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Abstract— In this paper we study the steady state form
of a discrete-time matrix Riccati-type equation, connected to
the rational covariance extension problem and to the partial
stochastic realization problem. This equation, however, is non-
standard in that it lacks the usual kind of definiteness properties
which underlie the solvability of the standard Riccati equation.
Nonetheless, we prove the existence and uniqueness of a positive
semidefinite solution. We also show that this equation has
the proper geometric attributes to be solvable by homotopy
continuation methods, which we illustrate in several examples.

I. INTRODUCTION

Let
c = (c0, c1, . . . , cn) (1)

a sequence (for simplicity, taken to be real) that is positive
in the sense that

Tn =











c0 c1 · · · cn

c1 c0 · · · cn−1

...
...

. . .
...

cn cn−1 · · · c0











> 0.

Given a positive sequence (1), the rational covariance ex-
tension problem – or the covariance extension problem with
degree constraint – amounts to finding a pair (a, b) of Schur
polynomials1

a(z) = zn + a1z
n−1 + · · · + an (2a)

b(z) = zn + b1z
n−1 + · · · + bn (2b)

satisfying the interpolation condition

b(z)

a(z)
=

1

2
c0 + c1z

−1 + · · · + cnz−n + O(z−n−1) (3)

and the positivity condition

1

2

[

a(z)b(z−1) + b(z)a(z−1)
]

> 0 on T, (4)

T being the unit circle. Then there is a Schur polynomial

σ(z) = zn + σ1z
n−1 + · · · + σn (5)
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1A Schur polynomial is a (monic) polynomial with all its roots in the
open unit disc.

such that
1

2

[

a(z)b(z−1) + b(z)a(z−1)
]

= ρ2σ(z)σ(z−1) (6)

for some positive normalizing coefficient ρ, and

Re
{

b(eiθ)

a(eiθ)

}

=

∣

∣

∣

∣

ρ
σ(eiθ)

a(eiθ)

∣

∣

∣

∣

2

. (7)

Georgiou [12], [13] raised the question whether there
exists a solution for each choice of σ and answered this
question in the affirmative. He also conjectured that this
assignment is unique. This conjecture was proven in [6] in
a more general context of well-posedness.

The question of actually computing the unique solution to
the covariance extension problem with degree constraint was
first addressed in a constructive way in [7] (also, see [8]) in
the context of convex optimization.

This optimization approach completely superseded a first
attempt, proposed in [5], to set up a paradigm for compu-
tation. In fact, in [5] we introduced a nonstandard matrix
Riccati equation – the Covariance Extension Equation (CEE)
– the positive semidefinite solutions of which parameterize
the solution set of the rational covariance extension problem.
In [1] we provided an algorithm for solving this equation
based on homotopy continuation. The purpose of this paper
is to revisit this topic along the lines of [1]. Although the
CEE approach does not seem to offer any computational
advantage to, e.g., [11], it does provide some additional
insights into such issues as positive degree [5], [16], [10]
and model reduction, since the rank of the solution matrix
coincides with the degree of the interpolant.

II. THE COVARIANCE EXTENSION EQUATION

For simplicity, we normalize by taking c0 = 1. Motivated
by the rational covariance extension problem, we form the
following n vectors

σ =











σ1

σ2

...
σn











, h =











1
0
...
0











(8a)

and n × n matrix

Γ =















−σ1 1 0 · · · 0
−σ2 0 1 · · · 0

...
...

...
. . .

...
−σn−1 0 0 · · · 1
−σn 0 0 · · · 0















. (8b)



Defining u1, u2, . . . , un via

zn

zn + c1zn−1 + · · · + cn
= 1 − u1z

−1 − u2z
−2 − . . . (9)

we also form

u =











u1

u2

...
un











U =















0
u1 0
u2 u1

...
...

. . .
un−1 un−2 · · · u1 0















. (10)

We shall also need the function g : R
n×n → R

n defined by

g(P ) = u + Uσ + UΓPh. (11)

From these quantities, in [5], we formed the Riccati-like
matrix equation

P = Γ(P − Phh′P )Γ′ + g(P )g(P )′, (12)

which we sought to solve in the space of positive semidefinite
matrices satisfying the additional constraint

h′Ph < 1, (13)

where ′ denotes transposition. We refer to this equation as
the covariance extension equation (CEE).

To this end, define the semialgebraic sets

X = {(c, σ) | Tn > 0, σ(z) is a Schur polynomial}

and
Y = {P ∈ R

n×n | P ≥ 0, h′Ph < 1}.

On X × Y we define the rational map

F (c, σ, P ) = P − Γ(P − Phh′P )Γ′ − g(P )g(P )′

Of course its zero locus

Z = F−1(0) ⊂ X × Y

is the solution set to the covariance extension equations. We
are interested in the projection map restricted to Z

πX(c, σ, P ) = (c, σ).

For example, to say that πX is surjective is to say that there is
always a solution to CEE, and to say that πX is injective is to
say that solutions are unique. One of the main results of [1]
is the following, which, in particular, implies that CEE has
a unique solution P ∈ Y for each (c, σ) ∈ X [5, Theorem
2.1].

Theorem 1: The solution set Z is a smooth semialgebraic
manifold of dimention 2n. Moreover, πX is a diffeomor-
phism between Z and X .

In particular the map πX is smooth with no branch points
and every smooth curve in X lifts to a curve in Z. These
observations imply that the homotopy continuation method
will apply to solving the covariance extension equation [2].

The proof of Theorem 1 is based on the following re-
sult, found in [5]. Here a and b are the n-vectors a :=
(a1, a2, . . . , an) and b := (b1, b2, . . . , bn) defined via (2).

Theorem 2: There is a one-to-one correspondence be-
tween symmetric solutions P of the covariance extension
equation (12) such that h′Ph < 1 and pairs of monic poly-
nomials (2a)-(2b) satisfying the interpolation condition (3)
and the positivity condition (4). Under this correspondence

a = (I − U)(ΓPh + σ) − u, (14a)

b = (I + U)(ΓPh + σ) + u, (14b)

ρ = (1 − h′Ph)1/2, (14c)

and P is the unique solution of the Lyapunov equation

P = JPJ ′ −
1

2
(ab′ + ba′) + ρ2σσ′, (15)

where

J =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0















(16)

is the upward shift matrix. Moreover the following conditions
are equivalent

1) P ≥ 0
2) a(z) is a Schur polynomial
3) b(z) is a Schur polynomial

and, if they are fulfilled,

deg v(z) = rank P. (17)
We can now prove Theorem 1. Let Pn be the space of pairs

(a, b) whose quotient is positive real. Clearly, the mapping

f : Pn → X,

sending (a, b) to the corresponding (c, σ), is smooth. Our
main result in [6] asserts that f is actually a diffeomorphism.
In particular, for each positive sequence (1) and each monic
Schur polynomial (5), there is a unique pair of polynomials,
(a, b), satisfying (3) and (4), and consequently (a, b) solves
the rational covariance extension problem corresponding to
(c, σ). Moreover, by Theorem 2, there is a unique cor-
responding solution to the covariance extension equation,
which is positive semi-definite.

Since J is nilpotent, the Lyapunov equation (15) has a
unique solution, P , for each right hand side of equation (15).
Moreover, the right hand side is a smooth function on X
and, using elementary methods from Lyapunov theory, we
conclude that P is also smooth as a function on X . As the
graph in X × Y of a smooth mapping defined on X , Z is
a smooth manifold of dimension 2n = dim X . Moreover,
this mapping has the smooth mapping πX as its inverse.
Therefore, πX is a diffeomorphism.

Remark 3: Our proof, together with the results in [6],
shows more. Namely, that Z is an analytic manifold and that
πX is an analytic diffeomorphism with an analytic inverse.



III. RATIONAL COVARIANCE EXTENSION AND THE CEE

In [5] we showed that, for any (c, σ) ∈ X , CEE has
a unique solution P ∈ Y and that the unique solution
corresponding to σ to the rational covariance extension
problem is given by

a = (I − U)(ΓPh + σ) − u, (18a)

b = (I + U)(ΓPh + σ) + u. (18b)

Clearly the interpolation condition (3) can be written

b = 2c + (2Cn − I)a, (19)

where

c =











c1

c2

...
cn











Cn =















1
c1 1
c2 c1 1
...

...
...

. . .
cn−1 cn−2 cn−3 . . . 1















.

Using the fact that Cnu = c and Cn(I − U) = I , it was
shown in [5] that (19) can be written

a =
1

2
(I − U)(a + b) − u. (20)

For a fixed (c, σ) ∈ X , let H : Y → R
n×n be the map

sending P to F (c, σ, P ), and let

dH(P ; Q) := lim
t→0

H(P + tQ) − H(P )

t

be the derivative in the direction Q = Q′. A key property
needed in the homotopy continuation solution of the CEE is
the fact that this derivative is full rank.

Proposition 4: Given (c, σ) ∈ X , let P ∈ Y be the
corresponding solution of CEE. Then, if dH(P ; Q) = 0,
Q = 0.

Proof: Suppose that dH(P ; Q) = 0 for some Q. Then

H(P ) + λdH(P ; Q) = 0

for any λ ∈ R. Since

dH(P ; Q) = Q − ΓQΓ′ + ΓPhh′QΓ′ + ΓQhh′PΓ′

−g(P )h′QΓ′U ′ − UΓQhg(P )′, (21)

this can be written

H(Pλ) = λ2R(Q), (22)

where Pλ := P + λQ and

R(Q) := 2ΓQhh′QΓ′ − 2UΓQhh′QΓ′U ′.

Proceeding as in the proof of Lemma 4.6 in [5], (22) can be
written

Pλ = JPλJ ′ −
1

2
(aλb′λ + bλa′

λ) + ρ2
λσσ′ − λ2R(Q), (23)

where
aλ = (I − U)(ΓPλh + σ) − u, (24a)

bλ = (I + U)(ΓPλh + σ) + u, (24b)

ρλ = (1 − h′Pλh)1/2. (24c)

Observe that

aλ =
1

2
(I − U)(aλ + bλ) − u, (25)

and hence (aλ, bλ) satisfies the interpolation condition (20),
or, equivalently, (3), for all λ ∈ R.

Multipying (23) by zj−i = zn−iz−(n−j) and summing
over all i, j = 1, 2, . . . , n, we obtain

1

2

[

aλ(z)bλ(z−1) + bλ(z)aλ(z−1)
]

= ρ2
λσ(z)σ(z−1) − λ2

∑

i=1

∑

j=1

Rij(Q)zj−i

again along the calculations of the proof of Lemma 4.6 in
[5]. Since σ(z)σ(z−1) > 0 on T,

ρ2
λσ(z)σ(z−1) − λ2

∑

i=1

∑

j=1

Rij(Q)zj−i > 0 on T

for |λ| sufficiently small. Then there is a Schur polynomial
σλ and a positive constant ρ̂λ such that

ρ̂2
λσλ(z)σλ(z−1) = ρ2

λσ(z)σ(z−1)−λ2
∑

i=1

∑

j=1

Rij(Q)zj−i.

Therefore,

1

2

[

aλ(z)bλ(z−1) + bλ(z)aλ(z−1)
]

= ρ̂2
λσλ(z)σλ(z−1)

(26)
for |λ| sufficiently small.

Now recall that a0 = a and b0 = b are Schur polynomials
and that the Schur region is open in R

n. Hence there is an
ε > 0 such that aε(z), a−ε(z), bε(z) and b−ε(z) are also
Schur polynomials and (26) holds for λ = ±ε.

Consequently, (aε, bε) and (a−ε, b−ε) both satisfy the
interpolation condition (3) and the positivity condition (6)
corresponding to the same σ := σε = σ−ε. Therefore, since
the solution to the rational covariance extension problem
corresponding to σ is unique, we must have aε = a−ε and
bε = b−ε, and hence in view of (23), Pε = P−ε; i.e, Q = 0,
as claimed.

IV. REFORMULATION OF THE COVARIANCE EXTENSION
EQUATION

Solving the covariance extension equation (12) amounts
to solving 1

2n(n − 1) nonlinear scalar equations, which
number grows rapidly with increasing n. As in the theory
of fast filtering algorithms [14], [15], we may replace these
equations by a system of only n equations. In fact, setting

p = Ph (27)

the covariance extension equation can be written

P −ΓPΓ′ = −Γpp′Γ′ + (u + Uσ + UΓp)(u + Uσ + UΓp)′

(28)
If we could first determine p, P could be obtained from
(28), regarded as a Lyapunov equation. We proceed to doing
precisely this.



It follows from Theorem 2 that (28) may also be written

P = JPJ ′ −
1

2
(ab′ + ba′) + ρ2σσ′, (29)

with a, b and ρ given by (14). Multiplying (29) by zj−i =
zn−iz−(n−j) and summing over all i, j = 1, 2, . . . , n, we
obtain precisely (4), which in matrix form becomes

S(a)

[

1
b

]

= 2ρ2

[

d
σn

]

(30)

or, symmetrically,

S(b)

[

1
a

]

= 2ρ2

[

d
σn

]

, (31)

where a 7→ S(a) is the matrix function










1 . . . an−1 an

a1 . . . an

... . . .

an











+











1 a1 . . . an

1 . . . an−1

. . .
...
1











and

d =















1 + σ2
1 + σ2

2 + · · · + σ2
n

σ1 + σ1σ2 + σn−1σn

σ2 + σ1σ3 + σn−2σn

...
σn−1 + σ1σn















. (32)

Inserting (14) and (27) in (30) yields

S(a(p))

[

1
b(p)

]

= 2(1 − h′p)

[

d
σn

]

, (33)

where

a(p) = (I − U)(Γp + σ) − u, (34a)

b(p) = (I + U)(Γp + σ) + u (34b)

are functions of p. More precisely, (33) are n + 1 equations
in the n unknown p. However, from (14) we have

1

2
(an + bn) = ρ2σn,

which is precisely the last equation in (30). Hence (33) is
redundant and can be deleted to yield

ES(a(p))

[

1
b(p)

]

= 2(1 − h′p)d, (35)

where E is the n × (n + 1) matrix

E =
[

In 0
]

. (36)

These n equations in n unkowns p1, p2, . . . , pn clearly has
a unique solution p̂, for CEE has one.

V. HOMOTOPY CONTINUATION

Suppose that (c, σ) ∈ X . To solve the corresponding
covariance extension equation

P = Γ(P − Phh′P )Γ′ + g(P )g(P )′ (37)

for its unique solution P̂ , we first observe that the solution
is particularly simple if c = c0 = 0. Then u = 0, U = 0 and
(37) reduces to

P = Γ(P − Phh′P )Γ′ (38)

having the unique solution P = 0 in Y . Consider the
deformation

c(ν) = νc, ν ∈ [0, 1].

Clearly, (c(ν), σ) ∈ X , and consequently the equation

H(P, ν) := P − Γ(P − Phh′P )Γ′ − g(P, ν)g(P, ν)′ = 0,
(39)

where
g(P, ν) = u(ν) + U(ν)σ + U(ν)ΓPh

with

u(ν) =















1
νc1 1
νc2 νc1 1

...
...

...
. . .

νcn−1 νcn−2 νcn−3 . . . 1















−1










νc1

νc2

...
νcn











and

U(ν) =















0
u1(ν) 0
u2(ν) u1(ν)

...
...

. . .
un−1(ν) un−2(ν) · · · u1(ν) 0















,

has a unique solution P̂ (ν) in Y .
The function H : Y × [0, 1] → R

n×n is a homotopy
between (37) and (38). In view of Theorem 1, the trajectory
{P̂ (ν)}1

ν=0 is continuously differentiable and has no turning
points or bifurcations. Consequently, homotopy continuation
can be used to obtain a computational procedure. However,
the corresponding ODE will be of dimension O(n2). There-
fore, it is better to work with the reduced equation (35),
which yields an ODE of order n.

To this end, setting

V := {p ∈ R
n | p = Ph, P ∈ Y },

consider instead the homotopy G : V × [0, 1] → R
n defined

by

G(p, ν) := ES(a(p))

[

1
b(p)

]

− 2(1 − h′p)d,

where a(p) and b(p) are given by (34). A fortiori the corre-
sponding trajectory {p̂(ν)}1

ν=0 is continuously differentiable
and has no turning points or bifurcations. Differentiating

G(p, ν) = 0



with respect to ν yields

ES(a)

[

0

ḃ

]

+ ES(b)

[

0
ȧ

]

+ 2h′ṗd = 0,

where dot denotes derivative and

ȧ = (I − U)Γṗ − U̇(Γp + σ) − u̇, (40a)

ḃ = (I + U)Γṗ + U̇(Γp + σ) + u̇, (40b)

or, which is the same,

ES

(

a + b

2

) [

0
Γṗ

]

− ES

(

b − a

2

) [

0
UΓṗ

]

+ dh′ṗ =

= ES

(

b − a

2

) [

0

U̇Γp + U̇σ + u̇

]

.

In view of (34), this may be written
[

Ŝ(Γp + σ) − Ŝ(UΓp + Uσ + u) + dh′

]

ṗ

= Ŝ(UΓp + Uσ + u)(U̇Γp + U̇σ + u̇),

where Ŝ(a) is the n×n matrix obtained by deleting the first
column and the last row in S(a). Hence we have proven the
following theorem.

Theorem 5: The differential equation

ṗ =
[

Ŝ(Γp + σ) − Ŝ(U(ν)Γp + U(ν)σ + u(ν)) + dh′

]−1

×

Ŝ(U(ν)Γp + U(ν)σ + u(ν))(U̇ (ν)Γp + U̇(ν)σ + u̇(ν)),

p(0) = 0

has a unique solution {p̂(ν); 0 ≤ ν ≤ 1}. Moreover, the
unique solution of the Lyapunov equation

P − ΓPΓ′ =

− Γp̂(1)p̂(1)′Γ′ + (u + Uσ + UΓp̂(1))(u + Uσ + UΓp̂(1))′,

where U = U(1) and u = u(1), is also the unique solution
of the covariance extension equation (12).

The differential equation can be solved by methods akin
to those in [4].

VI. SIMULATIONS

We illustrate the method described above by two examples,
in which we use covariance data generated in the following
way. Pass white noise through a given stable filter

white noise w
−→ w(z)

y
−→

with a rational transfer function

w(z) =
σ̂(z)

â(z)

of degree n̂, where σ̂(z) is a (monic) Schur polynomial. This
generates a time series

y0, y1, y2, y3, . . . , yN , (41)

from which a covariance sequence is computed via the biased
estimator

ĉk =
1

N

N
∑

t=k+1

ytyt−k, (42)

n=2 n=3 n=4 n=5 n=6
.4287 .4289 .4292 .4297 .4300
.2532 .2537 .2539 .2541 .2543

3.041 ·10
−6 2.504 ·10

−5 2.105 ·10
−4 4.348 ·10

−4

2.656 ·10
−7 1.603 ·10

−6 1.009 ·10
−4

3.602 ·10
−7 9.163 ·10

−7

1.888 ·10
−7

TABLE I
SINGULAR VALUES OF SOLUTION P OF THE CEE

which actually provides a sequences with positive Toepliz
matrices. By setting ck := ĉk/ĉ0 we obtained a normalized
covariance sequence

1, c1, c2, . . . , cn, n ≥ n̂. (43)

Example 1: Detecting the positive degree

Given a transfer function w(z) of degree n̂ = 2 with
zeros at 0.37e±i and poles at 0.82e±1.32i, estimate the
covariance sequence (43) for n = 2, 3, 4, 5 and 6. Given these
covariance sequences, we apply the algorithm of this paper
to compute the n × n matrix P , using the zero polynomial
σ(z) = zn−n̂σ̂(z), thus keeping the trigonometric polyno-
mial |σ(eiθ)|2 constant. For each value of n 100 Monte Carlo
simulations are performed, and the average of the singular
values of P are computed and shown in Table 1.

For each n > 2, the first two singular values are con-
siderably larger than the others. Indeed, for all practical
purposes, the singular values below the line in Table 1 are
zero. Therefore, as the dimension of P increases, its rank
remains close to 2. This is to say that the positive degree
[5] of the covariance sequence (43) is approximately 2 for
all n. In Fig. 2 the spectral density for n = 2 is plotted
together with those obtained by taking n > 2, showing no
major difference.

0 0.5 1 1.5 2 2.5 3
−5

0

5

10

Frequency (rad/s)

G
ai

n 
(d

B
)

spec. density for n=2
n=4
n=5
n=6

Fig. 1.
The given spectral density (n = 2) and the estimated one

for n = 4, 5, 6.

Next, for n = 4, we compute the solution of the CEE with

σ(z) = σ̂(z)(z − 0.6e1.78i)(z − 0.6e−1.78i).



As expected, the rank of the 4× 4 matrix solution P of the
CEE, is approximately 2, and, as seen in Fig. 3 , a(z) has
roots that are very close to cancelling the zeros 0.6e±1.78i

of σ(z).
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Fig. 2.
Spectral zeros (o) and the corresponding poles (x) for

n = 4.

Example 2: Model reduction

Next, given a transfer function w(z) of degree 10 with ze-
ros .99e±1.78i, .6e±0.44i, .55e±2i, .98e±i, .97e±2.7i and poles
.8e±2.6i, .74e±0.23i, .8e±2.09i, .82e±1.32i, .77e±0.83i, as in
Fig. 3, we generate data (41) and a corresponding covariance
sequence (43). Clearly, there is no zero-pole cancellation.
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Fig. 3.
Zeros (o) and the corresponding poles (x) of w(z).

Nevertheless, the rank of the 10 × 10 matrix solution P
of CEE is close to 6. In fact, its singular values are equal to

1.1911 0.1079 0.0693 0.0627 0.0578 0.0434
0.0018 0.0012 0.0009 0.0008

The last four singular values are quite small, establishing
an approximate rank of 6. The estimated spectral density
(n = 10) is depicted in Fig. 4 together with the theoretical
spectral density.
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Fig. 4.
n = 10 estimate of spectral density together with the true

spectral density.

Clearly six zeros are dominant, namely

0.98e±i, 0.99e±1.78i, 0.97e±2.7i,

and these can be determined from the estimated spectral
density in Fig. 4. Therefore applying our algorithm to the
reduced covariance sequence 1, c1, . . . , c6 using the six dom-
inant zeros to form σ(z), we obtain a 6×6 matrix solution P
of CEE and a corresponding reduced order system with poles
and zeros as in Fig. 5. Comparing with Fig. 3, we see that the
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Fig. 5.
Zeros (o) and poles (x) of the reduced-order system.

poles are located in quite different locations. Nevertheless,
the corresponding reduced-order spectral estimate, depicted
in Fig. 6, is quite accurate.
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Fig. 6.
Reduced-order estimate of spectral density (n = 6) together

with that of n = 10 and the true spectral density.
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