(~~, U )  = s (a) (a& + aovoa). (3.5) 

We recall that, for any a E S, satisfying (3.1), the unit 
circle formulation of Orlando's formula [28] shows that 

transcendental equations (see especially [49]). det S(a )  # 0 for a E S,. 
If cl = c2 = ... = c, = 0, then all covariance extensions 

generated by a rational function of degree at most n also In fact* it is Seen [231 that 

vanish, so the basic parameterization problem is to find all 
a, b such that 

1 b ( 2 )  - 1 
2 4 z )  2 
-- - - 

det S(a )  = n n(l - p i p j )  > 0 
a j  

where pi are the roots of a(z), which all lie in {z: IzI < 1). 
In the light of (3 .3 ,  a straightforward calculation yields 

which is then given by b(z) = a ( z ) ,  for any choice of Schur 
polynomial a(.) having degree n. Corollary 2.3, however, is 
still interesting in this case, the question being whether the 

det Jaq,,,,)(f) = a?+' det S(a) 

so that 
equation 

.;~(z).(Z-') = d(z, z-1) 
det Jac(,,,,)(f) > O  for all (ao ,a)  E R+ x S,. (3.6) 

Our interest in this calculation lies in its consequences for (3.1) 

is solvable, in a continuous or regular fashion for a monic 
Schur polynomial a and a real constant a0 > 0. We refer to 

the solvability of the (3.1). If (3.1) is solvable, then several 
questions arise for both analytical and numerical reasons: HOW 
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many solutions exist, and are there a priori bounds on JJa)J 
given bounds on lldll? 

First note that, since Jac(,,,,) (f) is everywhere nonsingu- 
lar, the inverse function theorem implies that solutions to (3. l),  
for a given d, form a set of isolated points, i.e., a set with no 
cluster points. That the number of solutions must be finite 
then follows from the existence of a priori bounds. Phrased 
in a coordinate-free formulation, we shall need to know that 
f is proper, i.e., if K is a compact set in V, then f - l ( K )  is 
also compact. Since { d }  is compact and since the solution set 
has been shown to consist of isolated points, a consequence 
of properness is that the number of solutions of (3.1) will be 
finite. 

Before using degree theory to enumerate the solution set, 
we first verify that f is proper. Using (3.1), we see that f has 
a continuous extension 

- 
f: R+ x s, 4 3,. 

Moreover, it is straightforward to check that 
- 
f(a(R+ x Sn)) c (3.7) 

Now, if K C 23, is compact, f - l ( K )  is closed in s, by 
continuity of 7. Next, note that f - ' ( K )  = f - l ( K )  since 

-- 1 f ( K )  nap+ x S,) = 0 

by virtue of (3.7). In particular, f - l ( K )  is closed, and it 
remains only to check that f - l ( K )  is bounded. This follows 
from two observations. For a point (a0 ,a)  E f - ' ( K ) , a  
is a monic Schur polynomial and therefore has bounded 
coefficients. As for ao, the constant term in d E K is 

do = .;(I+ a: + . . . + U:) 

which achieves a maximum on K providing an upper bound 
on a;. 

We now review some basic facts from degree theory. 
Suppose more generally that U, V c Rn+' are open connected 
subsets and that 

F : U + V  

is an infinitely differentiable (C"), proper function on U. We 
are interested in solutions to the equation 

y = F ( z ) .  (3.8) 

For z E U, we denote the Jacobian matrix of F at z by 
Jac,(F). A point y E V is called a regular value for F if 
either 

i) F - l (y )  is empty or 
ii) For each z E F- l (y ) ,  Jac,(F) is nonsingular. 
Regular values not only exist but, according to Sard's 

Theorem [49], are dense. Since for a regular value y of type 
ii), F - l (y )  is finite, we may then compute the finite sum 

deg, ( F )  = sign det JacJF). (3.9) 
F ( z ) = ,  

If y is a regular value of type i), we set deg, (F) = 0. 

For example, if U = V = R and F ( z )  = z2, then any 
nonzero y is a regular value and deg, (F) = 0. If F ( z )  = z3, 
then any nonzero y is again a regular value and deg (F) = 1. 
More generally, if F ( z )  is any odd order polynomial 

F ( z )  = aoz2n+l + a122n + . . . +a2n+1, ao>O 

then F is proper and deg,(F) = 1 for every regular value y. 
In contrast, however, the computation of the degree of such 
polynomials, regarded as complex polynomials so that U = 
V = 43, is remarkably simpler. Indeed, the Cauchy-Riemann 
equations imply that det Jac,(F) 2 0 so that, for any 
regular value y,deg,(F) is equal to the algebraic degree of 
the polynomial. 

For our purposes, the main conclusions of degree theory 
[49] assert: 

i) The degree, deg,(F), of F with respect to y is inde- 
pendent of the choice of regular value y. 

ii) Therefore, we may define the degree of F as 

for any regular y. 
iii) If deg (F) # 0, then F maps U onto V. 
The proof of iii) is simple: Regular values y are dense, and 

for each such y, F-'(y) is nonempty. Therefore F ( U )  C V 
is dense, but F ( U )  is closed in V since F is proper, and so 

Returning to the spectral factorization problem, we note that 
all positive pseudopolynomials are regular values for f .  For 
either (3.1) is not solvable, so that f - l (d)  = 0, or (3.6) holds 
for all solutions of (3.1). 

F ( U )  = v. 

One first concludes that 

so that spectral factorization is always possible, but a more 
careful summation in (3.9), in the light of (3.6), shows that 

for any d. The choice d(z ,  z - ' )  
solution 

1 then leads to the unique 

so that we conclude 

deg (f) = 1. 

From this it follows [see (3.10)] that f:  R+ XS, + V, is one- 
one and onto, i.e., for each positive pseudopolynomial there 
is a unique spectral factor. 

Finally, we observe that f-l exists and, from the implicit 
function theorem, that f-' is analytic (since f is), and hence 
continuous. 

As we shall see in Section V, this proof applies, mu- 
tatis mutandis, to the case of general correlation coefficients 
{ C l ,  CP. . . . , G I .  
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Iv.  PROOF OF THE MAIN THEOREM 

We have already seen in Section I1 that the fast filtering 
algorithm leaves P, invariant. We now turn to the geometric 
assertions in our main theorem. 

Proposition 4.1: The open submanifold P, is connected. 
Proof: Since Pn(y) has been shown to be connected, 

to show that P, is connected it suffices to show that for 
y(l), y(2) with Pn(y(l))  and P,(Y(~))  nonempty, there exists 
a path from some point in ~ , ( y ( l ) )  to some point in ~ , ( y ( ' ) ) .  
For this purpose we choose the points (0, y ( l ) )  and (0, Y ( ~ ) ) ,  
corresponding to the maximum entropy solutions. Since the 
Schur conditions (2.10) define a convex set, the path 

(0, Xy( l ) )  + (0, (1 - 

lies in P,. 0 
Recall that a foliation F of dimension m on a smooth 

manifold M of dimension n is a partition of M into a family 
of disjoint, connected m-dimensional submanifolds Lp , called 
the leaves of the foliation, such that i) M = U p L p ,  and ii) each 
point x E M has a Euclidean neighborhood U and coordinates 
( X I ,  . . . , 2,) for which the equations 

21 = 0,  x2 = 0, ' " )  xn-m = 0 

define the connected components of the nonempty intersec- 
tions U n Lo. 

Foliations arise naturally in several ways: 
1) A linear subspace and its parallel translations are the 

leaves of a (linear) foliation on W". 
2) If U is an open subset of W" and ( x l , - . . , x n )  are 

Euclidean coordinates, the connected components of the 
submanifolds defined by 

21 = 0,  2 2  = 0, , xn-m = o  
define a foliation of U of dimension m. 

3) The connected components of the level sets of a smooth 
function h: M N, between an m-manifold M and an 
n-manifold N with an everywhere surjective Jacobian 
are the leaves of an m - n dimensional foliation on M. 

An important related concept is that of the distribution 
defined by the foliation. The distribution A is the collection of 
m-dimensional subspaces A(x) of the tangent spaces T,(M) 
defined by 

A(%) = {w E T,(M)Iw is tangent to L,] 

where L,  is the leaf of F passing through x. Finally, we 
say that two foliations, F1 and F2, of M are complementary 
as foliations provided their distributions define complementary 
subspaces at each x in M ,  i.e., for each x the subspaces Al(x) 
and A ~ ( z )  are complementary. 

In our calculations, we can represent tangent vectors in 
familiar algebraic terms. Given a point (a, b) E P, it follows 
that tangent vectors to P, at (a ,b )  can be represented as a 
pair of polynomials, (U, w) , where 

.(z) = u1zn-1 + . * .  + U n  
w(z) = wlz"--l + . . * + U,. 

Proposition 4.2: I? defines a smooth foliation of P, into 
the leaves Pn(y).  The distribution of r is the collection of 
subspaces 

A d a ,  b)  = T(a,b)pn(y) = .)I 
aw - bu = r,deg r 5 n - l}. (4.1) 

Proof: In fact, r is an illustration of the second manner, 
itemized above, in which foliations arise. More precisely, in 
his important paper [52], Schur established a bijective relation 
between the covariance sequence (1, c1, c ~ ,  . . , c,) and the 
Schur parameters (yo,y1,. . . , defined by (2.7H2.9). 
Less known is his result asserting that this correspondence 
is birational and entire, for each n,  provided (2.10) holds. 
The Kimura-Georgiou parameterization is an extension of 
Schur's birational change of coordinates to the other data 
in the problem, while relaxing the constraint that (2.10) 
holds. This additional data is essentially contained in the 
Kimura-Georgiou parameterization (2.14), which we shall 
now treat in detail following our treatment of this in [16]. 

Le"a4.3: Let y = (yo,y1, . . . ,yn-1)  be an arbitrary 
vector in R" such that y: # 1 for k = 0 , 1 , - . . , n  - 2, 
let { c p k ( Z ) , $ J k ( Z ) ; k  = O , l , . . - , n -  1) be the corresponding 
polynomials generated by (2.9) and (2.13), and set c1 := yo 
and 

k-1  

C k + l  := r k y k  - ( P k , k - j C j + l  (4.2) 
j = O  

for k = 1,2, .  . . , n - 1, where rl ,  r 2 , . .  . , T,  are defined by 
(2.8). Let a(.) and b ( z )  be arbitrary monk polynomials of 
degree n such that 

Then there is a unique cy = ( ( ~ 1 ,  a2,. . . , a,) E R" such that 

U ( Z )  =cpn(~)+cylcpn-l(~)+...+an (4.4a) 
b ( z )  =$)n(z) + al$JCt,-l(z) + ... + a n .  (4.4b) 

We note that this parameterization constitutes in fact a 
bona fide change of coordinates. In the language of classical 
algebraic geometry, the map defined by (4.3) is a birational 
isomorphism [54], i.e., a rational map with a rational inverse. 
More explicitly, consider the set 

2n 2 U, = {(cy,y) E w Iy; # 1,i = 0 , 1 , . . . , n - 2 }  . 

Also, by virtue of (4.3), the generalized "correlation" coef- 
ficients q,  c2,. . - , cn are functions of (a, b) so that we may 
define the open, dense set 

V , = { ( a , b )  € W 2 , J  det ~ # O , i = 1 , 2 , . - . , n - l } .  

In [16] it is shown that the polynomial map I: U, + V,, 
defined by (4.4), sending (cy,?) E W2" to (a, b) E R2n, is a 
bijection with a rational inverse 7-l. Hence 7 is indeed a 
birational isomorphism. 

In these coordinates on P, , the connected submanifolds 
Pn(y )  are defined by coordinate constraints on y and hence 
define the leaves of an n-dimensional foliation, which we 
refer to as r. The following result characterizes which tangent 
vectors (u , v )  to P, at ( a , b )  lie in T(a,b)P(y). 
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Lemma 4.4: For any (a ,b)  E P,(y) 

T(,,b)Pn(y) = { (U ,  .)law - bu = T ,  deg T 5 n - 1). (4.5) 

Proof: Let T(,,b)P, be the tangent space of P, at (a ,  b). 
Denote by v k  the vector space of polynomials having degree 
at most IC and by W the subspace of T(,,b)P, defined via 

W = {(u,w)l deg (aw - bu) 5 n - 1).  

We first note that 

= MGf,)(vn-l) 

where the linear map M(a,b): ?'(,,b)P, -, V2n-1 is defined via 

k f ( a , b ) ( U ,  w )  = - bu. 

Since ker M(,,b) C W, by complementarity of rank and nullity 
for the linear operator M ( a , b ) I ~  we have 

(4.6) 

Let 6 be the degree of the greatest common divisor d of a 
and b. Then a = iid and b = 60 where of course ii and b are 
coprime. Now 

dim W = dim M(,,b)(W) + dim ker M(a,b). 

- 
aw - bu = B(iiv - bu) 

so, if (u,w) E W 

deg ( i iw  - bu) 5 n - 1 - S 

and consequently 

dim h f ( a , b ) ( W )  = n - S. 

-- 4.) -- b ( z )  6(z )  

(4.7) 

Also, if ( u , ~ )  E ker M(,,b), we have aw - bu = 0, i.e., 

U(.) - a(.) - ii(t) 
so U and w must have a common divisor 6 of degree 6-1. 
Since 6 E V6-1 is arbitrary 

dim ker M(a,b) = S. (4.8) 

From (4.6)-(4.8) we may conclude that 

dim W = n 

and it therefore suffices to prove 

c T ( a , b ) P n ( r )  (4.9) 

because P,(y) is an open subset of Rn. Since the sequence 
{yo, 7 1 , .  . + ,  m - 1 )  determines the sequence {cl, ~ 2 , .  . . , c,} 
and conversely, to see that (4.9) holds it suffices to compute 
the first n Laurent coefficients in the Newton quotient 

- 

and to prove that, if 

l b + E W  1 
2 a t ~ u  2 
-- - - - + C 1 ( E ) Z - 1  + c2(E)z-2 + . . -  

then 

= O  for i =  1,2,...,n . Ci(E) - ci lim 
e-0 E 

This, however, follows immediately from the expansion 

b + ~ w  b E(aw -bu)  E ~ U ( U W  -bu) 
a + w  a a2 a2(a + E U )  

- - - 

and the condition ( U ,  w) E W. I7 
0 

The next result will be important both in proving that R 
defines a foliation and that r and R are complementary as 
foliations. It also forms the basis for a degree theoretic proof 
of Georgiou's conjecture. 

Lemma 4.5-Transversality Lemma: There are no nonzero 
polynomials p and q of degree at most n such that 

This concludes the proof of Proposition 4.2. 

(4.10) S(a)q + S ( b ) p  = 0 

and 

aq - bp = r (4.1 1) 

where T is a polynomial of degree less than n. 
Proof: Suppose that p and q are polynomials of at most 

degree n satisfying (4.10) and (4.11). We want to prove that 
p = q = 0. To this end, first note that, in view of (4.11), the 
function 

has relative degree at least n + 1 and is analytic outside a 
disc contained in the open unit disc so that it has the Laurent 
expansion 

g ( z )  = goz-n--l + g1z-n--2 + . . . (4.12) 

there. Likewise g(z- ' )  is analytic in an open disc containing 
the closed unit disc, and in this region it has the Taylor 
expansion 

g(z-1)  = ggzn+l + g1zn+2 + . * .  . 

Now a simple calculation shows that 

where 

h ( z )  := a(z- ' )q(z )  + b(z)p(z - l )  

so that 

and therefore 
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h, however, is a pseudopolynomial of degree less than or equal 
to n, i.e., 

h ( z )  = ho + h l ( Z  + z-1) + * f * + h,(Z, + 2-") 

and therefore h ( ~ ) g ( z - ' ) z - ~  is holomorphic, having no poles 
in the open disc containing the closed unit disc. Similarly, the 
Laurent expansion of h(z)g(z)z-' in the region where (4.12) 
holds has only negative powers of z of order larger than one. 
Consequently (4.13) is zero, which implies that h(eie) 0 ,  
because d(z ,  z-'),  ~ u ( z ) [ ~  and lb(z)I2 are all positive on the 
unit circle. Therefore, by the identity theorem, h 0 in the 
whole complex plane so that 

9(z> = g ( 2 - l ) .  

But g ( z )  has only negative powers of z and g(z - l )  only 
nonnegative powers of z in an annulus containing the unit 
circle and hence g G 0. Since, therefore, T = 0,  we have 

which substituted into (4.10) yields 

["'""I U(.) a(.-1) [a(z)p(z- ' )  + a(z-')p(z)] = 0. 

Since (a ,b)  E Pn(y), the first factor is positive on the unit 
circle and so 

u(eie)p(e-ie) + a(e-ie)p(eie) = o 
for all 8, and therefore, by the identity theorem 

S(u)p = 0. 

Since a is a Schur polynomial, and hence has no reciprocal 
roots, the unit circle version of Orlando's formula [28] (also 
see [23] and [16, Lemma 5.51) implies that p ,  and hence q, is 

Remark 4.6: Since this is so important in the geometry of 
P,, we found it instructive to give an alternative, algebraic 
proof of the key argument in the Transversality Lemma using 
positivity of a Toeplitz form. The proof that h ( z )  0 depends 
in a crucial way on the fact that the function 

identically zero. U 

d(z ,  z-') k ( z )  = 
u(z)a(  z-l)b(z)b( z-1) 

is positive on the unit circle and hence is a spectral density. If 

k ( z )  = ko + kl(Z + z-1) + kz(z2 + z-2) + . . . 
is its Laurent expansion in an open annulus containing the unit 
circle, then the positivity of k on the unit circle implies that 
the Toeplitz matrix 

is positive definite. Since the Laurent expansion 

g ( z )  - g(z-1) = -h(Z- l )k (z )  

of 

in a neighborhood of the unit circle lacks powers of orders 
0,  fl ,  f 2 , .  . , f n  in z,  we also have 

Kh=O 

where h is the column vector of the coefficients (h,, 
hn-l, . . . , Ln) of the pseudopolynomial h. Finally, since 
the degree of h is n, we must have h 0,  as claimed. 
Proposition 4.7: R defines a smooth foliation of P,. The 

distribution of fl is the collection of subspaces 

A d a ,  b)  = T(o,b)(WS(aCa, 0)) 
= {(U, v) ls(a)q + s ( b ) p  = 0) (4.14) 

where p = dou - woa, q = dow - wob. Here do = 1 + (a, b) and 

210 = f U . 7  4 + ( 4  4) = 3 ( a , q )  + ( b 7 P ) )  

where ( U ,  b) is the inner product Cy=luibi of a and b regarded 
as vectors in R". 

Proof: As we shall demonstrate, R is an illustration of 
the third manner, discussed above, in which foliations arise, 
viz. as the level sets of a mapping h: M -, N ,  between 
an m-manifold M and an n-manifold N with an everywhere 
surjective Jacobian. 

In [16, Theorem 5.91 it is shown that the stable manifolds 
Ws(aw,  0 )  are in fact closed n-dimensional submanifolds of 
P, which decompose P, into their disjoint union. 

In this light, recall (Section 11) that 

Ws(aw,o)  = Xam n P, 

and that Xam is defined by (A. 1). Inspection shows that do > 0 
on D,, so that X,_ n P, may be defined [16, p. 7591 in 
(a, 7)-coordinates by the invariant quantities 

where d i (a , y )  := d p ) ( l , a , y )  as defined in Lemma A.l ,  and 
where the ~i are determined by evaluating the left-hand side 
at any point ( a ,y )  lying on Ws(aw,O). 

We shall consider the smooth n-dimensional manifold N 
which is the subset of Dn defined by the constraint do = 1. 
We then define h: P, -+ N by 

In particular, for d E N we see that h-'(d) = WS(a,,O) 
where d = ~T,(Y,(Z)Q,(Z-'). Moreover, each submanifold 
Ws(a,, 0 )  is realized as h-'(d) for some d E N .  If (U, w) is 
tangent to the point (u,b) in P, then it is straightforward to 
compute the directional derivative of h, and hence its Jacobian, 
via a Newton quotient to obtain 

JaC(a,b)(h) = s(a)q + W > P  

where p = d0u - woa, q = dow - wob, do = 1 + (u ,b)  and 
wo = f ( ( a ,  w) + ( b , ~ ) ) .  Also, it is straightforward to show 

We claim that Jac(,,b)(h) maps T(a,b)(Pn(y)) onto 
Th(a,b)(N). Since each tangent space has dimension n this 

that 210 = f ( ( a , q )  + ( b , P ) ) .  
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is equivalent to the assertion that no nonzero tangent vector 
( U ,  U) in T(a,b)(Pn(y)) is annihilated by Jaqa,b)(h). Suppose 
(u,v) is tangent to P,(y) and note that 

r = aq - bp = av - bu (4.15) 

also has degree less than or equal to n - 1. Therefore, if (U, U) 
is annihilated by Jac(,,b)(h), we must have p = q = 0, and 
hence U = v = 0, by the transversality lemma. 

In particular the Jacobian of h is everywhere surjective and 
therefore R defines a foliation. It also follows that the tangent 
space of the level set h-l(d) is given by ker Jac(,,b)(h), 

0 
Taken together, these characterizations of the foliations r 

and R, and their respective distributions, and the tranversality 
lemma allow us to conclude the heart of our main theorem. 

and 52 are complementary foliations of 
P,. In particular any intersection of WS(a, ,  0) with P,(y) 
is transverse. That is, no nonzero vector tangent to P,(y) at 
( a , y )  is also tangent to Ws(am,O). 

Proof: Let (u,v) E A,(a,b)  n A ~ ( a , b ) .  Then (4.10) 
holds with p and q defined as in Proposition 4.2, and, by 
Proposition 4.7, (4.15) has degree less or equal to n - 1. 
Consequently, by the Transversality Lemma, p = q = 0 and 
hence U = v = 0. 

proving our second claim as well. 

Proposition 4.8: 

v. PROOFS OF THE COROLLARIES 
In this section, we derive some consequences of the main 

theorem and its proof, thereby giving proofs of the remaining 
assertions in Section 11. As noted in the discussion of filtering 
as a dynamical system in Section 11, for any strictly positive 
real U(.) the sequence yt converges to zero. We shall now 
show that this convergence is actually geometric as claimed 
in Proposition 2.1. 

Proof of Corollary 2.1: We shall analyze the asymptotic 
behavior of the scalar sequence yt interpreted as the vector 
sequence y ( t ) ,  which is propagated along with a( t )  by the 
nonlinear dynamical system (2.17). It is known [16] that, if 

for t 2 0 and ( a ( t ) , y ( t ) )  -+ (a,,O) as t -+ 00. The first 
necessary condition, geometric decay, follows from the fact 
[16] that Ws(a,,O) is the global stable manifold for the 
nonlinear system (2.17) and that, on this invariant manifold the 
linear approximation to the dynamical system is defined by a 
linear operator with characteristic polynomial a, (2). More 
explicitly, the Transversality Lemma (Lemma 4.5) asserts, 
in particular, that the tangent space to Ws(a,,O) at the 
point (a,,O) intersects the tangent space to y = 0 only 
in the zero vector. By the implicit function theorem, for y 
in a neighborhood of zero there exists an analytic function 
F for which Ws(a,,O) is locally the graph of a = F(y). 
Therefore, to analyze the asymptotic properties of y(t) we may 
consider the autonomous nonlinear dynamical system 

(a(OLy(0)) E WS(Q,,0)  then (a( t ) ,r( t ) )  E WS(&07 0) 

Y ( t  + 1) = G(F(y( t ) ) )y ( t )  

which can be expanded as 

Y(t  + 1) = G(am)Y(t) + H(-Y(t)) 

where 

IIH(r(t)) II = O( Ilr(t> 112). 
Since a,(z) is a Schur polynomial, G(a,) is a stability 
matrix from which our first claim follows. 

The second assertion also follows from this fact with a little 
more work. There exist a positive definite matrix P satisfying 
the Lyapunov equation 

P = G(a,)'PG(a,) + I .  

Now, let us first consider the case that a,  # 0. Then a,, # 0 
also so that G(a,) is nonsingular. In fact, if an, = 0, then 
d, = 0, and hence, by Proposition A.l, a, = 0. Therefore, 
G(a,)'PG(a,) > 0, and hence all eigenvalues of P are 
greater than one. Then, setting m = n, it is straightforward 
to compute that 

Ilr(t + 1,11; = Ilr(t>ll2p - llr(t)1I2 + E(Y)l l r ( t ) l lZ 

where E is O((ly(t)II) for t 2 T for some T 2 0. Since 

where Amin and A,, are the minimal and maximal eigenvalue 
of P,  respectively, we obtain the desired inequalities for 
suitable choices of A1 and A2 satisfying 

0 < A1 < J1'T < 1 

0 < J;z< A2 < 1. 

Amin 

and 

- Secondly, if a,  = ... - am+l = 0 but a, # 0, it is easily 
seen that the dynamical system reduces in a few iterations to 
one for which a and y have dimensions m. Then applying 
the above argument to this reduced system, the required result 
is obtained. Finally, if a = 0, we have yk = 0 for k 2 n 
(maximum entropy solution) so statement (2.23) holds trivially 

As described in Section 11, Corollary 2.2 is equivalent to 
for t 2 n. 0 

the assertion that the function 

f: R, x Pn(Y) -+ D, 

f (ao, a ,  b )  = a;S(a)b = a;[u(z)b(z-l)  + a(.-l)b(z)]. 

(5.1) 

is a bijective analytic diffeomorphism, where 

(5.2) 

Since f is proper (see Appendix), f has a well-defined 
degree, deg f. To compute the Jacobian effectively, we need 
to obtain an intrinsic description of the tangent vectors to 
W+ x P,(y) at a point (ao, a, b). Denoting the tangent space 
to R+ x Pn(y)  at (ao?a,b)  by T ( q , a , b ) W +  x P~(Y) and the 
tangent space to P,(y) at (a ,b )  by T(a,b)Pn(y), there is a 
natural direct sum decomposition 

T(ao.a,b)R+ Pn(y)  TaoW+ @ T(a,b)pn(y). 



1854 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 11, NOVEMBER 1995 

Hence, for a tangent vector ( ~ 0 ,  U, w) E T(ao,,,b)R+ x Pn(y), 
the Jacobian of f at (ao, a, b) becomes 

For simplicity of notation, we define polynomials, having 
degree less or equal to n, via 

We observe that p and q also satisfy 

aq - bp = T ,  deg T 5 n - 1 

because (U, 'U) is tangent to P,(y). Finally, note that to say 
p = q = 0 is to say that uo = 0 and that U = 'U = 0. In this 
language, the following result is a direct consequences of the 
Transversality Lemma (Lemma 4.5). 

Lemma 5.1: For each (.,a) E P,(y), Jac(,,,,,b)(f) is 
nonsingular. 

Thus far, we have shown that the Jacobian of f is always 
nonsingular on the connected open manifold R+ x Pn(y) and 
therefore the sign of its determinant cannot change. In the next 
lemma, we compute this sign showing it to be positive and, in 
fact, evaluate the degree in this case, obtaining 

an arbitrary y consider the mapping g defined in Section 11. 
From (2.17) we see that a = 0 yields a, = 0 so there is at 
least one a with ( a , y )  E P,(y) corresponding to a, = 0 ,  
namely the maximum entropy solution. If we can show that 
there is no nonzero a with ( a , y )  E Pn(y) for which the limit 
a ,  equals zero, we will have shown that there is a unique 
(a, b) corresponding to d 1. In this case, a0 is also uniquely 
determined via 

a(z )b ( z - l )  + a(z- l )b(z)  = 1. 

This can be derived from Lemma A. 1 but also from an analysis 
of the nonlinear dynamical system introduced in Section II. To 
this end, consider an arbitrary a with (a, y) E Pn(y) such that 
g(a0, a) = (ao, 0) .  The corresponding infinite Schur sequence 
{yo,y1,y2,..-} determines a, via (2.17) as 

from which we have a,, = (l/~,)a,. Therefore, if a,, = 
0,  then a, = 0 and so 

Proceeding in this manner we show that a, = 0 implies that 
0 a = 0, concluding the proof of the lemma. 

This concludes the proof that 

for all d E V,. Hence, f is both one-one and onto; see iii) 
in Section 111. 

Lemma 5.2: For all d E V, 

deg, f = 1. 

Proof: Since R+ x P, is connected (Proposition 4.1) and 

it follows that J a c ~ ~ ( , ~ , ~ , b )  ( f )  is sign definite on R+ x P,. 
To prove that 

for all d E D,, it therefore suffices to evaluate Jac(,,,,,b) ( f )  
at any point in R+ x P,. Choosing a point with y = 0, we 
know from Section 111 that 

and hence (5.6) follows from the definition (3.9) of degree. 
The lemma will follow if we can show that there is one 

and only one point (ao ,a ,b)  E R x P ( y )  corresponding to 
d(z,  2-l)  1. This is easy if y = 0, in which case the problem 
reduces to the spectral factorization problem of Section 111 
yielding a(.) = b(z )  = z" and a0 = 1, i.e., a, = 0. For 

is one-one and onto with an everywhere invertible Jacobian. 
By the implicit function theorem, the inverse function 

f-l: V, 4 R+ x P,(y) 

is analytic, since f is analytic, thus proving Corollary 2.3. 
Proof of Corollary 2.4: From the commutative diagram 

introduced in Section 11, it now follows that the function g, 
defined as 

g = h - ' o f  

is a diffeomorphism and hence a bijection, since h is a 
diffeomorphism (see Section 111) and f is a diffeomorphism. 
This establishes the main claim in Corollary 2.4. Finally, the 

0 
Remark 5.3: It is clear that, in general, degree theory cannot 

be used to enumerate solutions to (3.8) since det Jac, (F) 
can assume either positive or negative values. One well-known 
exceptionally tractable case is degree theory for complex 
polynomials, for which the degree equals the algebraic degree 
of the polynomial. Indeed, in sharp contrast to the situation for 
real polynomials, the Cauchy-Riemann equations imply that 
the Jacobian determinant of a complex analytic function can 
only assume positive values. Quite remarkably, a similar situa- 
tion interrelating algebra and analysis prevails here: Positivity 
of the covariance sequence in fact implies a similar positivity 

assertion concerning p follows from (2.28). 
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condition on the Jacobian determinant. This nontrivial fact 
underlies our proof of uniqueness and follows directly from the 
transversality lemma, which itself was shown using complex 
analytic methods. 

Remark 5.4: One of the referees pointed out that there is a 
simple, more direct complex analysis argument which proves 
uniqueness. This argument is quite similar to the proof of the 
transversality lemma, but does not require degree theory to 
show that f is one-to-one. 

Remark 5.5: The actual degree-theoretic proof of Geor- 
giou’s conjecture can also be presented more succinctly, as 
a direct consequence of the transversality lemma. Indeed, it 
reposes only on verifying that the Jacobian never vanishes 
on P, and then computing the degree at the maximum 
entropy filter (see also [30]). On the other hand, our proof 
of Corollaries 2.2-2.4 shows much more. Aside from also 
providing a self-contained proof of existence (surjectivity of 
f), we are able to address well posedness of the rational 
covariance extension problem (locally) by proving that the 
Jacobian is everywhere invertible and (globally) by verifying 
properness of the map f. Finally, we observe that a more 
involved differential analysis is implicit in an analysis of such 
robustness issues, since even locally well posedness will imply 
invertibility of the Jacobian (see e.g., [46]). 

APPENDIX 

In this appendix we prove that f is a proper map (see 
also [30]). To this end, it will be useful to have an explicit 
description of f in (ao, a, 7)-coordinates. For this reason we 
cite a lemma from [16], trivially modified for our purposes. 
Lemma A.l: Suppose 

d(z,  z-l) = do + d1(z + z-1) + . . . + d,(Z, + 2-”) 
is a pseudopolynomial which satisfies 

f(a0, a,  b)  = a;[a(z)b(z-l) + a(z-l)b(z)] = 2 4 2 ,  .-I>. 

(‘4.1) 

If (a, y) corresponds to (a, b),  then 

where TI,  ~ 2 , .  . . , T,  are defined by (2.8), and di := din) (ao, 
a, y) for i = 1,2, . . . , n, where din’ is determined recursively 
by 

d, (1) (ao, Q l , ^ l O )  = a;w 

where (YO = 1 and { x j ~ }  are the coefficients of the polynomials 

generated by the polynomial recursion 

and IT+ = 0 for i >j. 
We can now proceed with our proof. 
Lemma A.2: The smooth map (5.1) is proper. 

Proof: We first note that 

d(R+ x Pn(Y)) = ((01 x m) U (R+ x dPn(Y)). 

The boundary dP,(y) of P,(y) consists of pairs (a ,b )  for 
which (2.3) is positive real but not strictly positive real. 
Similarly, dD, consists of those pseudopolynomials which 
are nonnegative on the unit circle and have at least one zero 
there (including the zero pseudopolynomial). From these facts 
it follows that 

64.3) 

Now suppose K c D, is a compact subset. We wish to show 
that f-l(K) is closed and bounded in R x R”. Denote by 7 
the continuous extension of f to R+ x P,(y) defined via 

f(m+ x Pn(Y))) c d’Dn. 

- 
f(a0, a, b)  =aiS(a)b  = a;[a(z)b(z-l) + a(z-l)b(z)]. 

The set J - l ( K )  is closed, but, in the light of (A.3), fP1(K) = 
f (K). Finally, boundedness of f - l (K)  follows from two 
observations. For a point (ao ,a ,b)  E f - l (K) , a  and b are 
monic Schur polynomials and therefore have bounded coeffi- 
cients. As for ao, the constant term of the pseudopolynomials 
in K achieve a maximum which provides a bound on a i  by 

-- 1 

virtue of (A.2). 0 
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