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A New Approach to Spectral Estimation: A Tunable
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Abstract—Traditional maximum entropy spectral estimation
determines a power spectrum from covariance estimates. Here,
we present a new approach to spectral estimation, which is based
on the use of filter banks as a means of obtaining spectral inter-
polation data. Such data replaces standard covariance estimates.
A computational procedure for obtaining suitable pole-zero
(ARMA) models from such data is presented. The choice of the
zeros (MA-part) of the model is completely arbitrary. By suitably
choices of filterbank poles and spectral zeros, the estimator can
be tuned to exhibit high resolution in targeted regions of the
spectrum.

Index Terms—Filter banks, interpolation, optimization, spectral
estimation.

I. INTRODUCTION

I N THIS PAPER, we present a novel approach to spectral
estimation, which relies on new results in analytic interpola-

tion theory developed in [10] and based on efforts by the authors
over a number of years [2]–[10], [16]–[18].

The approach leads to a tunable high resolution estimator
(THREE) that is based on three elements, namely

i) a bank of filters;
ii) a theory for parameterizing the complete set of spectra

that are consistent with the “filter measurements” and
have bounded complexity;

iii) computational procedures for constructing spectra from
the set described in ii).

The purpose of the bank of filters is to process, in parallel,
the observation record in order to obtain estimates of the power
spectrum at desired points. These points are related to the filter-
bank poles and can be selected to give increased resolution over
desired frequency bands. The theory in ii) implies that a second
set of tunable parameters are given by so-called spectral zeros
that determine the moving-average (MA) part of solutions. The
solutions turn out to be spectra of auto-regressive/moving-av-
erage (ARMA) filters of complexity that are at most equal to
the dimension of the filter bank, and hence, the method provides
parametric spectral models.
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The computational procedures in iii) come in two forms: For
the default setting when the spectral zeros are chosen equal
to the filterbank poles, a particularly simple algorithm, based
on the so-called central solution of the classical interpolation
theory, is available. For any other setting, a convex optimiza-
tion problem needs to be solved. The theory for this was intro-
duced in our companion paper [10] and for a similar problem in
[9]. In this paper, we consider only real processes. However, the
framework is quite general and applies also to complex-valued
stochastic processes [11].

Typically, the resulting spectra show significantly higher res-
olution as compared with traditional linear predictive filtering.
Moreover, they appear to be more robust than linear predictive
filtering due to the fact that we use statistical estimates of only
zeroth-order, or first-order, covariance lags, as opposed to high
order lags. Therefore, THREE appears to be especially suitable
for being applied to short observation records.

We demonstrate the applicability of the approach in identi-
fying spectral lines and in estimating power spectra with steep
variations. Such problems occur in many areas of signal pro-
cessing and statistical prediction. In particular, in communica-
tions, radar, sonar, and geophysical seismology, spectral anal-
ysis methods that estimate or describe the signal as a sum of
harmonics in additive noise [29, p. 139] are needed. The case
when the noise is colored is considered especially challenging.
Therefore, we illustrate the effectiveness of THREE filters for
the problem of line-spectra estimation in colored noise and com-
pare with periodogram and AR-based methods. We also demon-
strate the effectiveness of THREE filters in estimating spectra
with zeros and poles close to each other.

The structure of the paper is as follows. In Section II, we intro-
duce the bank of filters and discuss how the covariances of their
outputs provide estimates of the power spectrum at the reflected
pole positions. The variability of such statistical estimates and
how they are affected by the position of the poles is briefly con-
sidered. Section III presents the basic elements of analytic inter-
polation that are relevant to the current problem. The classical
results are reviewed first, and then, our recent theory of analytic
interpolation with degree constraint is explained in the context
of spectral estimation. In Section IV, the computational proce-
dure for the default setting when the spectral zeros coincide with
the filterbank poles is introduced, and the method is illustrated
by estimation of spectral lines in colored noise. We present a
simulation study comparing THREE with traditional AR fil-
tering and with periodogram analysis. We also give an example
indicating that spectral estimation of certain processes can be
considerably improved if tuning of spectral zeros is used. This
leads to Section V, where the convex optimization approach is
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presented. This is based on a generalized concept of entropy and
leads to state-space formulae for the bounded-complexity inter-
polants. The section is concluded by simulations illustrating the
improved resolution of the THREE method in comparison with
other methods.

To improve readability, we defer mathematical proofs and
certain technical details to the Appendixes.

II. FRAMEWORK FORSPECTRAL ESTIMATION

Let be a scalar,
real-valued, zero-mean, stationary (Gaussian) stochastic
process, and consider the basic problem of estimating its power
spectral density , from a finite observation
record

(2.1)

Modern spectral estimation techniques typically rely on esti-
mates of covariance lags

where E (2.2)

Here, , and E denotes mathematical expectation. Typ-
ically, these estimates are obtained either by suitable averaging
of products or by estimating the partial autocorrelation
coefficients first by using averaging schemes such as Burg’s
algorithm. In either case, the statistical reliability of such es-
timates decreases with the orderof the lag due to the fact that
averaging takes place over a shorter list of such cross products.

In this paper, the function

(2.3)

will play a key role. It is analytic in and has a positive
real part there—such functions are calledpositive real. In fact,
the spectral density can be written as

Re (2.4)

and admits a series representation

for (2.5)

Equation (2.3) provides a bijective correspondence between
positive-real functions and functions , which are positive
on the unit circle. We should note that in general,has to be
interpreted as a distribution, and in such a case, (2.4) has to be
understood as Re a.e., whereas
“spectral lines” correspond to poles of on the boundary

.
In this context, traditional spectral estimation techniques

amount to estimating the real part of from estimates
of its value at and on the values of finitely many of its
derivatives at . By way of contrast, our approach is based on
the observation that the values of at points other than
can be estimated directly from the data (2.1). The computation
of such a positive real and, hence, an estimate for ,
is the subject of the theory discussed in Section III.

We first describe how to estimate the value of at any
desired point in from the data (2.1).

A. Evaluation of at a Point

Consider a first-order stable linear filter with transfer function
, where , and let be the stationary

process obtained as the output of the filter when driven by.
Then

(2.6)

and, hence, we have

E E

(2.7)

and consequently

E (2.8)

This is an interpolation condition for. It should be noted that if
is a complex number, thenis a complex stochastic process. In

this case, is not the traditional covariance. The actual
covariance is

where bar denotes complex conjugation, but since we want to
preserve “phase information,” we prefer to use (2.8). We should
also mention that in the complex case, the system with transfer
function is equivalent to a second-order real system, which
is easy to derive.

B. Bank of Filters

Next, given any choice of distinct real or complex numbers
in the open unit disc and the corresponding

transfer functions

(2.9)

consider the bank of filters depicted in Fig. 1. In this parallel
connection, each filter is first order if complex arithmetic is
used and always first-order whenis real. Otherwise, each com-
plex pair corresponds to a second-order filter, as explained
above. Then, the values of the positive real function at the
points can be expressed in terms of the co-
variances of the outputs of the filter bank as in
(2.8). The idea is now to estimate these covariances from finite
output data generated by the filter bank, thereby obtaining
interpolation conditions.

C. Pick Matrix

A central object in analytic interpolation theory is the
so-called Pick matrix. This matrix arises naturally in the
context of our filter bank as the covariance of the vector
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Fig. 1. Bank of filters.

process defined with the output processes as
components. In fact

E

...
...

...
...

(2.10)

where

Thus, an alternative way to estimate is through estimates
of the Pick matrix as a sample covariance of .

In this paper, we only consider distinct points .
The general case will be presented elsewhere [11]. For example,
the usual Toeplitz matrix

...
...

. . .
...

(2.11)

formed from the partial covariance sequence (2.2) is the Pick
matrix for the case in which , in
which case, the filters in the bank are chosen as
for . This is the case considered in usual AR
modeling from covariance data.

D. Statistical Considerations

This brings us to the statistical reasons for our new approach.
In fact, for AR modeling from covariance estimates, we need to
estimate the Toeplitz matrix (2.11) from the data record (2.1). If
this is done via

...

where denotes “the sample estimate of,” then a significant por-
tion of the data has not been fully utilized in estimating lower
order covariances due to the large time-lag of some of the filters.

Moreover, is not, in general, a Toeplitz matrix. If, instead, we
use the covariance estimate

the corresponding Toeplitz matrix may not be positive definite,
which is something that may be rectified by dividing by
rather than , by windowing, or by using Burg’s algorithm.
In any case, any of these methods suffers from the drawback that
reliability of the estimate of the covariance lag decreases
considerably as grows, especially for relatively short time se-
ries [24].

By way of contrast, our method requires only estimating the
zeroth covariance lag or possibly the first covariance lag in the
complex case. It is known that the sample variance of the co-
variance estimate

is given by

var

(See [24, Sec. 48.1, Eq. (48.6)].) However, using Parseval’s the-
orem, this can be expressed in terms of the spectral density

as follows:

var

Therefore, ignoring any transient effects and assuming that
the output process of a filter driven by is stationary,
the sample variance of the estimate

(2.12)

becomes

var (2.13)

This quantifies the effect of the frequency response of
for real on the variance of statistical estimators

for when estimated by (2.12). In the simple case where

var

In general, the shape of and its relation to has
a direct effect on var . The analysis for complexis sim-
ilar. The general observation is that choosing the filter poles too
close to the unit circle may produce larger errors. Such a strategy
will also produce more accentuated transients and is therefore
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not without cost. We expect that detailed statistical analysis will
point to suitable rules for dealing with the relevant tradeoffs.

III. I NTERPOLATIONTHEORY FORSPECTRALESTIMATION

In the following, we assume that the filterbank poles
are distinct with and complex poles

occurring in complex pairs. The condition implies that
so that the process is itself one of the filterbank

outputs. Now, estimating the spectral densityfrom finite
observation records of the outputs of the filterbank amounts to
determining a positive real functionsuch that

(3.1)

where

(3.2)

with estimated as in (2.12). (Alter-
natively, if real arithmetic is required, statistical estimates con-
sistent with the analysis in Section II-C could be used.) Then,
(2.4) provides us with an estimate of the spectral density of
. Since we want this estimate to be rational of minimal com-

plexity, we also require that

deg (3.3)

i.e., that is a rational function of degree at most.

A. Classical Interpolation Theory

For the moment, let us ignore the degree constraint (3.3).
Then, given interpolation points inside the unit
circle and values in the right half plane, the
problem to determine all positive real functionssatisfying
(3.1) is a classical analytic interpolation problem (Nevan-
linna–Pick interpolation), which has its roots in classical
mathematics going back to the end of the 19th century, on
approximate integration, quadrature formulae, and the moment
problem. The foundations of Nevanlinna-Pick interpolation
were laid out by Carathéodoryet al. in the beginning of the
20th century; see, e.g., [15], [20], and [31]. The subject evolved
into a rich topic in operator theory [28], [30].

The Nevanlinna-Pick theory states that a solution exists if and
only if the so-calledPick matrix

(3.4)

is non-negative definite. In the case that is positive semi-
definite but singular, the solution is unique. In the case
, the complete set of solutions is given by a linear fractional

transformation, which is constructed from the interpolation data
acting on a “free” parameter, which is only required to have
certain analytic properties, e.g., to be a positive-real function.
A detailed exposition can be found in [31].

A generalization of the problem known as the Carathéodory-
Fejér problem allows for the possibility that is specified
both in terms of values and derivatives up to some order at points
outside the disc. Again, the solvability condition is expressed in

terms of a suitable (generalized) Pick matrix, and all solutions
are parameterized by a linear fractional transformation. See the
standard mathematics literature [20], [28], [30], and [31] for
details.

B. Interpolation with a Degree Constraint

This classical theory is very elegant, but the parameteriza-
tion of all solutions to the interpolation problem includes func-
tions that may have very high degree, or even be nonrational,
and provides no means of characterizing those solutions that sat-
isfy the degree constraint (3.3). One particular such solution (the
so-calledcentral solution, to be described below) is obtained by
a trivial choice of the free parameter, but a complete parame-
terization of all solutions satisfying (3.3) requires a new para-
digm. In fact, the requirement that the degree of the interpolant
be at most imposes a (highly nontrivial) nonlinear constraint
on the class of solutions. The study of this constraint solution
set has led to a rich theory, [2]–[10] and [16]–[19], which has
lead to the following complete parameterization of all such so-
lutions in terms of spectral zeros. We recall that a polynomial
is calledstableif all its root are located in the open unit disc

.
Theorem 3.1:Let be a self-conjugate set of

distinct points inside the unit circle and a cor-
responding self-conjugate set of values in the right half plane,
with the property that the Pick matrix (3.4) is positive definite.
Then, to any real stable polynomial

there corresponds a unique pair of real stable polynomials

and

of degree such that

(3.5)

and the rational function

(3.6)

is positive real and satisfies the interpolation condition

(3.7)

This theorem, here presented in a special form adapted to
self-conjugate interpolation data, also holds in the more general
case where the interpolation data are of the Carathéodory-Féjer
type, i.e., includes constraints on the derivative of , and
was first formulated in the special (Carathèodory) case with
a single multiple interpolation point at , which is the
so-called rational covariance extension problem. Existence was
first proven in this context in [16] and [18] and uniqueness,
as well as well-posedness, in [5]; see [7] and [8] for alterna-
tive proofs. Existence for the distinct point Nevanlinna–Pick
problem was proven in [17] and uniqueness in [19]. Theorem
3.1 is available in a somewhat more general form, allowingto
have roots on the circle [19].
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However, all these proofs are nonconstructive, and thus,
they do not provide a method of solution. A constructive
proof based on convex optimization was presented in [9] for
the Carathèodory case and in [10] for the Nevanlinna–Pick
problem. This result, as well as an algorithm based on it, will
be presented in Section V.

The theorem extends to interpolation of matrix-valued func-
tions (see [16], where existence of solutions were shown in the
context of Carathèodory interpolation). An approach general-
izing this result to the context of the commutant-lifting theory
is the subject of [11].

Dividing (3.5) by yields

(3.8)

where

(3.9)

i.e, (3.9) is the minimum-phase spectral factor of the spectral
density (3.8). For this reason, we will refer to the roots ofas
thespectral zerosof . In this notation, Theorem 3.1 states that
to each self-conjugate set ofpoints inside the
unit circle, there is a unique stable polynomial

(3.10)

so that the positive-real partof

with

satisfies the interpolation conditions (3.1). Moreover,
are the spectral zeros of the interpolant.

Once both and are known, the stable polynomial

(3.11)

is uniquely determined by (3.5). In fact, identifying coefficients
of like powers in , the coefficients of are seen to satisfy the
system of linear equations in (3.12), shown at the bottom of the
page, which has a unique solution for any stable polynomial

.

C. Application to the Problem of Spectral Estimation

As suggested earlier, passing data (2.1) through a bank of
filters with a pole setting and estimating the
covariance of the output variables gives a set of parameters

via (3.2). In the ergodic limit, the corre-
sponding Pick matrix , which is defined by (3.4), will
be given by (2.10) and, hence, must be positive definite as

required, e.g., in Theorem 3.1. The THREE method relies
on the preceding interpolation theory and identifies transfer
functions , as in (3.9), such that are approximations
of the power spectrum of . Thus, a process
that is obtained by passing (normalized) white noise
through the modeling filter

white noise

and letting it come to a statistical steady state will generate a
statistical approximant of. The relevant ARMA model is given
by the difference equation

(3.13)

Consequently, we will refer to as theMA param-
etersand to as theAR parametersof theTHREE
filter (3.13). The complete set of MA and AR parameters will
be called theTHREE filter parameters. In this context, Theorem
3.1 states that to any choice of MA parameters [such thatis
a stable polynomial], there corresponds a unique choice of AR
parameters [with likewise stable] so that the positive-real
part of the spectral density satisfies the interpolation conditions
(3.1). Hence, the MA parameters can be chosen arbitrarily. It
is interesting to note that the analogous statement for the AR
parameters is false. In other words, an arbitrary choice of AR
parameters may not have a matching selection of MA parame-
ters so that together they meet the required constraints.

Theorem 3.1 is an existence result. The computational
problem at hand amounts to the following: Given a choice
of MA parameters [with stable as usual], find the cor-
responding set of AR parameters and, hence, the unique
pair of stable polynomials satisfying (3.5)–(3.7). In
conclusion, there are two sets of design parameters:

i) the filterbank parameters , being
fixed, which we represent as the roots of a polynomial

(3.14)

and
ii) the MA parameters , or, alternatively, the

spectral zeros , which are the roots of

(3.15)

...
...

...
...

...

(3.12)
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The power of THREE filtering stems from the flexibility in
the above choices. In particular, if reliable approximation of

is required over some specified part of the spectrum
, this can be accomplished by placing the filterbank

poles near the corresponding arc .
However, it should be noted that the filterbank poles must not
be selected too close to the circle because then, statistical es-
timates of the output covariances become less reliable, as ex-
plained in Section II. We should also mention another related
caveat. If the observation record is too short, the Pick matrix
may fail to be positive. In this case, we must either collect more
data, select a different set of filterbank poles (e.g., select a new
set closer to the origin or simply a subset of the existing one), or
add a small positive bias to the estimated values
(e.g., add to each a constantlarger than the absolute value
of the minimal negative eigenvalue of , where

).
There is a special default setting of the spectral zeros, namely,

for , i.e., setting

(3.16)

for which the problem of computing requires solving only
linear equations. This relates to the so-calledcentral solution
in classical interpolation theory and is discussed in Section IV.
The general case, which is capable of higher resolution, requires
a proper choice of spectral zeros and the solution of a convex
optimization problem. This will be discussed in Section V. It
is interesting to remark that even if AR-modeling is required,
which fixes , the solution claimed by Theorem 3.1
and the THREE method cannot be obtained with the Levinson
algorithm—the Levinson algorithm is only applicable when the
covariance lags of are available.

IV. CENTRAL SOLVER FOR THEDEFAULT FILTER

In this section, we consider the special case that the
MA parameters are set to the default values for

, i.e., . Determining the AR parameters is
then considerably simplified since this choice corresponds to
the central solution mentioned above. As it turns out, the central
solution is precisely the positive real function maximizing the
entropy gain

(4.1)

subject to the constraints (3.1). In Section V, we will see that this
optimization problem can be generalized to yield interpolants
for any other choice of MA parameters.

A. Algorithm

Next, we explain the steps of the algorithm for the central
solution, deferring technical details to Appendix A.

Consider the subset of interpolation conditions (3.1) for
, excluding . Any positive-real function

satisfying these conditions is given by a linear fraction trans-
formation

(4.2)

where is a positive real function, and

(4.3)

is the ( -unitary) rational matrix function (4.13) that depends
on the interpolation data. The proof is deferred to Appendix A,
whereas the construction of the is described in this sec-
tion. The particular choice

(4.4)

with constant and equal to

(4.5)

turns out to satisfy the omitted interpolation condition
. In fact, this choice turns out to be the solution to our original

problem, i.e., has the required degree and the default values
of the MA parameters. Moreover, this is the unique solution that
maximizes the entropy gain (4.1). The proof of this last fact is
given in Appendix A.

It is well known that solutions to interpolation problems can
be represented by linear fractional transformations. Hence, one
may wonder why we decompose our problem into two steps:
first omitting one condition and then trying to satisfy it by a suit-
able choice of the free parameter. The reason is that a formula
(4.2) for the complete set of interpolation conditions (including
the condition at ) requires finding an appropriate free pa-
rameter of degree onein order to satisfy the degree constraint
(3.3), which is slightly more complicated.

We now explain how to construct the matrix function
in (4.3). Consider the set of analytic functions, mapping the
right half-plane into the unit disc, which satisfy the interpolation
conditions

(4.6)

where

and

(4.7)

It is well known and easy to prove that the allpass filter (i.e.,
Blaschke product)

has a state-space representation
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where the symmetric positive definite matrixis the solution
of the Lyapunov equation

(4.8)

Here, the matrix A is unstable in the sense that it has all its eigen-
values in the right half-plane. In fact, its characteristic polyno-
mial is

and hence, we may chooseand in the observer canonical
form

...
...

...
...

...

(4.9)

Note that is the polynomial obtained from and defined
by (3.14) under the linear fractional transformation

.
Next, we determine the coefficients so that the

rational function

satisfies the interpolation (4.6). This is done by solving the Van-
dermonde system

...
...

...
...

...
...

Clearly, has a realization

where and are given by (4.9), andcan be determined from
by standard methods.

It turns out that all interpolants satisfying (4.6) are given
by

(4.10)

for some function , which is analytic and bounded by one in
the right half-plane, where

(4.11)

Here, , where is the symmetric positive
definite solution of the Lyapunov equation

(4.12)

The matrix is invertible precisely when solutions do
exist.

Returning to our original interpolation problem, the matrix
function (4.3) needed in the representation (4.4) is given by

(4.13)

Since corresponds to under the transformation
, is a matrix polynomial, and consequently,

the central interpolant (4.4) is given by

where and are the polynomials

However, to obtain the that matches the MA parameters
and, hence, the THREE-filter parameters, needs to

be normalized by setting

B. Simulation Studies

In this section, we demonstrate the performance of THREE
filters in the default setting of the central solution and compare
it with traditional spectral estimation techniques.

Example 1: We begin by estimating spectral lines in colored
noise, which is a problem that is regarded as challenging [27,
pp. 285–286]. Consider the following signalcomprised of two
superimposed sinusoids in colored noise:

with , , and independent normal random variables with
zero mean and unit variance. The objective is to estimate the
power spectrum in the vicinity of the spectral lines. In partic-
ular, it is desirable to be able to resolve the two distinct spectral
peaks. Two cases are investigated, which differ in the separa-
tion of the spectral lines. In Case A, we take the spectral lines
at frequencies and and, in Case B, at fre-
quencies and .

The model is used to generate five sets of 300 data points in
separate runs. This is done in order to investigate the statistical
variability of the estimates and the robustness of the estimation
methods. Three different spectral estimation methods are com-
pared:

i) periodograms, computed with state-of-the-art win-
dowing technology, as implemented in the Identification
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Fig. 2. Spectral estimates of two sinusoids in colored noise.

Matlab Toolbox command , with smoothing pa-
rameterMset to60 ;

ii) Levinson/AR filtering of order 12, based on covariance
lags;

iii) THREE filter design of order 12 with the filterbank poles
chosen at

where in Case A and in Case B and the
MA parameters set at the default setting corresponding to
the central solution in both cases.

The choice of was dictated by anad hocrule of thumb that the
time constant of the system is of the order one tenth of the length
of the data record, whereas the phases of some of the poles were
selected in the part of the spectrum where high resolution is de-
sired. In Case B, the separation of the sinusoids is smaller than
the theoretically possible distance that can be resolved by the
periodogram using a 300-point record under ideal noise condi-
tions, which is not satisfied here [29, p. 33]. In fact, with white
noise and large S/N ratio, this minimum separation between the
lines is . To achieve a better resolution (at the
expense of some increased variability), the complex filterbank
poles were chosen slightly closer to the circle in Case B.

The results are depicted in Fig. 2. The subplots in the first
column correspond to Case A, and those in the second column
refer to Case B. From top to bottom, we display the results using
methods i)–iii). In Case A, the estimated spectra from five sep-
arate data sets are superimposed, shown together with a smooth
curve representing the true power spectrum of the colored noise
and two vertical lines at the position of the spectral lines. For
clarity, in Case B, we only show the outcome of one run.

The periodogram does reasonably well in Case A but fails in
Case B. In both cases, the Levinson/AR method fails to identify
the peaks. It is apparent that only the THREE filter is capable
of resolving the two sinusoids in both cases, clearly delineating
their position by the presence of two peaks. In comparing i) and
iii), it should be further noted that i) is nonparametric, and hence,
the estimates are not as easily coded for transmission to a remote
receiver, as is the case for iii).

Example 2: We consider the effectiveness of THREE-based
filtering in a case where the power spectrum has sharp transi-
tions. More specifically, we consider data generated by passing
white noise through a filter with the transfer function (4.14),
shown at the bottom of the next page. We consider three cases,
where takes values , , and . In each case, the
spectrum of the output has sharp transitions due to the fact that
poles and zeros are close to each other.
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Fig. 3. Estimates of sharp spectral transitions.

In Fig. 3, we show the results of numerical simulation, where
we compare

a) periodogram-based spectral estimates (etfe(y,50) in
Matlab);

b) Levinson/AR modeling of order four;
c) THREE-based modeling of order four with default setting

corresponding to the central solution and afixedselection
of filterbank poles set at .

In order to avoid the effects of variability in the estimates, we
choose a long record of 2000 data samples. However, with such
a long data record, higher order models would be possible and,
hence, more appropriate; the issue here is to compare perfor-
mance for fixed order models.

The first column in Fig. 3 corresponds to the choice
, the second to , and the third to ,

whereas each row corresponds to a different method: The first
row corresponds to a), the second row to b), and the third row to
c), as explained earlier. In each of these figures, for easy com-
parison, the true power spectrum of the process has been super-
imposed and drawn by a dashed curve.

We see that the THREE filter does considerably better than
the other two methods. However, its performance can be im-

proved further by allowing a choice of spectral zeros away from
the default setting. This requires the theory developed in the
next section. Hence, Example 2 is considered again in Section V
(Fig. 4) with appropriate zero settings.

V. GENERALIZED ENTROPY AND CONVEX OPTIMIZATION

In this section, we describe how an arbitrary solution of the
Nevanlinna–Pick interpolation problem with degree constraints,
as described in Theorem 3.1, can be obtained from a convex op-
timization problem, and we summarize the steps of a numerical
algorithm based on this optimization problem. The basic theory
has been developed in [10], whereas Appendix B in the present
paper complements and extends certain of the key constructions
in [10].

A. Entropy Functionals and Convex Optimization

Given the polynomial defined by (3.14), let be the
-dimensional vector space of all proper, real, rational

functions

(5.1)

(4.14)
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Fig. 4. THREE spectral estimates with nondefault spectral-zero setting.

with denominator , where

for some real numbers , and let be the convex
set of rational functions with the properties

for some (5.2)

for (5.3)

Moreover, for each real function, we define by
.

It turns out to be useful to represent the positive-real function
to be estimated, as a quotient between two functions in, rather
than a quotient between two polynomials, as before. In fact, the
polynomials and in Theorem 3.1 can be replaced by

and (5.4)

Then, (3.5) becomes

(5.5)

where

(5.6)

belongs to . In the central solution, .
Now, for any , define the functional

(5.7)

on the space of positive real functions. This functional is a
generalization of the entropy gain (4.1). In fact, (4.1) is precisely

.
The generalized entropy gain plays a key role in our theory.

In fact, in [10, Th. 4.1], we have the following result.
Theorem 5.1:Given any , there exists a unique so-

lution to the constrained optimization problem

is positive real, and

for (5.8)

This solution is of the form

(5.9)

where

(5.10)

Conversely, if is a positive-real function that satisfies the in-
terpolation conditions as well as (5.9) and (5.10), then it is the
unique solution to (5.8).

Note that (5.9) is equivalent to requiring thatis of degree
at most . The choice yields the central solution of the
Nevanlinna–Pick theory, which is also known as the “maximum
entropy” solution. All other interpolants of degree can be
obtained by choosing the correspondingand solving the gen-
eralized entropy maximization problem given above. However,
this optimization problem is infinite-dimensional and, therefore,
not easy to solve. As it turns out, it has a dual with finitely many
variables, and next, we will turn to this problem.

To this end, let be any real function that is analytic on
and outside the unit circle and satisfies the interpolation condi-
tions

Then, define for each function the functional

(5.11)

It will be shown in Appendix B that this functional does not de-
pend on the particular choice of but only on its values in the
interpolation points. In fact, it is a quadratic form whose coeffi-
cients are the entries of the Pick matrix (3.4). We could choose
the unique such function in , which is easily determined by
solving a linear system of equations (Appendix B). Note that
is not positive real in general and, therefore, cannot be used as
an interpolant.

Using duality theory, the maximization problem of Theorem
5.1 can be seen to be equivalent to the following convex opti-
mization problem; see [10, Th. 4.5].

Theorem 5.2:For each , the convex optimization
problem

(5.12)

has a unique solution. Moreover, to this minimizing, there
corresponds a unique positive real functionsatisfying the in-
terpolation conditions

(5.13)

where , and

(5.14)
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The function is precisely the maximizing function (5.9) in
Theorem 5.1, where is the minimum-phase spectral factor
of

(5.15)

and is the unique solution of (5.10), given and . Con-
versely, any positive real function satisfying (5.9), (5.10), and
(5.13) is obtained in this way.

The proofs of Theorems 5.1 and 5.2, which are very non-
trivial, are given in [10]. Since is a strictly convex function
on a convex set , the minimization problem of Theorem 5.2
is a convex optimization problem. Therefore, if there is a min-
imum in the open set , this minimum is unique and occurs at
a stationary point, i.e., at a point where the gradient is zero. It is
proved in [10] that this is indeed the case. It is then quite straight-
forward to show that the optimal defines a unique interpolant

with the required properties. Since this is quite instructive, we
give an alternative proof of this that is tailored to our present ex-
posure in Appendix B. Elements from this derivation will also
be needed to derive the gradient and Hessian of, which is
needed to solve the convex optimization problem.

An advantage of the proof of Theorem 5.2 is that it is con-
structive and therefore yields an algorithm for computing an ar-
bitrary interpolant of degree at most. Since is determined by

variables via (5.2), it is a finite-dimensional optimization
problem. What these variables should be depends on what
basis we choose for . Any function has a state-space
representation

(5.16)

where

...
...

.. .
...

...
...

(5.17)

with given by (3.14). The coordinates

... (5.18)

of this representation are the first Markov parameters in
the series expansion

and therefore, they will be referred to as theMarkov coordinates
of . We will write to denote this correspondence.

Thus, to formulate an algorithm, we express the functional
(5.11) via (5.16) in terms of its Markov coordinates to obtain

(5.19)

which is a function . To each satisfying (5.2)
and (5.3), there corresponds a positive real function, which
is obtained from via (5.14). The idea is now to
minimize over the region where

for (5.20)

This is done recursively by Newton’s method, upholding con-
dition (5.5) or, equivalently, (3.5), while successively trying to
satisfy the interpolation condition (5.13) by reducing the inter-
polation errors

(5.21)

In order to obtain an expression for the gradient, define the
Vandermonde matrix

...
...

. . .
...

(5.22)

where for . Since the points
are distinct, this matrix is nonsingular.

Proposition 5.3: Let (5.18) be a point in such that
(5.16) satisfies (5.20), let be the corresponding
interpolation errors (5.21), and set

...
and

...
(5.23)

Then, the gradient of (5.19) atis given by

(5.24)

where is the solution to the Lyapunov equation

(5.25)

where and are given by (5.17).
The proof of this proposition is given in Appendix B. Note

that since is a stable matrix and is an observable pair,
is positive definite. Hence, the gradient is zero if and only if
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the interpolation errors are all zero, in harmony
with Theorem 5.2.

To apply Newton’s method, we also need the Hessian. To this
end, we need some notation. Given an arbitrary real polynomial

(5.26)

define first the matrix

...
...

.. .
. . .

. . .

(5.27)

Second, for any (5.26), determine such that

where is a polynomial of at most degree . This yields
linear equations for the unknowns ,

in terms of which we define the matrix

...
(5.28)

Finally, for an arbitrary stable polynomial (5.26), let be
the companion matrix with characteristic polynomialthat is
formed analogously to in (5.17) replacing by , and
let be the unique -matrix solution of the Lyapunov
equation

where is the row vector .
Then, we have the following proposition for the

Hessian matrix

(5.29)

The proof will be given in Appendix B.
Proposition 5.4: Given , where the polynomials

and are given by (3.15) and (3.14), respectively, let (5.18)
be a point in such that (5.16) satisfies (5.20), and let
be the unique stable polynomial satisfying

(5.30)

Then, the Hessian (5.29) of (5.19) atis given by

(5.31)

where

(5.32)

(5.33)

Here, is given by (5.23), is the corresponding matrix ob-
tained by reversing the order of the rows in (5.23), and

.

B. Algorithm for the Tunable Filter

We now outline the steps of the algorithm provided by The-
orem 5.2 using Newton’s method in Markov coordinates.

0. Given an initial compute satisfying

1. Compute such that and
form

2. Check the interpolation error. Stop if it is
sufficiently small.

3. Determine the search direction

4. Update and compute a minimum-phase
such that Then return to Step 1.

To initiate the algorithm, one needs to choose an initial value
for or, equivalently, for to be recursively updated. The
tuning is done by selecting the polynomials and given
by (3.14) and (3.15), respectively.

Given the initial , solve (5.30) for . This can be done
in several ways. One is to solve

(5.34)

for to obtain

(5.35)

Identifying coefficients of like powers in , this amounts to
solving a regular linear system of equations in
variables of the same type as (3.12). Then, determining the ini-
tial point in Markov coordinates, (5.18) is standard and can be
done by premultiplying the vector of coefficients of by ,
which is given by (5.23).

The algorithm now proceeds in four steps.

Step 1) In this step, we compute. Given the current
-polynomial (3.10), solve (3.5) for the -poly-

nomial (3.11). This is equivalent to solving the
linear system (3.12). Next, form the corresponding
positive real function , which is defined by (3.6),
and compute the interpolation errors ,
whch are defined by (5.21).

Step 2) In this step we test whether our iterate is sufficiently
close to be a minimizing solution. The algorithm is
terminated if the errors are sufficiently
small, e.g., when is less than a prespeci-
fied tolerance. Otherwise, continue.

Step 3) In this step, the search direction of the optimization
algorithm is determined. Given the interpolation er-
rors , determine the gradient from
Proposition 5.3, and given the current , compute
the Hessian as in Proposition 5.4. Then, the search
direction corresponding to one Newton step is given
by

(5.36)
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Let denote the search directionobtained
in the previous iteration. If this is the first iteration,
initialize by setting .

Step 4) In this step, the solution is being updated to yield a
new

...

with Markov parameters

(5.37)

where should be chosen so that the new
satisfies the positivity condition (5.20). We may
also use a variant of Wolfe’s test [26] to accel-
erate the line search. If, for some constant,

, increase the value of a
parameter . Otherwise, retain the previous value
of .

Then, is obtained by spectral factorization. More pre-
cisely, given , we solve

for the minimum-phase solution in terms of which
. This is standard and is done by solving the algebraic

Riccati equation

for the stabilizing solution. This yields

This factorization can be performed if and only if satisfies
(5.20). If this condition fails, this is determined in the factoriza-
tion procedure. In this case, the value ofis scaled down, and
(5.37) is used to compute a new value for and then of
successively, until (5.20) is met.

Alternatively, an updated value forcan be obtained by de-
termining the polynomial (3.10) with all roots less than one in
absolute value, satisfying (5.34) with being the updated nu-
merator polynomial of , as shown in (5.35). This is a stan-
dard polynomial factorization problem.

Finally, set , and return to Step 1.
Example 2 (Continued):To illustrate the advantages of the

tunable THREE filter, we now reprocess the data in Example 2
using nontrivial spectral zeros. In general, the spectral zeros can
be selected in the vicinity of the unit circle at approximately the
frequencies where the spectrum has less energy. This selection
can be guided by an initial estimate using periodogram.

In the present example, we select spectral zeros at
while keeping the same filterbank

poles as before. We use the same setting when processing each
data set, i.e., the ones corresponding the parameter2.9,
3.0, and 3.1. Comparing with the results in Fig. 3, it is evident
that the performance is much improved and fairly robust with
respect to changes in.

VI. CONCLUSIONS

In this paper, we have introduced a new approach to spectral
estimation, which is based on the use of filter banks as a means
of obtaining spectral interpolation, and which produces an
ARMA model with arbitrary MA-part. An essential property
of this tunable high resolution estimator (THREE) is that its
performance can be enhanced for specific applications by
tuning two sets of tunable parameters,: the filterbank poles and
the spectral zeros. In particular, improved resolution can be
achieved in designated parts of the spectrum. More specifically,
we have demonstrated that selection of the filterbank poles in
the vicinity of any arc of the unit circle results in improved
reproduction of the power spectrum in the corresponding
frequency band, as compared to, e.g., traditional AR filtering.
Placing them too close to the unit circle will, however, in-
crease the statistical variability; therefore, there is a tradeoff
between resolution and variability of the estimates. The other
set of tunable parameters (the spectral zeros) may be placed
anywhere in the unit circle. Choosing them in the default
setting, namely, equal to the filterbank poles, leads to a simpler
solution, namely, the classical central solution, for which we
give an efficient algorithm. However, we demonstrate that even
higher resolution can be achieved by choosing the spectral
zeros appropriately, away from the filterbank poles, close to the
unit circle for frequencies where notches in the spectrum are
expected. Practical rules for selection of such parameters, in
the absence of prior information about the process, need to be
worked out. In cases where spectral zeros of the nominal power
spectrum are knowna priori or can be estimated from longer
data records, these same zeros can be enforced to coincide
with the spectral zeros of the estimates of the power spectrum
without unduly increasing the complexity of the filters. For ar-
bitrary tuning, we need to solve a convex optimization problem,
which amounts to maximizing a generalized entropy gain. A
Newton-type algorithm for this problem has been presented.

APPENDIX A
ALGORITHM FOR THECENTRAL INTERPOLANT

The parameterization of all solutions to the classical Nevan-
linna–Pick problem (without degree constraints) takes the form
of a linear fractional transformation (LFT) on a free parameter
function, which is typically normalized to be contractive [31].
The computation of the LFT elements amounts to solving linear
equations, which can be done either recursively, e.g., by the
Schur algorithm [31], or by reducing them to a pair of Lyapunov
equations [14].

In [14], an LFT is derived for the Nehari problem, and the
corresponding formula can be easily modified to the following
Nevanlinna–Pick problem. Given a set

with Re and

determine all functions that satisfy the interpolation con-
ditions (4.6) and are analytic with modulus less than one in
Re . In fact, the interpolation formulas (4.10) and
(4.11) follow directly from analogous formulas for the Nehari
problem given in [14, p. 125] by the following steps, using the
notation of Section IV.
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a) Show that the symbol appearing in the Nehari
problem is given by

where .
b) Multiply the numerator coefficients of the LFT for the Ne-

hari problem, given in [14, p. 125] by to obtain the
coefficients of the LFT for the Nevanlinna–Pick problem.

In this context, it is important to note that is -unitary in
the sense that

(A.1)

Applying the transformations and
to the domain and range, respectively, the

interpolation formulas (4.10) and (4.11) are transformed into
(4.2) and (4.13), respectively. In addition, (A.1) transforms into
the condition that is -unitary in the sense that

(A.2)

However, the functions defined by (4.2) satisfy the interpola-
tion conditions (3.1) only for . In order to include

, we must have , and hence, we must impose
the extra condition that

or, equivalently, that

(A.3)

where is given by (4.5) and is less than one in modulus. Thus,
all interpolants satisfying the complete set of interpolation con-
ditions (3.1) are still given by (4.2) with the additional constraint
that is contractive and satisfies (A.3).

It remains to be proven that the choice is in fact the
one that maximizes the entropy gain .
To this end, let

(A.4)

where is contractive and satisfies (A.3). Clearly,
is a solution to the interpolation problem for the com-

plete set of data, and all solutions are generated this way. Then

(A.5)

where the last equality follows from (A.4) and (A.2). Since
is outer, i.e., analytic and invertible outside the unit disc, we have
that

(A.6)

which holds for all outer functions [22, pp. 15]. On the
other hand, all contractive that satisfy (A.3) with are
parameterized by

with an arbitrary function that is contractive outside the disc.
Hence

(A.7)

Again, is outer, and hence, (A.6) implies

(A.8)

Then, inserting (A.7) into (A.5) and using (A.8) and (A.6), we
obtain

where in the last term, we have also used the fact, derived from
(A.4), that . Clearly, this expres-
sion attains it maximum value

precisely for , i.e., for , as claimed, and hence,
the central solution is given by (4.4).

APPENDIX B
PROPERTIES OF THEFUNCTIONAL

Denote by the space of functions that are square-integrable
on the unit circle. This is a Hilbert space with inner product

where . Next, let be the Hardy space of
all functions that are analyticoutsidethe unit circle and have
square-integrable limits on the boundary

As usual, is identified with the subspace of with van-
ishing positive Fourier coefficients.

Given the real polynomial (3.14), consider the allpass func-
tion

(B.1)

Such an allpass function is called a (finite) Blaschke product.
Next, introduce the coinvariant subspace

i.e., the orthogonal complement of the invariant subspace
in . The subspace consists of precisely

all rational functions (5.1), where is allowed to have
complex coefficients, and therefore,, which was introduced
in Section V, is the subspace of all real rational functions in

.
The filterbank transfer functions

(B.2)
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are Cauchy kernels in the sense that for any function

(B.3)

(B.4)

In particular, if is real, . It is easy to see that
(B.2) forms a basis for . Hence, if , then

(B.5)

for some complex . If , whenever
.

In this notation, the functional (5.11) of Theorem 5.2 can now
be written

(B.6)

where, in view of (5.15), the first term may be written

However, using the representation (B.5) forand (B.3), we have

Therefore, the first term in (B.6) becomes

(B.7)

where is the Pick matrix (3.4). Clearly, this quadratic form
depends only on via its values at the interpolation points,
which is precisely as claimed in Section V.

To any , there is a unique positive real function
satisfying (5.14). In fact, the left member of (5.14) is positive on
the unit circle, and hence, it can be split into a sum of an analytic
function and its conjugate . Clearly, is positive real.

Next, we prove that if is optimal for the problem to
minimize , then the function defined by (5.14) is an inter-
polant. For this, and for later analysis, we need the directional
derivative

where is a symmetric pseudo-polynomial such that
for sufficiently small . Performing the differ-

entiation, we have

(B.8)

which, in view of (5.14), yields

(B.9)

Now, suppose is the unique minimizing function. Then,
for all directions for which

. Concequently

for all , and therefore, , i.e., for
all , which, in turn, yields the interpolation conditions (5.13).

Next, to derive an expression for the gradient of, we will
need the following lemma.

Lemma B.1:Let and be stable, real, rational functions
with realizations

and

Then

(B.10)

(B.11)

where is the unique solution of the Lyapunov equation

i.e., the observability gramian.
Proof: First, note that for . Therefore,

since

for

and , (B.11) follows directly by orthogonality.
For the same reason

However

and hence, (B.10) follows.
We are now in the position to verify the expressions (5.24)

and (5.29) for the gradient and Hessian of, respectively.
Proof of Proposition 5.3:The interpolation errors (5.21)

can be written

where , and is defined as

Now, let be the orthogonal projection of onto . Since
for some , we have

Therefore, the column vectorof coefficients of the numerator
polynomial

where

is the unique solution of the Vandermonde system ,
where and are given by (5.22) and (5.23), respectively.
Then, it is easy to check thathas the realization

where is given by (5.23).
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Let , and consider the directional derivative at
in the direction . From (B.9), we see that

Consequently, it follows directly from Lemma B.1 that

where are the Markov parameters of, and is the so-
lution of the Lyapunov equation (5.25). However, by definition

which establishes the expression (5.24) for the gradient, as
claimed.

Proof of Proposition 5.3:To compute the Hessian, we de-
termine

Then, the Hessian is the symmetric matrix
such that

where is the (reversed) vector of Markov parameters

of . Now, replacing by , we obtain

(B.12)

where

is the numerator polynomial of , which can be determined via
the system of linear equations

...
where ...

and , denote the reverse polynomials and
, respectively. A simple computation then yields

where is given by (5.28). We will use Lemma B.1 to com-
pute these expressions. Note that we have refrained from can-
celing the common factor in the first position of the second
term of (B.12). This is in order to obtain the same denominator
in the two positions of the inner product, leading to a Lyapunov
equation instead of a somewhat smaller, but computationally
more demanding, Sylvester equation.

To determine the first term in (B.12), we need a state space
representation

on the canonical form (5.17), whereis the companion matrix
of , and is the -vector . The coefficient
vector of the numerator polynomial

can be computed as , where is given by
(5.27), and consequently

Lemma B.1 then implies that

(B.13)

where is defined as in the theorem.
To determine the second term in (B.12), we need a state space

realization

where is the companion matrix of , and is the
-vector . In the same way as above, we obtain

where the matrix is obtained by reversing the order of the
rows in and where is given by (5.27). Consequently,
Lemma B.1 yields

(B.14)

From (B.12)–(B.14), the Hessian is then obtained as (5.31),
where we have adjusted for the fact that is not symmetric.
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