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Abstract: We review a new approach to spectral estimation, based on the
use of filter banks as a means of obtaining spectral interpolation data. This
data replaces the standard covariance estimates used in traditional maximum
entropy spectral estimation. The new method is based on our recent theory of
analytic interpolation with degree constraint and produces suitable pole-zero
(ARMA) models, for which the choice of the zeros (MA-part) of the model is
completely arbitrary. By suitable choices of filter-bank poles and spectral zeros
the estimator can be tuned to exhibit high resolution in targeted regions of the
spectrum. A convex optimization approach is presented, which is based on a
generalized concept of entropy.
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1.1 INTRODUCTION

In [11] we presented a new approach to spectral estimation, based on the use of
filter banks as a means of obtaining spectral interpolation data. This approach
relies on new results in analytic interpolation theory with degree constraint,
developed in [10] and based on efforts by the authors over a number of years
[2]–[10], [14]–[17].

The purpose of the bank of filters is to process, in parallel, the observation
record in order to obtain estimates of the power spectrum at desired points.
These points are related to the filter-bank poles and can be selected to give in-
creased resolution over desired frequency bands. Our analytic interpolation the-
ory implies that a second set of tunable parameters are given by so-called spec-
tral zeros which determine the Moving-Average (MA) part of solutions. Conse-
quently, we refer to the new approach as a Tunable High REsolution Estimator
(THREE). The solutions turn out to be spectra of Auto-Regressive/Moving-
Average (ARMA) filters of complexity at most equal to the dimension of the
filter bank, and hence the method provides parametric spectral models.

Our computational procedure for obtaining suitable pole-zero (ARMA) mod-
els from filter-bank data is based on a convex optimization problem, the dual
of a problem to maximize a generalized entropy gain. The theory for this was
developed in [10], which generalizes a procedure in [9] for a similar problem.

For the default setting when the spectral zeros are chosen equal to the filter-
bank poles, an alternative and particularly simple algorithm, based on the
so-called central solution of the classical interpolation theory, is available; see,
e.g., [11]. For any other setting, the corresponding convex optimization problem
needs to be solved.

Typically, the resulting spectra show significantly higher resolution as com-
pared to traditional linear predictive filtering. Moreover, they appear to be
more robust than linear predictive filtering due to the fact that we use sta-
tistical estimates of only zeroth, or first order, covariance lags as opposed to
high order lags. Therefore THREE appears to be especially suitable for being
applied to short observation records.

1.2 BACKGROUND

Given a scalar, real-valued, zero-mean, stationary (Gaussian) stochastic process
{y(t)}t∈Z, consider the basic problem of estimating its power spectral density
Φ(eiθ), θ ∈ [−π, π], from a finite observation record

y0, y1, y2, . . . , yN . (1.1)

Typically, modern spectral estimation techniques rely on estimates

ĉ0, ĉ1, ĉ2, . . . , ĉn, (1.2)

of the covariance lags c0, c1, c2, . . . , cn where n << N and

ck := E{y(t)y(t+ k)}. (1.3)
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Here E{·} denotes mathematical expectation. We assume that the estimates
(1.2) form a bona fide covariance sequence in the sense that the corresponding
Toeplitz matrix is positive definite.

For simplicity, in this paper we shall assume that Φ is coercive, i.e., bounded
away from zero on the unit circle. The covariance coefficients (1.3) are the
Fourier coefficients of the spectral density Φ. In fact, the function

f(z) =
1
4π

∫ π

−π

z + e−iθ

z − e−iθ
Φ(eiθ)dθ (1.4)

is the positive real part of Φ, i.e., the unique (strictly) positive real function
satisfying

f(z) + f(z−1) = Φ(z) (1.5)

on and in the neighborhood of the unit circle, and consequently

Φ(eiθ) = 2Re{f(eiθ)}. (1.6)

Moreover, f admits a series representation

f(z) =
1
2
c0 + c1z

−1 + c2z
−2 + c3z

−3 + . . . (1.7)

for |z| > 1.
Given the estimates (1.3), the spectral estimation problem is thus reduced

to finding a positive real function (1.7) satisfying the interpolation conditions

ck = ĉk k = 0, 1, . . . , n. (1.8)

We also require that this function is rational of at most degree n. Then the
unique (real) minimum-phase spectral factor g satisfying

g(z)g(z−1) = f(z) + f(z−1) (1.9)

is also rational of degree less or equal to n, and we obtain a linear model

white noise ν−→ g(z)
ŷ−→ (1.10)

of dimension at most n generating an approximant ŷ of y in statistical steady
state. We call the rational function g the modeling filter corresponding to the
solution f .

Since this mathematical problem is equivalent to determining a covariance
extension

cn+1, cn+2, cn+3, . . .

so that the degree constraint is satisfied, we refer to it as the rational covariance
extension problem with degree constraint. It is precisely the degree constraint
that makes the parameterization of all solutions of this problem very challeng-
ing. Without this constraint, it is merely the classical Charathéodory extension
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problem, all meromorphic solutions of which are completely parameterized by
the “free” Schur parameters [21]. In fact, choosing these Schur parameters to
be all zero we obtain the well-known maximum entropy solution, which happens
to satisfy the degree constraints.

However, the maximum entropy solution corresponds to a spectral factor g
having all its zeros at the origin and therefore yields a very “flat” spectrum.
This naturally raises the question whether the zeros could be chosen arbitrarily.
In [14, 16] Georgiou proved that this is indeed the case. Moreover, he conjec-
tured that the correspondence is injective so that the parameterization would
be complete. The proof of existence was by degree theory, which is suitable
for proving existence but cannot immediately be applied to uniqueness unless a
very strong positivity condition can be shown to hold. Therefore the conjecture
remained open for some time until it was proven by Byrnes, Lindquist, Gusev
and Mateev [5]. In fact, in [5] somewhat more than Georgiou’s conjecture was
proven: To each stable1 monic polynomial

ρ(z) = zn + r1z
n−1 + . . .+ rn−1z + rn (1.11)

there is one, and only one, polynomial

α(z) = a0z
n + a1z

n−1 + . . .+ an (1.12)

of degree n so that

g(z) =
ρ(z)
α(z)

(1.13)

is a modeling filter for the partial covariance sequence (1.2), and this bijection
is a diffeomorphism. Hence the rational covariance extension problem with
degree constraint is well-posed in a strong sense.

The proofs of [14, 16, 5] are not constructive, and do not provide an algo-
rithm. A convex-optimization approach to determine the unique α(z) corre-
sponding to any ρ(z) is given in [9].

1.3 A NEW APPROACH TO SPECTRAL ESTIMATION

In the context of Section 1.2, traditional spectral estimation techniques amount
to estimating the real part of f(z) from estimates of its value at ∞ and on the
values of finitely many of its derivatives at ∞, while we are interested in its
values on the unit circle. Our new approach is based on the observation that
the values of f at points other than ∞ can be estimated directly from the data
(1.1). These interpolation points can then be chosen closer to the unit circle in
the frequency band where high resolution is required.

In fact, given any self-conjugate set of distinct real or complex numbers
p0, p1, . . . , pn in the open unit disc and the corresponding transfer functions

Gk(z) =
z

z − pk
k = 0, 1, . . . , n, (1.14)

consider the bank of filters depicted in Figure 1. In this parallel connection,
each filter is first-order if complex arithmetic is used, and always when p is real.
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Otherwise, each complex pair (p, p̄) corresponds to a second-order filter. Note
that, if pk is a complex number, then uk is a complex stochastic process.

G0(z)

G1(z)

Gn(z)

✲

✲

✲

✲

✲

✲







u0

u1

un

y

Figure 1: Bank of filters.

Then, as demonstrated in [11], it is easy to see that

f(p−1
k ) =

1
2
(1 − p2

k)E{uk(t)2}, k = 0, 1, . . . , n, (1.15)

i.e., the values of the positive real function f at the points {p−1
0 , p−1

1 , . . . , p−1
n }

can be expressed in terms of the zero-lag covariances of the outputs u0, u1, . . . , un
of the filter bank. The idea is now to estimate these covariances from finite
output data generated by the filter bank, thereby obtaining n+1 interpolation
conditions.

The estimates (1.2), used in traditional approaches, are obtained either by
suitable averaging of products ytyt+k, or by estimating the partial autocorrela-
tion coefficients first, using averaging schemes such as Burg’s algorithm [1]. In
either case, the statistical reliability of such estimates decreases with the order
k of the lag, due to the fact that averaging takes place over a shorter list of
such cross products. In our new approach we only need to determine zero-lag
estimates

ĉ0(u0), ĉ0(u1), . . . , ĉ0(un)

based on the output data of the filter bank. However, as pointed out in [11],
placing the filter poles too close to the unit circle decreases the accuracy of
the covariance estimates, so there is a trade-off between high resolution and
statistical accuracy.

In the following we assume that the filter-bank poles p0, p1, . . . , pn are dis-
tinct with p0 = 0 and complex poles occurring in complex pairs. The condition
p0 = 0 implies that G0 ≡ 1 so that the process y is itself one of the filter-
bank outputs. Then, estimating the spectral density Φ from finite observation
records of the outputs of the filter bank amounts to determining a positive real
function f such that

f(p−1
k ) = wk, k = 0, 1, . . . , n, (1.16)
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where
wk :=

1
2
(1 − p2

k)ĉ0(uk), k = 0, 1, . . . , n. (1.17)

Then (1.6) provides us with an estimate of the spectral density of y. Since we
want this estimate to be rational of minimal complexity, we also require that

deg f ≤ n, (1.18)

i.e., that f is a rational function of degree at most n.
For the moment ignoring the degree constraint (1.18), this is a classical

Nevanlinna-Pick interpolation problem [23], for which there is a solution if and
only if the Pick matrix

Pn :=
[
wk + w̄�

1 − pkp̄�

]n

k,�=0

(1.19)

is non-negative definite. In the case that Pn is positive semi-definite but sin-
gular, the solution is unique. In the case Pn > 0, the complete set of solutions
is given by a linear fractional transformation, which is constructed from the
interpolation data, acting on a “free” parameter which is only required to have
certain analytic properties, e.g., to be a positive-real function [23].

However, this parameterization of all solutions includes functions which may
have very high degree, or even be nonrational, and provides no means of char-
acterizing those solutions which satisfy the degree constraint (1.18). One par-
ticular such solution, the so-called central solution to be described below, is
obtained by a trivial choice of the free parameter, but a complete parameter-
ization of all solutions satisfying (1.18) requires a new paradigm. In fact, as
in the covariance extension problem, the requirement that the degree of the
interpolant f be at most n imposes (a highly nontrivial) nonlinear constraint
on the class of solutions. The study of this constraint solution set has led to a
rich theory, [2]–[12] and [14]–[17].

The complete parameterization described in Section 1.2 has the following
counterpart in the present setting [15, 17, 12]: Suppose that w0, w1, . . . , wn is
a self-conjugate set of values in the right half plane with the property that the
Pick matrix (1.19) is positive definite. Then, to each real stable polynomial
(1.11) there is is one, and only one, real stable polynomial (1.12) of degree n
so that the positive-real part f of

ρ(z)ρ(z−1)
α(z)α(z−1)

satisfies the interpolation conditions (1.16), and this bijection is a diffeomor-
phism.

The roots of the polynomial ρ(z) are called the spectral zeros of the corre-
sponding interpolant f . As in the covariance extension problem, the minimum-
phase spectral factor

g(z) =
ρ(z)
α(z)
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of f(z) + f(z−1) is the transfer function of a filter (1.10) which produces a
statistical approximant of y when white noise is passed through it and reaches
steady state, and which we call a THREE filter. The corresponding ARMA
model is given by

a0ŷ(t)+a1ŷ(t−1)+. . .+anŷ(t−n) = ν(t)+r1ν(t−1)+. . .+rnν(t−n), (1.20)

and hence we refer to r1, r2, . . . , rn as the MA parameters and to a0, a1, . . . , an
as the AR parameters. Consequently, to any choice of MA parameters (such
that ρ(z) is a stable polynomial) there corresponds a unique choice of AR
parameters (with α(z) likewise stable) so that the positive-real part of the
spectral density satisfies the interpolation conditions (1.16). Hence the MA
parameters can be chosen arbitrarily, while the same is not true for the AR
parameters. In other words, an arbitrary choice of AR parameters may not
have a matching selection of MA parameters so that together they meet the
required constraints.

In this filter design there are two sets of design parameters, namely the
filter-bank parameters p1, p2, . . . , pn and the spectral zeros σ1, σ2, . . . , σn. The
choice σk = pk for k = 1, 2, . . . , n, corresponds to the central solution mentioned
above, for which there are simple algorithms; see, e.g., [11]. Next, we present an
algorithm for determining the unique interpolant corresponding to an arbitrary
choice of spectral zeros.

1.4 A CONVEX OPTIMIZATION APPROACH TO INTERPOLATION

Given the design parameters, i.e., the filter bank poles p1, p2, . . . , pn and the
spectral zeros σ1, σ2, . . . , σn, form the rational function

Ψ(z) =
ρ(z)ρ(z−1)
τ(z)τ(z−1)

, (1.21)

where τ(z) and ρ(z) are the polynomials

τ(z) :=
n∏

k=1

(z − pk) = zn + τ1z
n−1 + . . .+ τn−1z + τn, (1.22)

ρ(z) :=
n∏

k=1

(z − σk) = zn + r1z
n−1 + . . .+ rn−1z + rn. (1.23)

For each choice of design parameters we form the functional

IΨ(f) =
1
2π

∫ π

−π

log[f(eiθ) + f(e−iθ)]Ψ(eiθ)dθ, (1.24)

on the set of positive real functions f . This functional is a generalized entropy
gain. The ordinary entropy gain [19] is obtained by choosing Ψ(z) ≡ 1, i.e.,
τ(z) ≡ σ(z), which corresponds to the central solution.
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Next, consider the optimization problem (P) to minimize IΨ(f) over all
positive real (not necessarily rational) functions f subject to the (interpolation)
constraints

f(p−1
k ) = wk k = 0, 1, . . . , n. (1.25)

In [10, Theorem 4.1] we proved the following result.

Theorem 1.4.1 The constrained optimization problem (P) has a unique solu-
tion. This solution is strictly positive real and rational of the form

f(z) =
β(z)
α(z)

, (1.26)

where α(z) and β(z) are polynomials of degree n satisfying

α(z)β(z−1) + β(z)α(z−1) = ρ(z)ρ(z−1). (1.27)

Conversely, if f is a positive-real function which satisfies the interpolation con-
ditions as well as (1.26) and (1.27), then it is the unique solution to (P).

Dividing (1.27) by α(z)α(z−1), we obtain

g(z)g(z−1) = f(z) + f(z−1), (1.28)

where g is given by

g(z) =
ρ(z)
α(z)

, (1.29)

which is the unique THREE filter with the spectral zeros specified by ρ(z).
This optimization problem is infinite-dimensional and therefore not easy to

solve. However, since the number of constraints (1.25) are finite, (P) has a dual
with finitely many variables. In fact, let w(z) be any real function which is
analytic on and outside the unit circle and satisfies the interpolation conditions
(1.25), and define the functional

JΨ(Q) :=
1
2π

∫ π

−π

{Q(eiθ)[w(eiθ) + w(e−iθ)] − logQ(eiθ)Ψ(eiθ)}θ (1.30)

for all functions Q of the form

Q(z) =
α(z)α(z−1)
τ(z)τ(z−1)

, (1.31)

where α(z) is a polynomial of degree n. A suitable w can be determined by
solving a simple Vandermonde system [11]. The functional (1.30) does not de-
pend on the particular choice of w(z) but only on its values in the interpolation
points. In fact, the part involving w is a quadratic form in the coefficients of
α(z) whose parameters are precisely the entries of the Pick matrix (1.19).

Now, consider the convex optimization problem (D) to minimize JΨ(Q) over
all Q in the class (1.31). The numerator of Q is a symmetric pseudo-polynomial
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of degree n, and hence (D) is an optimization problem in n + 1 variables,
while the requirement that Q be nonnegative on the unit circle corresponds to
infinitely many constraints. The following result is proven in [10, Theorem 4.5].

Theorem 1.4.2 The convex optimization problem (D) has a unique solution.
The minimizing Q is positive on the unit circle, and the unique positive real
function f satisfying

Ψ(z)
Q(z)

= f(z) + f(z−1) (1.32)

in the neighborhood of the unit circle also satisfies the interpolation conditions
(1.25). The function f is precisely the maximizing function in Theorem 1.4.1.
Conversely, any positive real function satisfying (1.32) and (1.25) is obtained
in this way.

Since the minimizing Q is positive on the unit circle, the unique optimal so-
lution lies in the interior of the feasible region. The condition that the gradient
of JΨ(Q) be zero is equivalent to the interpolation condition (1.25). Given Q,
we may determine α(z) in (1.31) by (minimum-phase) spectral factorization,
and then (1.32) reduces to (1.28), and hence the filter g is given by (1.29), as
required.

An algorithm based on the convex optimization problem (D) can be obtained
by using Newton’s method. Such an algorithm, formulated in state space, is
described in detail in [11].

1.5 SIMULATIONS

We illustrate the algorithm by some simulations. We begin by estimating spec-
tral lines in colored noise – a problem which is regarded as challenging [20, pages
285–286]. We consider a signal y comprised of two superimposed sinusoids in
colored noise:

y(t) = 0.5 sin(ω1t+ φ1) + 0.5 sin(ω2t+ φ2) + z(t) t = 0, 1, 2, . . . ,
z(t) = 0.8z(t− 1) + 0.5ν(t) + 0.25ν(t− 1)

with φ1, φ2 and ν(t) independent normal random variables with zero mean and
unit variance. The model is used to generate five sets of 300 data points in
separate runs. This is done in order to investigate the statistical variability of
the estimates and the robustness of the estimation methods.

The objective is to estimate the power spectrum in the vicinity of the spectral
lines. In particular, it is desirable to be able to resolve the two distinct spectral
peaks. We demonstrate the performance of a THREE filter of order 12 with the
filter-bank poles chosen at 0,±.85, .9e±.42i, .9e±.44i, 0.9e±.46i, 0.9e±.48i, 0.9e±.50i

and the spectral zeros in the default setting of the central solution, i.e., with
σk = pk for k = 1, 2, . . . , n. Then we compare with a periodogram, computed
with state-of-the-art windowing technology.

In Figure 2, the left column corresponds to ω1 = 0.42 and ω2 = 0.53, with the
periodogram at the top and the THREE method at the bottom. The estimated
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spectra from the five separate data sets are superimposed, shown together with
a smooth curve representing the true power spectrum of the colored noise and
two vertical lines at the position of the spectral lines. Apparently both methods
perform satisfactorily.
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Figure 2: Spectral estimates of two sinusoids in colored noise.

However, if the spectral lines are moved closer so that ω1 = 0.45 and ω2 =
0.47, as depicted in the right column of Figure 2, only the THREE filter is
capable of resolving the two sinusoids, clearly delineating their position by the
presence of two peaks. In fact, the separation of the sinusoids is smaller than the
theoretically possible distance that can be resolved by the periodogram using
a 300 point record under ideal noise conditions, not satisfied here [22, page 33].
To achieve a better resolution (at the expense of some increased variability)
the complex filter-bank poles were chosen slightly closer to the circle.

Secondly, we consider the effectiveness of THREE-based filtering in a case
where the power spectrum has sharp transitions. More specifically, we consider
data generated by passing white noise through a filter with the transfer function

Tθ(z) =
(z − .9eiπ/3.2)(z − .9e−iπ/3.2)

(z − .9eiθ)(z − .9e−iθ)(z − .3eiπ/3.5)(z − .3e−iπ/3.5)
, (1.33)

where θ takes the values θ = π/3, θ = π/3.1 and θ = π/2.9. The spectrum of
the output has sharp transitions due to the fact that poles and zeros are close
to each other. In Figure 3 spectral estimates are depicted for each choice of θ
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using periodograms (left) and fourth order THREE filter design (right) with
filter-bank poles set at 0, .8e±.8i, .8e±1.3i and spectral zeros at 0,−.8, .8e±iπ/3.3.
The true spectra are marked with dotted lines. In this set of experiments we
have used a data record long enough to eliminate fluctuations of the estimated
spectra, namely 2000 samples. Noting that the order is only four, the THREE
estimates are remarkably good.
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Figure 3: Spectral estimates for different choices of θ.
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Notes

1. A polynomial is called stable if all its root are located in the open unit disc {z | |z| < 1}.
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