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Abstract. Positive real rational functions play a central role in both deterministic and stochastic
linear systems theory, as well as in circuit synthesis, spectral analysis, and speech processing. For
this reason, results about positive real transfer functions and their realizations typically have many
applications and manifestations.

In this paper, we study certain manifolds and submanifolds of positive real transfer functions,
describing a fundamental geometric duality between filtering and Nevanlinna–Pick interpolation.
Not surprisingly, then, this duality, while interesting in its own right, has several corollaries which
provide solutions and insight into some very interesting and intensely researched problems. One of
these is the problem of parameterizing all rational solutions of bounded degree of the Nevanlinna–Pick
interpolation problem, which plays a central role in robust control, and for which the duality theorem
yields a complete solution. In this paper, we shall describe the duality theorem, which we motivate
in terms of both the interpolation problem and a fast algorithm for Kalman filtering, viewed as a
nonlinear dynamical system on the space of positive real transfer functions.

We also outline a new proof of the recent solution to the rational Nevanlinna–Pick interpolation
problem, using an algebraic topological generalization of Hadamard’s global inverse function theorem.
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1. Introduction. Modulo a conformal equivalence, the classical Nevanlinna–
Pick problem amounts to determining a function which is positive real, i.e., is analytic
and has nonnegative real part in D c := {z ∈ C | |z| > 1}, and which satisfies the
interpolation condition

(1.1) f(zk) = wk for k = 0, 1, . . . , n,

where z0, z1, . . . , zn ∈ D c and w0, w1, . . . , wn ∈ C . This problem has a solution if
and only if the associated Pick matrix P is positive semidefinite. It is unique if P
is singular, and there are infinitely many solutions if P > 0 (see [35, 33]). We are
interested in a particular subset of these solutions, namely those which are rational
of degree at most n, and we shall refer to the problem of determining these as the
Nevanlinna–Pick problem with degree constraints [12].

For simplicity, in this paper we shall consider the special case that the inter-
polation points are all distinct and fixed and with z0 = ∞. Then the Pick matrix
becomes

P =
[

wk + w̄�

1 − z−1
k z̄−1

�

]n

k,�=0

.
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Moreover, we assume that the sets z0, z1, . . . , zn and w0, w1, . . . , wn are self-conjugate
so that only real interpolants f need to be considered. We also normalize the problem
by setting

w0 = 1

so that f(∞) = 1. Finally, we assume that the interpolant is strictly positive real in
the sense that

f(eiθ) + f(e−iθ) > 0 for all θ ∈ [−π, π].

Any such function can, in a unique fashion, be written as

(1.2) f(z) + f(z−1) = v(z)v(z−1),

where v is a minimum-phase spectral factor having all zeros in the open unit disc.
These zeros will be called the spectral zeros of f . As we have remarked above, there are
several conformal equivalents of this problem, including Nevanlinna–Pick interpolation
for bounded-real, or Schur, functions. Indeed, even for positive real functions there
are two conventions, one dealing with interpolation problems inside the unit disc and
one outside the disc, as considered here. Our convention is motivated by the desire
to have spectral factors which are stable and minimum-phase and therefore may be
realized, in control engineering terms, by a stable discrete-time linear system.

We shall show that the space of all strictly positive real, rational functions of at
most degree n, Pn, admits two foliations: an interpolation foliation with one leaf for
each choice of interpolation values w1, w2, . . . , wn satisfying the Pick condition, and
a filtering foliation with one leaf for each choice of spectral zeros. These foliations
are complementary, each pair of leaves with one from each foliation intersecting in
one point under nonzero angle. This result is analogous to that obtained in [6] for
the case that z0 = z1 = · · · = zn = ∞, the rational covariance extension problem.
We note that the corresponding decompositions for the space of functions which are
positive real, rather than strictly positive real, are not necessarily disjoint, nor are the
equivalence classes necessarily smooth manifolds. For these reasons, we shall work
with strictly positive real functions.

More generally, in section 6 we also prove that Pn is diffeomorphic to W+
n × Sn,

whereW+
n is the space of all w1, w2, . . . , wn satisfying the Pick condition, and Sn is the

space of (real) Schur polynomials of degree n, i.e., real monic polynomials of degree
n with all zeros in the open unit disc. Since, in addition, it can be shown that both
W

+
n and Sn are diffeomorphic to Rn, this implies that Pn is Euclidean of dimension

2n.

2. Preliminaries. Let H2 be the Hardy space of all real functions which are
analytic in the exterior of the unit disc, D c := {z ∈ C | |z| < 1}, and have square-
integrable radial limits

lim
r→+1

1
2π

∫ π

−π

|f(reiθ)|2dθ < ∞

on the boundary. Denoting by L2 the space of all real functions which are square-
integrable on the unit circle, we may identify H2 with the subspace of L2 consisting of
those functions with vanishing positively indexed Fourier coefficients. More precisely,
for f ∈ H2,

f(z) = f0 + f1z
−1 + f2z

−2 + · · · .
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Similarly, let H̄2 be the conjugate Hardy space of L2-functions which are analytic in
the open unit disc and thus have vanishing negatively indexed Fourier coefficients so
that

f(z) = f0 + f1z + f2z
2 + · · ·

for f ∈ H̄2. Hence, if f∗(z) := f(z−1), f ∈ H2 if and only if f∗ ∈ H̄2.
The space L2 is a Hilbert space with inner product

〈f, g〉 =
1
2π

∫ π

−π

f(eiθ)g∗(eiθ)dθ.

Next, given the interpolation points z1, z2, . . . , zn, define the Blaschke product

B(z) :=
n∏

k=1

1 − z−1
k z

z − z̄−1
k

.

As is well known, the subspace BH2 is invariant under the shift z−1. In order to set
notation, we remark that BH2 is the kernel of the evaluation operator E : H2 → C n

defined

E(f) =



f(z1)

...
f(zn)


 ,

and, if z0 = ∞, z−1BH2 is the kernel of

Ê(f) =



f(z0)
f(z1)

...
f(zn)


 .

In this paper, the coinvariant subspaces H(B) := H2 �BH2,

(2.1) K := H(z−1B) = H2 � z−1BH2, and L := z−1H(B)

will play an important part. They are all finite-dimensional. In fact, given the poly-
nomial

(2.2) τ(z) =
n∏

k=1

(z − z̄−1
k ),

K consists of all rational functions

r(z) =
π(z)
τ(z)

for which the polynomial π is of degree at most n, and hence K is (n+1)-dimensional.
The spaces H(B) and L are n-dimensional subspaces of K. In particular, L consists
of those rational functions r ∈ K for which r(∞) = 0. We shall also need the subset
R of functions in r ∈ K with the property that r − 1 ∈ L and r is minimum-phase
in the sense that the numerator polynomial π has all its zeros in the open unit disc.
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In fact, to say that r ∈ R is to say that π ∈ Sn, the n-dimensional space of (monic)
Schur polynomials defined in section 1.

Finally, we shall need the subspace

(2.3) Q := K+K
∗,

in terms of which we have the orthogonal decomposition

(2.4) L2 = zB∗H̄2 ⊕ Q⊕ z−1BH2

and the subspace D ⊂ Q defined as

(2.5) D := {Q = q + q∗ | q ∈ K}.

An important convex (n + 1)-dimensional subset D+
n of D consists of those D ∈ D

which are positive real, i.e., satisfy the condition that D(eiθ) > 0 for all θ ∈ [−π, π].
Also define the n-dimensional subset Z+

n of D+
n of all D ∈ D+

n which are normalized
so that D(1) = 1. It is immediately seen that Z+

n is also convex.
The following lemma is a trivial modification of the unit circle version of Orlando’s

formula [15] (also see [5, Lemma 5.5]).
Lemma 2.1. Let a ∈ R, and define S(a) : K → D to be the linear mapping

defined by

S(a)v = av∗ + a∗v.

Then kerS(a) = 0.

3. The interpolation foliation. Any rational function f of degree at most n
has a representation

(3.1) f(z) =
b(z)
a(z)

, a, b ∈ K.

If, in addition, f is strictly positive real, the zeros of the rational functions a and
b in (3.1) must be located in the open unit disc. Therefore, if we also assume that
f(∞) = 1, it is no restriction to choose a, b ∈ R. Consequently, we define Pn to be
the space of all pairs (a, b) with a, b ∈ R such that f is strictly positive real. The
following result was established in [6]. We note that R is diffeomorphic to Euclidean
space Rn because Sn � Rn [4].

Proposition 3.1. The space Pn is a smooth, connected, real manifold of dimen-
sion 2n.

Next, denote by W+
n the space of all w ∈ C n with components w1, w2, . . . , wn ∈ C

satisfying the Pick condition P > 0 and forming a self-conjugate set.
Proposition 3.2. W+

n is a smooth, connected, real manifold of dimension n.
Proof. It is clear that W+

n is a smooth manifold having real dimension n.
From the form of the Pick matrix, one can also see that W+

n is convex and hence
connected.

Let η : Pn → W
+
n be the restriction of the evaluation operator E to Pn. Then,

for each w ∈W+
n ,

(3.2) Pn(w) = η−1(w)

is the space of all f ∈ Pn satisfying the interpolation condition (1.1) corresponding
to w.
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Theorem 3.3. The connected components of the sets {Pn(w) | w ∈ W+} form
the leaves of an n-dimensional foliation of Pn.

Remark 3.4. Below, we shall prove that the submanifold Pn(w) is actually con-
nected. This fact is a nontrivial consequence of the transversality lemma we shall
prove in section 5.

To prove this theorem, we need to show that η is a submersion [26], i.e., that the
Jacobian Jac(η)|(a,b) is everywhere surjective. To this end, for any u, v ∈ L, first form
the directional derivative of f in the direction (u, v), i.e.,

D(u,v)f = lim
ε→0

1
ε

[
b+ εv

a+ εu
− b

a

]
=

av − bu

a2
.

Then, the directional derivative of η in the direction (u, v) is

D(u,v)η =



D(u,v)f(z1)
D(u,v)f(z2)

...
D(u,v)f(zn)


 ,

which is zero if and only if

av − bu = rB, where r ∈ L.

Consequently,

ker Jac(η)|(a,b) = {(u, v) ∈ L× L | av − bu ∈ BL}.

Lemma 3.5. The tangent space of Pn(w) at (a, b) has dimension n and is given
by

T(a,b)Pn(w) = {(u, v) ∈ L× L | av − bu ∈ BL}.

Proof. The tangent vectors of Pn(w), as defined by (3.2), are precisely the vectors
in the nullspace of the Jacobian of η at (a, b). For simplicity of notation, denote
this space by V . To prove that dimV = n, let M(a,b) : V → BL be the mapping
M(a,b)(u, v) = av− bu. Let n0 be the number of common zeros of a and b. Then there
are three proper rational functions, each taking the value 1 at infinity, namely θ of
degree n0 and ã and b̃ of degree n−n0, such that a = θã and b = θb̃ and ã and b̃ have
no nontrivial common factors. Now, if (u, v) ∈ kerM(a,b), we have av − bu = 0, and
hence

v

u
=

b

a
=

b̃

ã
,

so there must be a rational function ϑ of degree n0 vanishing at infinity such that
u = ϑã and v = ϑb̃. Consequently, since ϑ is completely arbitrary,

dim kerM(a,b) = n0.

Moreover, for (u, v) ∈ V ,

av − bu = θ(ãv − b̃u) = Br for some r ∈ L.
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Therefore, since dimL = n and θ is fixed of degree n0,

dimM(a,b)(V ) = n− n0.

Therefore, by complementarity between rank and nullity,

dimV = dimM(a,b)(V ) + dim kerM(a,b) = n,

as claimed.
Proof of Theorem 3.3. Since the Jacobian Jac(η) is a linear map from the 2n-

dimensional tangent space of Pn to the n-dimensional tangent space of W+, com-
plementarity of rank and nullity for ker Jac(η) and the fact that dim ker Jac(η) = n
(Lemma 3.5) imply that the range of Jac(η) has dimension n. Hence η is a submersion,
proving the statement of the theorem [26, p. 2].

4. The filtering foliation. The following lemma is a trivial reformulation of
results presented in [28, 29] concerning a fast filtering algorithm for Kalman filtering
[27] (see also [5]).

Lemma 4.1. Given any (a, b) ∈ Pn, consider the dynamical system

at+1(z) =
1

2(1 + γt)
[(1 + z)at(z) + (1 − z)bt(z)], a0(z) = a(z),

bt+1(z) =
1

2(1 − γt)
[(1 − z)at(z) + (1 + z)bt(z)], b0(z) = b(z),(4.1)

where

(4.2) γt =
(
z
bt(z) − at(z)

2

)
|z=∞.

Then, for t = 0, 1, 2, . . . ,

(4.3) (at, bt) ∈ Pn

and

(4.4) rtS(at)bt = S(a)b, where rt =
t−1∏
k=0

(1 − γ2
k).

Moreover, as t → ∞, γt → 0, rt → r∞, and

(4.5) (at, bt) → (σ, σ), where σ ∈ R.

The parameters (4.2) are the Schur parameters (reflection coefficients) corre-
sponding to the function f , and, consequently, |γt| < 1, t = 0, 1, 2, . . . , whenever
f is strictly positive real. The connection to the Schur algorithm and Kalman fil-
tering is explained in the appendix, where, for convenience, an independent proof of
Lemma 4.1 is given. For initial conditions (a, b) �∈ Pn, the fast filtering algorithm
exhibits much more complicated (and interesting) dynamical behavior, which is in-
vestigated in detail in [5]. Here, however, we are only interested in its behavior on
the set Pn.

In view of (3.1), we have

(4.6) f(z) + f(z−1) =
S(a)b
aa∗

,
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and hence Lemma 4.1 implies that

(4.7) f(z) + f(z−1) = r∞
σ(z)σ(z−1)
a(z)a(z−1)

,

showing that the spectral factor in (1.2) is

v(z) =
√
r∞

σ(z)
a(z)

.

We note that Pn is invariant under the dynamical system (4.1); i.e., whenever
the initial condition (a, b) ∈ Pn, the iterates (at, bt) ∈ Pn. Moreover, the dynamical
system (4.1) converges to the limit point (σ, σ) along the invariant manifold (4.4) [5].
Hence, the equilibrium set is

(4.8) Pn(ŵ), where ŵ :=




1
1
...
1


.

Furthermore, (4.8) defines the center manifold for the dynamical system (4.1) evolving
on Pn, and no equilibrium in the center fold has a nontrivial unstable manifold. The
invariant set (4.4) may also be written as

ρtS(at)bt = S(σ)σ, where ρt = Π∞
k=t(1 − γ2

k)−1.

Then, for each σ ∈ R,

(4.9) W
s(σ) = {(a, b) ∈ Pn | ρS(a)b = S(σ)σ for some ρ ∈ R+}

is the stable manifold in Pn through (σ, σ). In view of (4.6), S(a)b is positive on the
unit circle for all (a, b) ∈ Pn, and hence we can eliminate the variable ρ in ρS(a)b =
S(σ)σ by dividing by [S(a)b](1). Therefore, we define the mapping h : Pn → Z

+
n as

(4.10) h(a, b) =
S(a)b

[S(a)b](1)
,

where Z+
n is the n-dimensional convex space defined in section 2. Then, the manifold

(4.9) may also be written as

(4.11) W
s(σ) = h−1(κ(σ)),

where

κ(σ) :=
S(σ)σ

[S(σ)σ](1)
∈ Z+

n .

Theorem 4.2. The connected components of the sets {Ws(σ) | σ ∈ R} form the
leaves of an n-dimensional foliation of Pn.

Remark 4.3. The stable manifolds Ws(σ) are in fact connected. In this paper we
shall sketch a proof of this fact based on the transversality lemma.
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For the proof we need to show that the Jacobian Jac(h)|(a,b) has full rank. To this
end, we compute the directional derivative of h in the direction (u, v) for arbitrary
u, v ∈ L as

(4.12) D(u,v)h = lim
ε→0

h(a+ εu, b+ εv) − h(a, b)
ε

=
S(a)q + S(b)p

[S(a)b](1)
,

where

(4.13) p = u− µb, q = v − µa, µ =
1
2

[
S(a)v + S(b)u

S(a)b

]
(1).

In this computation, we have also used the fact that S(a)b = S(b)a.
Lemma 4.4. The tangent space of Ws(σ) at (a, b) has dimension n and is given

by

T(a,b)W
s(σ) = {(u, v) ∈ L× L | S(a)q + S(b)p = 0},

where p, q ∈ K depend on (u, v) as in (4.13).
Proof. The tangent space T(a,b)W(σ) is precisely the kernel of the Jacobian

Jac(h)|(a,b) of h−1(κ(σ)), i.e., the space of (u, v) for which the directional deriva-
tive (4.12) is zero. This yields the expression of the lemma. Since the n algebraic
equations contained in

h(a, b) = κ(σ)

are obtained by eliminating the variable ρ from the n+1 algebraic equations contained
in

ρS(a)b = S(σ)σ,

T(a,b)W(σ) has the same dimension as ker Jac(F )|(ρ,a,b), where F : R+ ×Pn → D+ is
defined as

F (ρ, a, b) = ρS(a)b.

Now, the directional derivative of F in the direction (λ, u, v) ∈ R×L×L is given by

D(λ,u,v)F (ρ, a, b) = S(a)[ρv + λb] + S(b)u,

so T(a,b)W(σ) has the same dimension as

W := {(r, u) ∈ K× L | S(a)r + S(b)u = 0}.

Then, exactly the same proof as in [5, Lemma 5.11] shows that dimW = n.
We note in passing that Lemma 5.11 in [5] also shows that if we extend W(σ) out-

side the positive region Pn we encounter singularities where the rank of the Jacobian
is deficient precisely at the points where a and b have common reciprocal zeros.

Proof of Theorem 4.2. Given Lemma 4.4 and hence that ker Jac(h) = n, the rest
of the proof is completely analogous to that of Theorem 3.3.
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5. The transversality lemma and the geometry of positive real func-
tions. The following result is modeled after the corresponding result in [6, Lemma
4.5].

Theorem 5.1 (transversality lemma). Let K and L be the spaces defined in
(2.1). Then there are no nonzero p and q in K such that

(5.1) aq − bp ∈ BL

and

(5.2) S(a)q + S(b)p = 0.

Proof. We want to prove that if p ∈ K and q ∈ K satisfy (5.1) and (5.2), then
p = q = 0. To this end, first note that (5.2) may be written as

(5.3) h(z) + h(z−1) = 0,

where

h(z) := a(z−1)q(z) + b(z)p(z−1),

and that h ∈ Q, where Q is defined by (2.3). Moreover, in view of (5.1),

g(z) :=
q(z)
b(z)

− p(z)
a(z)

= B(z)
r(z)

a(z)b(z)
, where r ∈ L.

Since a(∞) = b(∞) = 1 and r(∞) = 0, the rational function r
ab has a Laurent

expansion

r(z)
a(z)b(z)

= c1z
−1 + c2z

−2 + c3z
−3 + · · ·

about infinity which holds on and outside the unit circle, and hence g ∈ z−1BH2.
Therefore, g∗ ∈ zB∗H̄2, and, consequently, by (2.4), both g and g∗ are orthogonal to
Q and hence to h. In particular,

(5.4) 〈h, g − g∗〉 = 0.

Now, a simple calculation shows that

g − g∗ =
h

ba∗
− h∗

ab∗
=

S(a)b
aa∗bb∗

h,

where (5.3) has been used to obtain the second equality, and therefore (5.4) yields〈
h,

S(a)b
aa∗bb∗

h

〉
= 0.

However, since (a, b) ∈ Pn is positive real, S(a)b is positive on the unit circle, and so
is aa∗bb∗. Hence h must be zero, implying that g = g∗, i.e., g is constant and thus
contained in Q. But g is orthogonal to Q, so g must be zero also. Then

q(z) =
b(z)
a(z)

p(z),
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which, substituted into (5.2), yields[
b

a
+

b∗

a∗

]
[ap∗ + a∗p] = 0.

Since (a, b) ∈ Pn, the first factor is positive on the unit circle, and so

a(eiθ)p(e−iθ) + a(e−iθ)p(eiθ) = 0

for all θ, and therefore, by the identity theorem,

S(a)p = 0.

However, by Lemma 2.1, S(a) has full rank, so p, and hence q, are zero.
The transversality lemma has the following important consequence.
Lemma 5.2. Suppose that the point (a, b) ∈ Pn lies on the submanifolds Pn(w)

and Ws(σ). Then

T(a,b)Pn(w) ∩ T(a,b)W
s(σ) = 0.

Proof. Taking (u, v) ∈ T(a,b)Pn(w) ∩ T(a,b)W(σ), we see from Lemma 4.4 that
(5.2) holds with p and q defined by (4.13). Moreover, since

aq − bp = av − µab− bu+ µab = av − bu

for this choice of p and q, (5.1) also holds by Lemma 3.5. Hence, by Theorem 5.1,
we must have p = q = 0. But then evaluating at ∞, we obtain from (4.13) that
µ = p(∞) = q(∞), which a fortiori must be zero, hence implying that (u, v) =
0.

It remains to show that the submanifolds Ws(σ) and Pn(w) are connected and
thus constitute the leaves of the filtering foliation and the interpolation foliation,
respectively.

Corollary 5.3. The stable manifolds {Ws(σ) | σ ∈ R} are diffeomorphic to W+
n

and thus connected. In particular, the stable manifolds of the fast filtering algorithm
(4.1) decompose the space Pn into the leaves of a foliation.

Proof. Consider again the mapping

η : Pn →W
+
n

with η−1(w) = Pn. The restriction ησ of η to Ws(σ) is a map of n-manifolds

ησ : Ws(σ) →W
+
n .

We claim that

det Jac(ησ)|(a,b) �= 0

for all (a, b) ∈Ws(σ). To prove this, we need to show that the directional derivative

D(u,v)ησ = Jac(ησ)
[
u
v

]

is zero for any (u, v) ∈ T(a,b)W
s(σ) only if (u, v) = 0. However,

ker Jac(ησ) ⊂ ker Jac(η) = T(a,b)Pn(w)
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(Lemma 3.5), and hence this follows from Lemma 5.2. To proceed, we also need
to show that ησ is proper, i.e., that the inverse image η−1

σ (K) is compact for each
compact set in the range space.

Lemma 5.4. The mapping ησ is proper.
Proof. Suppose wk → w in W+

n with wk = ησ(ak, bk). Since Pn and hence Ws(σ)
are relatively compact, the sequence (ak, bk) has a cluster point (a, b) in Ws(σ) ⊂ Pn,
where a and b have all their zeros in the closed unit disc. We need to show that
(a, b) ∈ Ws(σ). Now, suppose instead that (a, b) ∈ ∂Ws(σ), the boundary of Ws(σ).
Then (a, b) ∈ ∂Pn. In fact, if (a, b) ∈ Pn, then, by Theorem 4.2, (a, b) ∈ Ws(σ̂) for
some σ̂ ∈ R such that σ̂ �= σ. But then

S(a)b
[S(a)b](1)

= κ(σ̂) �= κ(σ),

which is impossible by continuity. Now, the boundary ∂Pn consists of those (a, b) for
which either S(a)b has a zero on the unit circle or S(a)b is identically zero. Since the
zeros of S(ak)bk are fixed and therefore independent of k and lie inside the unit disc,
S(a)b cannot have zeros on the unit circle without being identically zero. Therefore,
the function f = b/a has the property f + f∗ = 0, and hence f must have all poles
and zeros on the unit circle. Then, it is well known [23] and easy to check that f
takes the form

f(z) =
m∏

k=1

z − µk

z + µk
, |µk| = 1, m ≤ n,

and, consequently,

F (z) =
f(z) − 1
f(z) + 1

is a Blaschke product of degree m. Thus, modulo a trivial conformal equivalence,
Corollary 2.3 in [16, p. 9] states that the rank of the corresponding Pick matrix equals
m. Therefore, since m < n + 1, the Pick matrix is singular, and the corresponding
value vector w must lie in the boundary ofW+

n , contrary to assumption. Consequently,
(a, b) �∈ ∂Ws(σ), and thus (a, b) ∈Ws(σ) as claimed.

Since ησ is proper and has a nowhere vanishing Jacobian, η−1
σ (w) is a finite set

with cardinality δ, which is independent of w [30]. Therefore, ησ : Ws(σ) → W
+
n

is a δ-fold covering W+
n [30]. Consider the point ŵ ∈ W

+
n defined by (4.8). For

(a, b) ∈ W
s(σ), to say that ησ(a, b) = ŵ is to say that a = b. Since (a, a) is an

equilibrium for the fast filtering algorithm of Lemma 4.1 and lies on the stable manifold
of the equilibrium (σ, σ), we must have (a, a) = (σ, σ), or (a, b) = (σ, σ). Therefore,
δ = 1 and the map ησ : Ws(σ) →W

+
n is a diffeomorphism.

Corollary 5.5. The submanifolds {Pn(w) | w ∈W+} are connected. In partic-
ular, Nevanlinna–Pick interpolation defines a foliation of the space Pn.

Proof. Suppose (a(1), b(1)) and (a(2), b(2)) lie in Pn(w). Since Pn is connected,
there is a continuous path γ : [0, 1] → Pn with γ(0) = (a(1), b(1)) and γ(1) =
(a(2), b(2)). Composing γ with η, we obtain a closed curve

γ̃ = η ◦ γ : [0, 1] →W+

with initial (and final) point w, i.e., w = η(a(i), b(i)), i = 1, 2. Since W+
n is convex,

it is simply connected and therefore γ̃ can be contracted to the “constant curve” w
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through a homotopy H̃ [22]; i.e.,

H̃ : [0, 1] × [0, 1] →W+

jointly continuous and satisfying

H̃(r, 0) = γ̃(r),
H̃(r, 1) = w,

H̃(0, t) = w,

H̃(1, t) = w.

We now construct a lifting of the homotopy H̃ to a homotopy H, with values in Pn,
covering H̃; i.e., η ◦H = H̃. Returning first to the curve γ, each point γ(r) lies in a
unique stable manifold, which we denote by Ws(σ(r)). Since ησ is a diffeomorphism
for each σ, for each r fixed we can lift the curve H̃r, defined as H̃r(t) = H̃(r, t) for
t ∈ [0, 1], to a curve in Ws(σ(r)) covering H̃r by defining Hr(t) = η−1

σ(r)(H̃r(t)). Note
thatHr is a curve lying in Pn with initial point γ(r). Now defineH : [0, 1]×[0, 1] → Pn

via

H(r, t) = Hr(t) = η−1
σ(r)(H̃(r, t)).

We claim that H is jointly continuous. To see this, suppose (rk, tk) → (r, t) and
set

(ak, bk) = H(rk, tk), (a, b) = H(r, t).

We next note that wk := H̃(rk, tk) → H̃(r, t) =: w̃, γ(rk) → σ(r), and consequently
that σ(rk) → σ(r), as k → ∞. To prove that H is jointly continuous, it suffices to
prove that every neighborhood of (a, b) contains the points (ak, bk) for all k sufficiently
large. Now, (a, b) ∈ Pn(w̃), and, using the implicit function theorem, we can choose
neighborhoods N(a, b) which are rectangular in the sense that a neighborhood of (a, b)
in Pn(w̃) serves as the vertical axis, while the horizontal axes consist of unique “slices”
consisting of n-manifolds to which the restriction of η will be a diffeomorphism.

That is, the horizontal slices will be open subsets of Ws(σ). Since σ(rk) → σ(r),
and since the foliation defined by the stable manifolds of the fast filtering algorithm is
itself defined by a submersion, such a neighborhood N(a, b) will intersect Ws(σ(rk))
for all k sufficiently large. Now, (ak, bk) is the endpoint of the unique curve Hrk(t)
for t ∈ [0, tk] in Ws(σ(rk)) covering H̃rk . Similarly, for any t̄ satisfying 0 ≤ t̄ < tk,
(ak, bk) is the endpoint of the unique curve in Ws(σ(rk)) covering H̃rk on [t̄, tk]. Since
η(N(a, b)) is open, there exists a t̄, 0 ≤ t̄ ≤ tk, for all k sufficiently large so that

H̃rk [t̄, tk] ⊂ η(N(a, b)).

In particular, since ησ(rk) is a (global) diffeomorphism, there exist unique lifts γk of
these curves in Pn which lie in Ws(σ(rk)) ∩N(a, b) and cover H̃rk on [t̄, tk] and have
initial points η−1

σ(rk)(H̃(rk, t̄)). Since such liftings are unique, it follows that γk and
Hrk coincide on the subinterval [t̄, tk], and therefore

Hrk(t) ⊂ N(a, b) for t ∈ [t̄, tk].

Consequently,

(ak, bk) = Hrk(tk) ∈ N(a, b)
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for all k sufficiently large.
We have established that H is jointly continuous. The mapping H also satisfies

H(r, 0) = γ(r),
H(r, 1) ⊂ Pn(w) for 0 ≤ r ≤ 1,
H(0, t) = γ(0) = (a(1), b(1)),
H(1, t) = γ(1) = (a(2), b(2)).

In particular, H(·, 1) is a continuous path in Pn(w) joining (a(1), b(1)) and (a(2), b(2)).
Since these points are arbitrary in Pn(w), this manifold is path connected and hence
connected.

Remark 5.6. The foliation by stable manifolds does, of course, define an integrable
connection on the distribution tangent to the interpolation foliation, and it is tempting
to believe that we can deduce a path-lifting result from the existence of this connection.
At this point in the proofs we do not, however, know whether η : Pn →W

+
n is a fiber

bundle or even a fibration. Moreover, η is definitely not proper, so one could at
best expect a path lifting on a sufficiently small subinterval. For this reason, we
directly established the homotopy lifting property for curves. We remark that it
is possible to go further, showing that η : Pn → W

+
n is a fibration. In this case,

one could then deduce path connectedness of the fiber from the fact that W+
n is

simply connected, using the long exact homotopy sequence of the fibration. Since we
only needed the sequence for curves and connected components, we instead used a
constructive approach to defining the boundary operator in the sequence.

6. Main results. Another consequence of the transversality lemma is that the
leaves of the interpolation foliation intersect the leaves of the filtering foliation trans-
versely; i.e., the two foliations are complementary. Actually, a much deeper relation-
ship exists between these foliations, having several interesting corollaries.

Theorem 6.1. The filtering foliation and the interpolation foliation are com-
plementary. Moreover, each leaf Pn(w) intersects each leaf Ws(σ) of the filtering
foliation in one, and only one, point in Pn.

The first assertion follows immediately from Lemma 5.2 after it has been estab-
lished that Pn(w) andWs(σ) are connected and so are the leaves of respective foliation
(Corollary 5.5 and Corollary 5.3). Consequently, there are two complementary folia-
tions of Pn, namely,

(6.1) F1 : Pn =
⋃

w∈W+

Pn(w),

indexed by the interpolation values w ∈W+, and

(6.2) F2 : Pn =
⋃
σ∈R

W(σ),

indexed by the equilibrium points (4.8) of the dynamical system (4.1), or, equivalently,
by the spectral zeros in the form of a point in Sn. This suggests that, given a set of
admissible interpolation values and a set of stable spectral zeros, there is a unique
solution of the Nevanlinna–Pick problem represented by the intersection between the
corresponding leaves of the foliations F1 and F2. This is precisely the second assertion
of the theorem and is a consequence of Proposition 6.3 to be proven below.
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To this end, first note that the fact that the filtering foliation and the interpolation
foliation are complementary says that this uniqueness does occur to first order, in the
following sense.

Lemma 6.2. Let hw : Pn(w) → Z
+
n be the restriction of h, defined by (4.10),

to Pn(w). Then, for each (a, b) ∈ Pn(w), the Jacobian matrix Jac(hw) of hw is
nonsingular.

Proof. To prove this, we need to show that the directional derivative

D(u,v)h = Jac(hw)
[
u
v

]

is zero for any (u, v) ∈ T(a,b)Pn(w) only if (u, v) = 0. But this follows from Lemma 5.2
precisely as in the proof of Corollary 5.3.

It is interesting to note that the duality between interpolation and filtering is
reflected in a symmetry between the restricted mappings

ησ : Ws(σ) →W
+
n

and

hw : Pn(w) → Z
+
n .

Recall that ησ is the restriction of η : Pn → W
+
n to Ws(σ) = h−1(κ(σ)), and hw is

the restriction of h : Pn → Z
+
n to Pn(w) = η−1(w). Moreover, we have the following

result.
Proposition 6.3. The mappings ησ and hw are diffeomorphisms. In particular,

each choice of σ and w determines and is determined by precisely one element (a, b) ∈
Pn.

Proof. We have already shown in the proof of Corollary 5.3 that ησ is a diffeo-
morphism. Concerning hw, we first establish properness.

Lemma 6.4. The mapping hw is proper.
Proof. To show this, consider a sequence (κk) in Z+

n with κk = hw(ak, bk) which
converges to κ ∈ Z+

n as k → ∞, and prove that any cluster point (a, b) of (ak, bk) lies
in Pn(w). Since Pn is relatively compact, (a, b) ∈ Pn(w) ∈ Pn. Now, suppose (a, b) is
not in Pn(w) but in the boundary ∂Pn(w). Then (a, b) ∈ ∂Pn because if (a, b) ∈ Pn,
then, by Theorem 3.3, (a, b) ∈ Pn(ŵ) for some ŵ �= w, which contradicts continuity
of η(a, b). But if (a, b) ∈ ∂Pn, then S(a)b either has a zero on the unit circle or is
identically zero, while a, b ∈ R of course remain nonzero. Therefore, if there is no
zero at z = 1, κk → ∂Z+

n and if [S(a)b](1) = 0, then κk → ∞, contradicting the
assumption that κ ∈ Z+

n in both cases.
Since hw is a proper map with nonvanishing Jacobian (Lemma 6.2), hw : Pn(w) →

Z
+
n is a δ-fold covering. Since Pn(w) is connected and Z

+
n is convex, and hence

simply connected, the number, δ, of sheets must be one [30]. Therefore, hw is a
diffeomorphism.

This concludes the proof of Theorem 6.1.
These geometric implications of the transversality lemma allow us to give an

alternative geometric proof and amplification of the following result in [20], where,
however, spectral zeros on the unit circle are also allowed, and in [12], using convex
analysis to the minima of a functional defined using generalized entropy gains.

Corollary 6.5 (spectral zero assignability theorem for Nevanlinna–Pick inter-
polation). Suppose w determines a positive definite Pick matrix. The positive real
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interpolants (a, b) in Pn(w) can be uniquely determined by a choice of stable spectral
zeros.

This corollary shows that the spectral zeros are design parameters which can be
used, for example, in designing robust bounded real closed loop systems. This result
also holds in the case that all the interpolation points z0 = z1 = · · · = zn = ∞,
a situation of great interest in signal processing, spectral analysis, and stochastic
systems [6, 7, 8, 9, 10, 11] (see also [17, 18], where the first proofs of existence were
presented). In this case, the design parameter is intuitively very appealing, since it
represents a choice of zeros for shaping filters which can shape white noise into a
process matching a finite window of covariance data.

The following theorem, finally, is also a consequence of the transversality lemma.
Here � denotes “diffeomorphic,” and Sn is the space of Schur polynomials of degree
n introduced in section 1.

Theorem 6.6. The space Pn is Euclidean of dimension 2n. More specifically,

Pn �W
+
n × Z+

n �W
+
n × Sn,

where W+
n , Z

+
n , and Sn are all diffeomorphic to Rn.

For the proof we need the following “folk theorem,” for which we have been unable
to find a direct reference.

Lemma 6.7. An open, convex set D ∈ Rn is diffeomorphic to Rn.
It is well known and easy to see that an open convex set D ∈ Rn is homeomorphic

to Rn [3, p. 2]. Except for n = 4, this implies that D is also diffeomorphic to Rn, so
the problem is only for n = 4 [31, p. 5]. However, convexity gives us much more, and
it is simpler to give a direct proof. The following is an outline of a proof provided by
O. Viro.1

Convexity allows us to construct a C∞-function ϕ : Rn → [0, 1], such that ϕ(0) =
1, ϕ(x) > 0 in D, and ϕ(x) = 0 outside D, which is monotonely nondecreasing along
any ray {λy | ‖y‖ = 1, λ ≥ 0}. (We place the origin inside D.) In fact, for each
supporting hyperplane Hk to D, one can construct a function ϕk which is zero in the
half-space not containing D and which is monotonely nonincreasing along the normal
direction from the origin, with the value one on a parallel hyperplane Ĥk and in the
whole half-space beyond it. If D is a polytope, there are finitely many supporting
hyperplanes Hk, and we may take ϕ(x) =

∏
k ϕk(x). In general, we choose the

hyperplanes Hk on a dense set of the boundary and let the distances dk between each
pair Ĥk and Hk be a sequence which tends to zero. Then, only a finite number of
ϕk are different from one at any point in D, and hence the construction still works.
The function ψ : D → Rn, with ψ(0) = 1 and ψ(x) = x/ϕ(x) otherwise, is then a
diffeomorphism. In fact, the monotonicity implies that the Jacobian does not vanish
in D.

Proof of Theorem 6.6. Since W+
n and Z

+
n are open and convex sets, they are

diffeomorphic to Rn by Lemma 6.7. In the case of Z+
n , this can also be seen from

the facts that Z+
n � Sn [6, p. 1849] and Sn � Rn [4]. Then, the rest follows from

Proposition 6.3.

Appendix. Fast Kalman filtering and the Schur algorithm.
Modulo a trivial reformulation, Lemma 4.1 is proven in [27, 28, 29] in the context

of Kalman filtering, using the Szegö polynomials orthogonal on the unit circle and the
Levinson recursion. Obviously, the recursion (4.1) is related to the Schur algorithm

1Similar ideas of a proof have also been suggested to us by H. Shapiro and M. Benedicks.
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[1], as was established in, for example, [13]. In this appendix, we give a simple proof
in this context.

Given any (a, b) ∈ Pn and the corresponding strictly positive real function f =
b/a, define

ϕ(z) :=
f(z) − 1
f(z) + 1

=
b(z) − a(z)
b(z) + a(z)

=:
P (z)
Q(z)

,

which is a Schur function in the sense that it maps the exterior of the unit disc, D c,
into the open unit disc D . The Schur algorithm

(A.1) ϕt+1(z) = z
ϕt(z) − ϕt(∞)
1 − ϕt(∞)ϕt(z)

, ϕ0(z) = ϕ(z),

defines a sequence ϕt(z), t = 0, 1, 2, . . . , of Schur functions, and the Schur parameters

(A.2) γt = ϕt+1(∞), t = 0, 1, 2, . . . ,

are less than one in modulus [1].
Proposition A.1. For t = 0, 1, 2, . . . ,

(A.3) ϕt+1(z) =
zPt(z)
Qt(z)

,

where Pt and Qt are polynomials satisfying the recursions

(A.4)

{
Qt+1(z) = Qt(z) − γtzPt(z), Q0(z) = Q(z),
Pt+1(z) = zPt(z) − γtQt(z), P0(z) = P (z).

Here Qt is of degree n having leading coefficient

(A.5) rt =
t−1∏
k=0

(1 − γ2
k).

Proof. Clearly,

ϕ1(z) = zϕ0(z) =
zP (z)
Q(z)

,

so (A.3) holds for t = 0. Now let t ≥ 1, and suppose that

ϕt(z) =
zPt−1(z)
Qt−1(z)

.

Then, the Schur algorithm (A.1) together with (A.2) yields

ϕt+1(z) = z
zPt−1(z) − γt−1Qt−1(z)
Qt−1(z) − γt−1zPt−1(z)

=
zPt(z)
Qt(z)

,

and hence (A.3) holds for t = 1, 2, . . . by induction. Moreover, (A.3) and (A.4) yield

Qt+1(z)
Qt(z)

= 1 − γtϕt+1(z),
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which, evaluated at z = ∞, becomes 1 − γ2
t by (A.2). But |γt| < 1, and hence

degQt+1 = n whenever degQt = n. Since degQ0 = n, it thus follows by induction
that degQt = n for t = 0, 1, 2, . . . . More precisely, rt, given by (A.5), is the leading
coefficient of Qt(z).

The recursion (A.4) is precisely the fast algorithm for Kalman filtering [27] in the
formulation of [28]. In fact, suppose {y0, y1, y2, . . . } is a stationary stochastic process
with spectral density

Φ(z) =
1
2
[f(z) + f(z−1)],

where f = b/a has a minimal realization

f(z) = 1 + 2h(zI − F )−1g.

Then the linear least squares estimate ŷt of yt given y0, y1, . . . , yt−1 is generated by
the Kalman filter {

x̂t+1 = Fx̂t + kt(yt − ŷt),
ŷt = hx̂t,

where kt is determined from Qt(z) in the following way: If (F, g, h) is chosen so that
h = (1, 0, . . . , 0), F has characteristic polynomial χF (z) = zn + α1z

n−1 + · · · + αn,
and

Qt(z) = rt[zn + q1(t)zn−1 + · · · + qn(t)],

then the gain kt is given by

kt = q(t) − α.

Moreover, Qt/rt is the characteristic polynomial of the feedback matrix

(A.6) F − kth,

which hence is stable.
In the same way as in [28], a direct calculation using (A.4) yields

Qt+1(z)Qt+1(z−1) − Pt+1(z)Pt+1(z−1)
= (1 − γ2

t )[Qt(z)Qt(z−1) − Pt(z)Pt(z−1)](A.7)

for t = 0, 1, 2, . . . .
Now set

(A.8) at(z) :=
Qt(z) − Pt(z)

2rtτ(z)
, bt(z) :=

Qt(z) + Pt(z)
2rtτ(z)

.

We first note that a0 = a and b0 = b. Moreover, since |z−1| < 1 in D c, z−1ϕt+1(z) is
a Schur function, and, consequently,

(A.9) ft(z) :=
bt(z)
at(z)

=
1 + z−1ϕt+1(z)
1 − z−1ϕt+1(z)

is strictly positive real for t = 0, 1, 2, . . . so that (at, bt) ∈ Pn. This verifies (4.3).
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From (A.4) we readily obtain the recursion (4.1), Moreover, in view of (A.9),

ϕt+1(z) = z
bt(z) − at(z)
bt(z) + at(z)

,

and hence (4.2) follows from (A.2). We also note that (4.4) is equivalent to (A.7). It
now only remains to verify (4.5). To this end, we recall that, for rational positive real
functions, the Schur parameters form an ?2 sequence [18, p. 447], and hence γt → 0 as
t → ∞. Consequently, rt tends to some limit r∞ as t → ∞, and it follows from (A.4)
that Qt(z) tends to a constant polynomial Q∞, which is the characteristic polynomial
of the steady-state feedback matrix (A.6) defined by the steady-state Kalman gain.
Hence r−1

∞ Q∞ ∈ Sn. It also follows that Pt(z) tends to zero. Therefore, by (A.8), at
and bt tend to σ as t → ∞, where

σ(z) =
Q∞(z)
r∞τ(z)

.

Clearly, σ ∈ R, as claimed.
This proves the claims made in Lemma 4.1. In [5], a much more refined analysis

of the global phase portrait of the fast filtering algorithm is given, with the explicit
derivation of the global stable manifolds which we employ in section 6. This analysis
has many other consequences. For example, it can be shown [6] that for a rational
strictly positive real function the sequence of Schur parameters decays to zero geo-
metrically, generalizing previous results in the literature on conditional and absolute
summability of the corresponding series of Schur parameters [21, 2, 18].

Acknowledgments. We would like to thank Professors H. Shapiro, M. Benedicks,
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