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Abstract—One of the most widely used methods of spectral esti-
mation in signal and speech processing is linear predictive coding
(LPC). LPC has some attractive features, which account for its
popularity, including the properties that the resulting modeling
filter i) matches a finite window of + 1 covariance lags, ii) is
rational of degree at most , and iii) has stable zeros and poles.
The only limiting factor of this methodology is that the modeling
filter is “all-pole,” i.e., an autoregressive (AR) model.

In this paper, we present a systematic description of all autore-
gressive moving-average (ARMA) models of processes that have
properties i)–iii) in the context of cepstral analysis and homomor-
phic filtering. Indeed, we show that each such ARMA model deter-
mines and is completely determined by its finite windows of cep-
stral coefficients and covariance lags. This characterization has an
intuitively appealing interpretation of a characterization by using
measures of the transient and the steady-state behaviors of the
signal, respectively. More precisely, we show that theseth-order
windows form local coordinates for all ARMA models of degree

and that the pole-zero model can be determined from the win-
dows as the unique minimum of a convex objective function. We re-
fine this optimization method by first noting that the maximum en-
tropy design of an LPC filter is obtained by maximizing the zeroth
cepstral coefficient, subject to the constraint i). More generally,
we modify this scheme to a more well-posed optimization problem
where the covariance data enters as a constraint and the linear
weights of the cepstral coefficients are “positive”—in a sense that
a certain pseudo-polynomial is positive—rather succinctly gener-
alizing the maximum entropy method. This new problem is a ho-
momorphic filter generalization of the maximum entropy method,
providing a procedure for the design of any stable, minimum-phase
modeling filter of degree less or equal to that interpolates the
given covariance window.

We conclude the paper by presenting an algorithm for realizing
these filters in a lattice-ladder form, given the covariance window
and the moving average part of the model. While we also show how
to determine the moving average part using cepstral smoothing,
one can make use of any gooda priori estimate for the system zeros
to initialize the algorithm. Indeed, we conclude the paper with an
example of this method, incorporating an example from the litera-
ture on ARMA modeling.

Index Terms—Autoregressive moving average processes,
cepstral analysis, covariance analysis, identification, maximum
entropy methods, optimization methods, spectral analysis, speech
analysis.
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I. INTRODUCTION

A PURELY nondeterministic (zero-mean) Gaussian sta-
tionary process is fully characterized by its infinite

sequence of covariance lags, which are in fact the Fourier
coefficients of its spectral density. In particular, if this density
is rational, an infinite sample of such a process determines a
unique autoregressive moving-average (ARMA) model for the
process, leading to an explicit description of a spectral density
and to a modeling filter that can regenerate the entire process
in the sense that it shapes white noise into a process with the
same covariance sequence. These equivalent models of the
process play a fundamental role in spectral estimation [11],
system identification [2], [23], [35], [39], speech processing
[13], [24], [26], [32], [33], and several other applications in
signal processing and systems and control [8]–[10], [16], [19],
[20]. However, one never really has an infinite sample of a time
series but rather a finite window of data, leading to a far more
complicated set of modeling issues. However, from this data,
one can estimate a window of approximate covariances, having
a rather appealing and useful interpretation as moments that
approximate the true covariances [22].

The basic inverse problem with which we begin, then, is that
of finding a spectral density, positive on the unit circle, matching
a finite covariance sequence that is positive definite in an appro-
priate sense [19], [31]. An autoregressive (AR) solution to this
problem is provided by the linear predictive coding (LPC) filter
[31]. The LPC filter can be realized by an all-pole lattice filter
architecture, whose gains can be easily computed using stan-
dard algorithms. Nonetheless, the need for ARMA modeling,
incorporating both poles and zeros, has long been understood in
spectral estimation and signal processing [18], [21], [37], [38].
For example, in speech processing, Atal has pointed out that the
perceived differences between real speech and the best synthetic
speech obtainable using an LPC filter are at least partially due
to the all-pole model restriction [26, p. 271], which limits its
power spectral density from matching the “nulls,” or “notches,”
in the periodogram of the data. Indeed, it is widely appreciated
in the speech processing literature that regeneration of certain
features of human speech, for example, sounds involving frica-
tives or nasals, requires the design of filters having zeros (see,
e.g., [5, p. 1726], [26, pp. 271–272], and [33, pp. 105, 76–78]).

On the other hand, we are interested in those ARMA models
that match a given window of covariances. To this end, we note
that an alternative approach to pole-zero modeling is offered
by cepstral analysis and homomorphic filtering [29], where
pole-zero models are determined from the Fourier coefficients
of the logarithm of the spectral density: the so-called cepstral

1053–587X/01$10.00 © 2001 IEEE



678 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 4, APRIL 2001

coefficients. As it turns out, the information contained in a
finite window of cepstral coefficients is complementary to the
information contained in a finite window of covariances so that
by combining cepstral analysis with covariance methods, one
can actually obtain a solution to the problem of covariance
extension. Indeed, one of the main results obtained in this
paper is that any pole-zero model of fixed degree determines,
and is uniquely determined by, a prescribed window of cepstral
coefficients and a prescribed window of covariances. This
result has a number of amplifications and new consequences
for pole-zero modeling of observed data.

We begin in Section II by setting notation and reviewing the
derivation of linear predictive coding filters from a covariance
window or, what is equivalent, a window of PARCOR coeffi-
cients. We then examine the LPC filter in terms of cepstral anal-
ysis, obtaining an interesting interpretation of its maximum en-
tropy filter aspects in terms of maximization of cepstral gain,
which is a problem that we later generalize in a substantial way.

In Section III, we present our first main result,viz., that the
finite cepstral and covariance windows can be interpreted as co-
ordinates for stable, minimum-phase pole-zero models of fixed
degree. In particular, we give formulae for the cepstral coeffi-
cients in terms of differences of Newton sums of the poles and
of the zeros, generalizing the usual formulae in terms of Newton
sums of the poles for LPC filters. We then show how a mod-
eling filter of degree arises as the unique minimum of an opti-
mization scheme involving cepstral and covariance functionals
together with a generalized entropy integral. After illustrating
this minimization scheme in a simple example from the liter-
ature, we modify this scheme to a more well-posed optimiza-
tion problem, where the covariance data enters as a constraint,
and the linear weights of the cepstral coefficients are “posi-
tive”—in a sense that a certain pseudo-polynomial is positive,
rather succinctly generalizing the maximum entropy method.
This new problem is a homomorphic filter generalization of the
maximum entropy method, leading to the design of all stable,
minimum-phase modeling filters of degreethat interpolate the
given covariance window. We conclude Section III with an illus-
tration taken from speech synthesis.

ARMA processes can be realized as lattice-ladder filters,
enhancing the lattice description of the AR model given by the
LPC filter. In Section IV, we also show how the generalized
maximum entropy method leads to a convex optimization
scheme that uniquely determines the parameters in the lat-
tice-ladder filter, given the window of covariance lags and
the choice of positive pseudo-polynomial in the generalized
maximum entropy problem. It is also noted that by spectral
factorization, the choice of positive pseudo-polynomial corre-
sponds to a choice of stable zeros of the numerator polynomial
for the modeling filter. Thus, this homomorphic filtering
generalization of maximum entropy methods gives a new
derivation, based on cepstral analysis, of the recent resolution
of the rational covariance extension problem. Briefly, in the
early 1980s, Georgiou [16] proved the remarkable result that
for a given covariance window, ARMA filters exist forany
choice of stable zeros (inside the unit disc). Georgiou also
conjectured the uniqueness of such modeling filters, which was
an issue finally resolved in the positive in [8].

Since these filters can be realized in lattice-ladder form, and
since this provides a design method for deriving modeling fil-
ters matching a covariance window but having arbitrary stable
zeros (or “notches” in the power spectrum of the ARMA model),
these filters are referred to as “lattice-ladder notch” (LLN) fil-
ters. Thus, the class of LLN filters coincide with the class of
linear modeling filters, of degree at most, which shape white
noise into a process with the observed covariance data. This is
illustrated using refinements of the spectral estimates developed
in Section III for a frame of unvoiced speech.

Finally, we wish to emphasize that the algorithm presented
here provides a new computational scheme for realizing these
filters, given the covariance window and the moving average
part of the model. While we also show how to determine the
moving average part using cepstral smoothing, anya priori es-
timate of the zero polynomial can be used as an initial condition
in our algorithm. In particular, one can make use of any ARMA
modeling estimate for the system zeros to initialize an enhance-
ment of the modeling filter as well as to obtain better covari-
ance matching. Indeed, we conclude the paper with an example
of this method, incorporating the ARMA modeling techniques
of [35] to obtain an initial estimate of the system zeros.

II. PRELIMINARIES

A fundamental problem in systems and signals is to determine
a model for a stationary random process from a finite
window of data. A linear model for the data would consist either
of a state-space model having the process as an output or of a
description of the -transform of the system, which, of course,
can be determined by the filter zeros, poles, and the high fre-
quency gain. Among the popular approaches to this problem are
an approach based on matching the covariance lags—notably
linear predictive coding, which is an approach based on cep-
stral methods and homomorphic filtering, and approaches based
on variants of system identification methods for autoregressive
(AR) or autoregressive moving-average (ARMA) models.

A. Analysis Based on Infinite Data

Of course, if one had an infinite data record, the problem
would be much easier. For example, it is well known that the
spectral density of a (purely nondeterministic) stationary
random process is given by the Fourier expansion

(2.1)

on the unit circle, where the covariance lags

(2.2)

satisfy

(2.3)

Consequently, the unique rational, stable, minimum-phase func-
tion satisfying

(2.4)
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is the transfer function of amodeling filter

input output (2.5)

which shapes white noise into a random process with the covari-
ance lags given by (2.3). Here, the rational transfer function

(2.6)

is minimum-phase, i.e., the denominator polynomial and
the numerator polynomial both have their roots strictly
inside the unit circle; such a polynomial will be calledstable.

In particular, given an (infinite) string of observed data

(2.7)

satisfying an appropriate ergodicity property, the covariance se-
quence can be determined as

(2.8)

which defines a unique spectral density and, hence, a unique
modeling filter.

Cepstral analysis also provides a means of determining the
poles, zeros, and high frequency gain of the modeling filter. The
starting point is the Fourier analysis of the (real)cepstrum

(2.9)

The Fourier coefficients

(2.10)

are known as thecepstral coefficients. We note that for
all . Computing the logarithmic derivative of, it can be seen
that the series with Fourier coefficients has its poles at the
poles and zeros of the modeling filter [29]. A second property of
the cepstrum is key to homomorphic filtering,viz., if the process

is the response to a signal driving the modeling
filter , then the cepstrum of is the superposition
of the cepstrum of the impulse response of the modeling filter
and the cepstrum of the input. In particular, if the impulse re-
sponse of the filter is slowly varying compared with the input,
a finite window of cepstral coefficients will capture most of the
information about the filter. Of course, there is a one-to-one cor-
respondence between theinfinite sequences and

.

B. LPC Filters

In practice, however, only a finite string of observed data

(2.11)

is available, and both of the approaches outlined above need
considerable refinement. If is sufficiently large, the estimate

(2.12)

for example, is a good approximation of, but now, only a
finite covariance sequence

(2.13)

where , can be produced. However, at least using the
covariance estimates (2.12), the Toeplitz matrix

...
...

. . .
...

(2.14)

is positive definite, as required.
Indeed, in spectral estimation [11], identification [2], [23],

[39], speech processing [13], [24], [26], [32], [33], and several
other applications in signal processing and systems and control
[8]–[10], [16], [19], [20], one is typically faced with the inverse
problem of finding a spectral density, positive on the unit circle
and of degree at most, given only a sequence (2.13) for which
the Toeplitz matrix (2.14) is positive definite. Finding any such
spectral density is the same as finding a modeling filter, of de-
gree at most , which shapes white noise into a process with the
observed window of covariance data. An autoregressive solu-
tion to this problem is provided by the linear predictive coding
(LPC) filter [31], which, as is well-known, can be realized by a
lattice filter, containing unit delays , summing junctions, and
gains, as illustrated in Fig. 1. The gains
and

are recursively defined from the covariance lags
via theLevinson algorithm

(2.15)

(2.16)

(2.17)

where and ; see, e.g., [26] and [31]. The
gains are calledreflection coefficientsor
Schur parametersand have the property that for

.
The reflection coefficients can be determined either directly

from the data (2.13) by some version of the Burg’s algorithm
[31, p. 175] or from the covariance estimates (2.12) via (2.15).
The filter has the transfer function

(2.18)
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Fig. 1. Lattice filter representation of an LPC filter.

where is the th Szegö polynomial

(2.19)

with the coefficients being defined by (2.15), leading to
the AR model

(2.20)

where is normalized white noise, i.e.,
.

C. Cepstral Maximization and LPC Filters

Returning briefly to the case of infinite data, any modeling
filter gives an infinite sequence of covariance lags from which
one can generate an infinite sequence of Schur parameters sat-
isfying

(2.21)

via Levinson’s algorithm. In this case, the square of the filter
gain is given by

(2.22)

(See, e.g., [8].) Every choice of Schur parameters satisfying
(2.21) corresponds to a not necessarily rational filter that shapes
white noise into a process with the given covariance lags. The
problem of determining which Schur sequences are rational of
degree at most is challenging and unsolved [9], [15], [19].
However, it is known that the choice

(2.23)

always leads to an LPC filter.
In fact, the LPC filter is the filter obtained by maximizing the

zeroth-order cepstral coefficient once the correlation coeffi-
cients have been fixed. To see this well-known
fact, note that the cepstral gain is the logarithm of the mod-
eling filter gain (2.22), i.e.,

(2.24)

Again, appealing to (2.22), this yields

(2.25)

Therefore, if the correlation coefficients are
given, the first two terms in (2.25) are fixed, and all possible
modeling filters having this window of covariance lags are
obtained by choosing in the last term appropri-
ately. Obviously, the entropy gain is maximized if these free
reflection coefficients are chosen to be all zero as in (2.23),
which is the LPC solution. On the other hand, by definition, the
cepstral gain is given by

(2.26)

which gives a derivation interpreting a LPC filter as amaximum
entropy filter.

III. H OMOMORPHICFILTERING AND GENERALIZATIONS OF

LINEAR PREDICTIVE FILTERING

In the previous section, we noted that the maximum entropy
design of LPC filters can be interpreted as a problem of max-
imizing a very special piece of the cepstral window, subject to
constraints on a given window of covariance data. Indeed, maxi-
mizing the zeroth cepstral coefficient yields the unique all-pole,
or AR, modeling filter that matches the given covariance data.
The point of this paper is a generalization of this observation.
That is, by blending the information in a covariance window
with a window of cepstral coefficients, rather than with just the
zeroth cepstral coefficient, it should be possible to develop a
parameterization of the ARMA, or pole-zero, model that gener-
ates these windows. Based on such a generalization of LPC filter
design, one could also ask whether, given the possible windows
of cepstral coefficients of covariance lags, we can parameterize
each of the corresponding modeling filters as the solution of
some parameterized family of optimization problems. Indeed,
it turns out that each modeling filter—witha priori constrained
covariance lags—is the maximum of an optimization problem
for some (positive, in a suitable sense) linear combination of
cepstral coefficients, generalizing maximum entropy filtering in
a homomorphic filtering context.

A. Cepstral and Covariance Windows as Local Coordinates
for Pole-Zero Models

On the real number line , there are many choices of coor-
dinates. A smooth function is said to be a local coordinate
near if every smooth function can be expressed, near
0, as for some smooth function . For ex-
ample, is a local coordinate near , and

is not. In general, in , smooth real-valued
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functions are local coordinates near if every
smooth real-valued function can be expressed, near, as

for some smooth function. In particular, we are interested in
whether the coefficients of pole and zero polynomials are func-
tions of cepstral coefficients and covariance lags.

The methods we now describe for pole-zero models for finite
data strings retain some of the most important features of LPC
design. We require that the resulting modeling filter be rational
of degree at most, have stable zeros and poles, and match the
finite window of covariance lags. As in [21], we will begin by
also incorporating the superposition property of homomorphic
filtering, viz., we will initially require the resulting modeling
filter to also match a finite window of cepstral coefficients.

Our first new result is that there is a one-to-one corre-
spondence between the coefficients

and the coefficients
of the denominator and numerator

polynomials

(3.1)

(3.2)

of the corresponding modeling filter (2.6), provided hasex-
actly degree .

Theorem 3.1:Each modeling filter (2.6) of degreedeter-
mines and is uniquely determined by its window
of covariance lags and its window of cepstral co-
efficients.

It is, of course, clear that is
determined by a modeling filter (2.6) of degree.

For example, for any (stable) polynomials (3.2) and (3.1), the
coefficients in the expansion

(3.3)

can be determined from (2.6) via (2.3) and (2.4), using the in-
verse Levinson algorithm [31] in the following way. We begin
by determining the coefficients in the expan-
sion

corresponding to a LPC filter. This is done by first applying the
inverse Levinson algorithm [31, pp. 47, 165] to for com-
puting the reflection coefficients and then the inverse Schur al-
gorithm [31, p. 166] for computing , after which,
the recursion

yields . Finally, the coefficients
are obtained from

(3.4)

where are the coefficients in the pseudo-poly-
nomial

(3.5)

where

(3.6)

Consequently, the covariance coefficients can be
computed using just recursive algorithms and ordinary arith-
metic operations.

For the sake of completeness, we also give the explicit for-
mulae for the cepstral coefficients in terms of
the poles and zeros of (2.6), generalizing the well-known for-
mulae for the case of LPC filters in the literature [25].

(3.7)

where

(3.8)

(3.9)

and where are the roots of , and
are the roots of . Moreover, by Newton’s

identities [14], we have the recursion formulae for the cepstral
coefficients, generalizing those known in the literature for the
case of LPC filters:

(3.10)

(3.11)

where for , we set and .
Conversely, it is much more nontrivial, and certainly new, that

the modeling filter can be recovered from the observed covari-
ance and cepstral windows. One of the key points of this obser-
vation, then, is that form local
coordinates for the space of pole-zero filters of degree, with
respect to which one can use calculus. In fact, the proof of the
converse uses a minimization argument in the coefficients of

and in a coordinate system adapted to take advantage of
tools, such as convexity, in optimization. More explicitly, the
pseudo-polynomial that we constructed from above lies
in the space of all pseudo-polynomials (3.5) of degreethat
take non-negative values on the unit circle.is a closed, convex
set with interior consisting of , which are those pseudo-poly-
nomials that take positive values on the unit circle. Sinceis
a Schur polynomial, i.e., a monic polynomial with all its roots
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Fig. 2. Level sets for (left)r and (right)c in the casen = 1.

in the open unit disc, actually lies in . Since the space of
Schur polynomials is not convex for [6], we will also
convert to a pseudo-polynomial

(3.12)

defined via

(3.13)

The polynomials and can, of course, be recovered from
and using spectral factorization.

In this context, given , , we pro-
pose to minimize the convex functional

(3.14)

with the pseudo polynomials (3.5) and (3.12), which are given
by (3.13) and (3.6) respectively, ranging over the closed convex
region in of variables
such that the pseudo-polynomials (3.5) and (3.12) are non-neg-
ative on the unit circle.

While is nonlinear, it always has a minimum since it is a
convex function defined on a closed convex set. Moreover, since
we assume that the data , is gen-
erated by a pair (2.6) of Schur polynomials, the corresponding
pseudo-polynomials lie in the open set . Therefore, to estab-
lish uniqueness of the pair (2.6), it is sufficient to show that
has a unique minimum in , which we can do by using the
first derivative test (since is convex). Such a minimum there-
fore must satisfy

(3.15)

(3.16)

In particular, it follows from (2.3) and (2.10) that any minimum
of must define a modeling filter that matches the covariance
and the cepstral window. Moreover, whenand are coprime

polynomials, i.e., when the filter is of degree precisely, the
modeling filter is uniquely determined by the spectral density

Now, , can be estimated from
data; see, for example, (2.12) for the covariance lags and [30]
for the cepstral coefficients. A modeling filter (2.6) obtained
in this way by minimizing (3.14) will be referred to as a
Cepstral-covariance matching (CCM) filter.

This result gives a method for regenerating a modeling filter
of degree from its covariance and cepstral windows of length

. In Figs. 2 and 3, we illustrate this result in the case
by showing the level sets for the cepstral coefficientand the
covariance lag , where we have set .

We note that the level sets coincide when and
, i.e., when and have a common factor (and therefore

coincide). This holds for all mutatis mutandis.
Remark 3.2: In Figs. 2 and 3, the maximum entropy filters

lie on the horizontal line . One can see that when re-
stricted to this (or any horizontal) line, eitheror is a coor-
dinate function and hence—for maximum entropy filters—one
can express or as a function of or , respectively. While
this result holds for arbitrary, when restricted to (the-dimen-
sional submanifold of) LPC filters, for arbitrary ARMA models,
our result asserts that rather than being dependent variables on
one another, the windows and of
are complementary sets of partial coordinates, which together
are uniquely defined by, and uniquely define, stable, minimum
phase filters of degree.

In general, it has been long appreciated that autoregressive,
moving-average (ARMA) alternatives to LPC filter design
would be desirable in signal processing. Early work in this
direction was developed in [21] in which the LPC method was
used to first find a candidate pole polynomial from which a zero
polynomial was found using Shanks’ method [26]. Inspired by
this work, Stieglitz [38] developed a method to simultaneously
estimate the poles and zeros of the modeling filter noting,
however, that the algorithm could lead to unstable pole polyno-
mials, which would cause divergence. In general, algorithms
producing pole-zero models or, equivalently, the parameters in
an ARMA model, are known to have convergence problems
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Fig. 3. Transversality of the level sets forn = 1 whenA 6= B.

Fig. 4. First-order CCM spectral envelope (dashed line) for [36, Ex. 9.6].

and several proposed schemes [18, ch. 10] do not guarantee
that the numerator or denominator in a resulting modeling
filter will be stable. This is in part because these optimization
schemes are nonlinear but nonconvex, as can be seen in detail
in, for example, [36, p. 333, (9.47), p. 334, (9.48)].

The example analyzed in [36, p. 340, Example 9.6], which
is a one-dimensional (1-D) ARMA process with a pole and
zero near the unit circle, illustrates the fact that global conver-
gence of the associated algorithms may fail depending on the
choice of certain design parameters (e.g., forgetting factors) that
need to be set in the standard algorithms—in sharp contrast to
the convex minimization scheme presented here. In Fig. 4, we
depict the periodogram of the system response to white noise
and the corresponding true spectrum as a solid curve, whereas
the dashed curve represents the spectral envelope of the corre-
sponding CCM filter. This compares quite favorably with the
simulations in [36] for various choices of forgetting factors.

If , it follows that the cepstral coefficient must sat-
isfy while the positive definiteness of the asso-
ciated Toeplitz matrix (2.14) constrains the covariance lags to
satisfy . Normalizing , Fig. 5 illustrates
the possible values of an attainable cepstral coefficient, covari-
ance coefficient pair as the shaded subregion within
the larger region dictated by the constraints onand sep-
arately. One also sees that the coordinates are singular
at , where and have a common factor.

Fig. 5. Feasible(c ; r ) pairs forn = 1.

Fig. 6. Showing feasibility for cepstral/covariance data for [36, Ex. 9.6].

Fig. 7. Second-order LPC spectral envelope (dashed line) for [36, Ex. 9.6].

Fig. 6 shows that the problem data for [36, p. 340, Ex. 9.6],
which is depicted by a dot, does lie in the feasible region of
cepstral/covariance pairs.

We also note that for this example, the first covariance coef-
ficient , with normalized to be 1, lies in the feasibility re-
gion for LPC filtering. Moreover, estimating for [36,
Ex. 9.6] renders the corresponding Toeplitz matrix (2.14) pos-
itive definite. The spectral envelope, for the second-order LPC
filter fitting this pair of data, is illustrated in Fig. 7 with a dashed
curve.

As another illustration, let us consider an example in [35].
Consider a data string (2.11) with obtained by
passing white noise through a fourth-order filter with poles at
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Fig. 8. Poles and zeros for CCM filtering (left) and [35] i) (right) versus true poles and zeros (bold).

TABLE I
CEPSTRAL AND COVARIANCE ERRORS

, and zeros at ,
. The performance of three methods are

compared in [35]. The first and second are ARMA algorithms
that see and , respectively,
and estimate the AR and MA parts separately [27], [34].
The third ARMA algorithm estimates the model components
simultaneously [1]. The corresponding estimates in [35] are
determined from the pole and zero averages computed there
from 100 Monte Carlo runs and are shown in Table I. The
three algorithms in [35] are denoted here as i), ii), and iii). For
comparative purposes, algorithms 32 i) and 32 iii) are closest
to what we will employ here since the covariance lag records
have the same length.

For the sake of illustration, in this paper, we describe two
sets of simulations with this example, returning to the second
in Section IV. For this simulation, we made one, ten, or 100
Monte Carlo runs and take the average of the filter coefficients

, thus obtained from the under-
lying model data. Based on these averages, the corresponding
values of , are computed via (3.4)
and (3.7), and the norms of the errors in the vectors of cep-
stral and covariance lags are computed. The results are shown in
Table I. For comparison, the corresponding errors in [35], which
are determined from the pole and zero averages computed there
from 100 Monte Carlo runs, are shown in Table I.

We note that the average covariance errors incurred in the
CCM algorithm and the algorithm [35] i) are of the same order
of magnitude for 100 Monte Carlo runs. There is, however, a
greater difference in the cepstral coefficients, presumably since
[35] i) did not use any measure of cepstral distance as a penalty
function. In Fig. 8, we depict the estimated poles and zeros (as
and , respectively) versus the true poles and zeros (in bold) for
both the CCM algorithm and the algorithm [35] i). The results
compare favorably, as one should expect from the closeness of
the cepstral and covariance approximations.

These examples are in harmony with our experience,viz.,
such simulations work reasonably well when the cepstral and
covariance data are generated by a modeling filter of degree.
However, the problem of optimizing a modeling filter from can-
didate cepstral and covariance data requires, of course, some
knowledge of the inverse problem of determining those win-

dows that can arise from a modeling filter of degree. We have
already seen that this problem is considerably complicated by
the fact that there is a nontrivial coupling between attainable
joint windows, even in the case .

As we show in the next subsection, there is a rather appealing
alternative optimization problem for which the parameters can
be chosen from ana priori given set and provides a direct gen-
eralization of the maximum entropy design for LPC filters.

B. Cepstral Maximization and a Generalization of LPC Design

In contrast to the cepstral window, for which we have only
necessary conditions, the constraints on the covariance lags for
higher are given by the positive definiteness of the Toeplitz
matrix (2.14).

This suggests a generalization of the maximum entropy ap-
proach in a homomorphic filtering context. More explicitly, we
consider maximizing a linear combination of the window of cep-
stral coefficients

(3.17)

subject to the interpolation condition

(3.18)

For the maximal entropy filter, one chooses and
. The positivity of reflects the fact that in

any maximization (or minimization) problem, there needs to be
some fixing of sign definiteness. In the more general case, we
ask that the associated pseudo-polynomial (3.5) be positive on
the unit circle, i.e., that lie in . This maximization problem
leads to a rather neat solution, directly generalizing linear pre-
dictive code filters.

Theorem 3.3:The problem to maximize (3.17) subject to
(3.18) has a finite solution only if the pseudo-polynomial (3.5)
belongs to . If , there is a unique solution, and this
solution has the form

(3.19)

where . The corresponding modeling filter is obtained
from the stable, minimum-phase spectral factor

of . In particular, and are the unique stable poly-
nomial factors (3.13) and (3.6) of and , respectively.
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Fig. 9. Level sets forr (left) andp (right) for n = 1.

Fig. 10. Complementarity of the level sets forr andp for n = 1.

Thus, in contrast to the nontrivial coupling between attain-
able cepstral and covariance pairs, the feasible covariance win-
dows and the set of positive pseudo-polynomials are indepen-
dent quantities. Indeed, one should expect that these sets of
quantities would form complementary sets of coordinates for
the space of modeling filters, and this is a fact we illustrate in
Figs. 9 and 10 for the case , where we have normalized
so that .

These figures are in sharp contrast to Figs. 2 and 3 in a fun-
damental way. In contrast to the level sets for cepstral coef-
ficient, covariance coefficient pairs, each covariance level set
meets each level set of the linear combination vectorin one
and only one point. In particular, the set of feasible pairs is
uncoupled, being determined separately by the positive defi-
niteness of the corresponding Toeplitz matrix and the corre-
sponding pseudo-polynomial. This overcomes the limitations
of cepstral-covariance minimization in a very effective manner.
For example, choosing a cepstral coefficient, covariance coef-
ficient pair outside the attainable region in Fig. 5 and
running the minimization algorithm always yields an ARMA
system with zeros on the unit circle because while the station-
arity condition (3.15)—ensuring covariance matching—will al-
ways be satisfied, the cepstral matching condition (3.16) may
fail. Theorem 3.3 asserts that this strong form of transversality
of the level sets holds for all.

We now briefly outline the proof of Theorem 3.3. In view of
(2.10) and (3.5), the cost function (3.17) can be written as

(3.20)

Therefore, the optimization problem of Theorem 3.3 is reduced
to finding the spectral density

that maximizes the generalized entropy gain (3.20) subject to
the covariance matching condition (3.18).

More precisely, consider the infinite-dimensional convex op-
timization problem to maximize (3.20) subject to the con-
straints (3.18) over all sequences such that

for all . In order to solve this (primal)
problem, we must find the saddle point of the Lagrangian

(3.21)

as, for example, in [28]. It is not hard to see that the Lagrangian
has a finite maximum only if both and belong to . Any
feasible maximum will occur in a stationary point

This stationarity condition can be seen to be equivalent to (3.19),
and hence , we must haveand in for to hold
for all .

Forming the function then leads to a finite-
dimensional dual problem, namely, the problem to minimize the
function

(3.22)
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in the variables , which are the coefficients
of , over all choices of variables such that

for all (3.23)

The functional (3.22) was introduced in [10], where it was
shown that it has a unique minimum in .

It is readily seen that the gradient of (3.22) is given by

(3.24)

where

for

(3.25)
are the covariance lags corresponding to a process with spectral
density

(3.26)

Since the gradient is zero at the minimizing point
, we have, at this point

which, as seen from (2.3), are precisely the first covariance
lags where is given by (3.19).

Example 3.4:We now illustrate the use of this generalized
maximization problem in the design of filters for signals arising
in speech analysis. In speech synthesis, conventional vocoders
identify phonemes into voiced and unvoiced speech. A single
phoneme evolves on the order of magnitude of 100 ms. The
speech pattern is usually divided into frames of a few tens of
milliseconds, where it is regarded to be stationary. On each such
20–30 ms frame of speech, the signal is sampled to yield the
speech data where is typically on the
order of 200 to 300. To illustrate Theorem 3.3, we will compare
the performance of three filters with respect to a frame of speech
acquired during the formation of the voiced nasal [ng]. We have
sampled the phonemes at a rate of 8000 samples/s and retained
250 sample points for each frame. Thus, each frame represents
a time history of speech over a period of roughly 30 ms. From
this data, the first covariance lags
have been estimated, For the sake of exposition, we begin
with and two choices of a sixth-degree positive
pseudo-polynomial. Using ergodic estimates (2.8), we obtain

,
. For the sake of compar-

ison, we then illustrate the case of a 12th-order LPC filter,
for which we also need the estimates

.
Fig. 11 shows a periodogram determined from the frame
of the voiced nasal [ng] together with the spectral en-
velope of a sixth-order optimal filter with and

designed from this frame. Fig. 12
shows the same periodogram together with the spectral enve-
lope of a sixth-order optimal filter with

Fig. 11. Sixth-order filter withp = 1 andp = p = � � � = p = 0.

Fig. 12. Sixth-order filter with(p ; p ; � � � ; p ) = (1; 0:0478;�0:4831;
�0:4440; �0:7453; 0:5203; 0:4486).

designed from the same frame of the voiced nasal [ng].
Following our derivation of the generalized maximum en-

tropy optimization criterion, it is clear that the spectral enve-
lope depicted in Fig. 11 is that of the LPC filter determined by
the covariance window of length 6. While this filter does cor-
respond to the default choice and
in our current design scheme, it is also fair to note that in gen-
eral, this filter only makes use of the data ,
whereas the filter of Fig. 12 makes use of the additional data
string . Therefore, it is better to compare the perfor-
mance of the second filter with an LPC filter of order 12 ob-
tained from the data string . Fig. 13 shows
a periodogram determined from the frame of the voiced nasal
[ng] together with the spectral envelope of a 12th-order optimal
filter with and designed from the
same frame of the voiced nasal [ng].

While the spectral envelope derived from a generalized max-
imum entropy design compares favorably with the spectral en-
velopes of an LPC filter with twice the order (but, of course,
an equal amount of data points), a key issue is how to choose
the coefficients . We note from Fig. 9 that for , to set

constant is to set constant. More generally, from spectral
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Fig. 13. Twelfth-order filter withp = 1 andp = p = � � � = p = 0.

factorization, it follows that to fix the positive pseudo-polyno-
mial constant is to set the numerator polynomialconstant.
Tuning the zeros of a modeling (or shaping) filter has long been
a desired goal in the ARMA modeling of signals and systems.
One approach to the identification of zeros (and poles) from
data has been cepstral analysis, particularly the use of cepstral
windowing and smoothing. In the next section, we will describe
methods for using cepstral analysis to estimate the zeros, as well
as to compute the pole polynomialfrom the estimates of the
zeros and the covariance window—leading to a realization al-
gorithm for representing this particular ARMA model in a lat-
tice-ladder architecture, as depicted in Fig. 14.

We conclude this section by illustrating that the realization
issues here need to take into account the fact that we are devel-
oping models from a finite, not an infinite, data string.

Remark 3.5:At first blush, given the numerator polynomial
, it might seem possible to develop an ARMA model for

a finite covariance window by first passing the observed signal
through a zero filter as a prefilter

input output (3.27)

with transfer function

and then to derive an LPC “all pole” filter from the filtered
observations in order to generate an ARMA model. To this end,
suppose for the moment that the output processis stationary
having partial covariance sequence , and let

, and the Szegö polynomials
be the corresponding output from the

Levinson algorithm (2.15). Moreover, for , let
be a polynomial of degreegenerated by the recursion

(3.28)

Then, using formulas in [3, pp. 117–118], the pole-zero model
obtained in this way can be realized by the lattice-ladder filter
depicted in Fig. 14, where the gains

(3.29)

are given by

This approach, however, turns out to be naive in that it does
not solve the problem stated above. In fact, if

is the Laurent expansion of the proper rational function
about infinity

and consequently, the partial covariance sequence
will depend on the infinite sequence

rather than on the partial covariance sequence (2.13). Therefore,
this construction of an ARMA model will not reproduce the
covariance data of the original process. Moreover, to obtain a
stationary output process in (3.27), we need to let the
system come to steady state, which will require many steps if
the roots of are close to the unit circle.

IV. REALIZATION ALGORITHMS FORLATTICE-LADDER

NOTCH (LLN) FILTERS

The desirability of being able to assign zeros to modeling (or
shaping) filters has been widely cited, for example, in speech
processing [5, p. 1726], [26, pp. 271–272], [33, p. 105, 76–78].
With its ability to guarantee stability of the numerator and de-
nominator of the ARMA model, the generalized maximum en-
tropy scheme we presented in the previous section also gives an
independent solution of the long standing problem of realizing
a covariance window with a guaranteed stable and minimum
phase modeling filter. This is the problem of covariance exten-
sion by a positive real rational function of bounded degree.

In [15] and [16], Georgiou proved that, given a covariance
window for which the Toeplitz matrix (2.14) is positive defi-
nite, for any choice of a Schur polynomialof degree , there
exists a Schur polynomial of degree for which the modeling
filter determines a spectral densitymatching the window
of covariance lags. He also conjectured uniqueness ofand,
hence, and , which would give a well-posed solution of
the covariance matching problem with guaranteed stability of
the numerator and denominator of the (unique) modeling filter.
Georgiou’s conjecture was finally established in [8] using geo-
metric methods and, later in [10], using a convex minimization
argument that turns out to be equivalent to the dual optimiza-
tion problem used in the above proof (after one identifies the
linear coefficients in the cepstral maximization problem with the
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Fig. 14. Lattice-ladder filter.

coefficients of the defining pseudo-polynomial). The primal
problem of maximization of the cepstral coefficients presented
here is, however, new and has the results of [8] as a corollary,
which we now state for the sake of completeness.

Corollary 4.1 (Moving-AverageAssignability Theorem):Let
be a given positive partial covariance sequence.

Then, given any stable polynomial (3.2), there exists a unique
stable polynomial (3.1) such that

(4.1)

is a minimum-phase spectral factor of a spectral density
satisfying

for

In particular, all th-order ARMA models for the given partial
covariance data are in one–one correspondence with self-con-
jugate sets of points (counted with multiplicity) lying in the
open unit disc, i.e., with all possible zero structures of modeling
filters. Moreover, the modeling filter depends analytically
on the covariance data and the choice of zero polynomial .

Taking this intuitive parameterization of all ARMA modeling
filters that match the given covariance data as the starting point,
the purpose of this section is to describe a computationally ef-
fective algorithm for realizing filters satisfying the same inter-
polation properties as the LPC filter but allowing for the coef-
ficients of the positive pseudo-polynomial—or, equivalently,
the zeros of the modeling filter—to be set arbitrarily or to be
determined from data using, for example, cepstral methods. In
this section, we will also develop an algorithm for computing
the pole polynomial, and we will also illustrate how to update
the parameters of a lattice-ladder filter realization of such mod-
eling filters, enhancing the lattice realization of LPC filtering.

In this language, we require the filter to meet the following
specifications.

i) For the covariance coefficients ex-
tracted from the finite data record, the (stable) transfer
function satisfies

(4.2)

where

for (4.3)

ii) The filter has prescribed zeros inside the
unit disc determined by a prescribed positive pseudopoly-
nomial .

Here, , and the transmission zeros are de-
termined as the (self-conjugate) roots of the numerator polyno-
mial

(4.4)

By Theorem 4.1, there is exactly one filter (4.1) that satisfies
these specifications.

In automatic control, filters having prescribed transmission
zeros are referred to asnotch filters. Notch filters have been used
as dynamic compensators to attenuate stable harmonic fluctu-
ations by achieving desired pole-zero cancellations. Although
the desirability of notches in the power spectrum of the filters
presented in this paper plays a quite different role for signal pro-
cessing and speech synthesis than the role played by notch fil-
ters in automatic control, the analogy suggests that we refer to
the filters satisfying specifications i) and ii) asLLN filters. This
acronym also reflects the lattice-ladder architecture that can be
used to implement these filters, as illustrated in Fig. 14.

We observe that the lattice-ladder filter representation is
an enhancement of the lattice filter representation depicted in
Fig. 1, where the difference is the incorporation of the spec
parameters denoted by, which allow for the incorporation of
the prescribed zeros into the filter design. In fact, the lattice
filter representation of an all-pole filter can be designed from
the lattice-ladder filter architecture by setting the parameter
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specifications , and
for .

In this section, we will describe an effective computational
algorithm for finding the parameters [see (3.29)] for an LLN
filter, given a fixed positive pseudo-polynomial and covariance
window. We begin by discussing various methods for choosing
the positive pseudo-polynomial from covariance and cepstral
data, presenting a form of cepstral smoothing as the preferred
method when the positive pseudo-polynomial is nota priori
available.

A. Selecting the Positive Pseudo-Polynomial

As mentioned above, LPC design has some attractive features
that account for its popularity. These include the properties that
the resulting modeling filter is rational of degree at most, has
stable zeros and poles, and matches the finite window of covari-
ance lags. The major disadvantage is that the zeros are in the
default setting . The LLN filter allows for placing the
zeros arbitrarily while retaining the features of LPC filtering
mentioned above. The basic idea is that even an approximate
choice of zeros is better than just placing them at the origin.
Therefore, except for certain applications where zeros are part
of the specifications, when this is a measured variable, for ex-
ample, through an enrollment session such as occurs in speaker
verification, we are left with the task of estimating the positive
pseudo-polynomial or, equivalently, the numerator polyno-
mial .

A straightforward way to determine would be to estimate
the phase and the moduli of the zeros from the notches in an
observed spectrum, as represented by a periodogram or as com-
puted using fast Fourier transforms (FFTs). This is depicted in
Fig. 15, where a periodogram is used. The depth of the notches
determines the closeness to the unit circle.

Alternatively, could be determined from any of the ARMA
(or MA) procedures described in [26, pp. 271–275] or [18,
ch. 10], including Prony’s method with constant term. These
methods are by themselves less than satisfactory in producing
synthetic speech because they do not match the finite window
of covariance lags and may not yield stable minimum-phase
models. However, the estimates of the zeros need not be
perfect since our procedure produces corresponding poles so
that the overall zero-pole model matches the finite window of
covariance lags and is stable minimum phase.

With all this in mind, we now proceed to describe the method
for zero estimation that we propose and that we have used in the
simulations in this paper. It has several features in common with
the procedures described in [38], but it always yields a stable
numerator polynomial . The spectrum is estimated using a
smoothed periodogram obtained by cepstral smoothing. Explic-
itly, the cepstral parameters are calculated from the data (2.7)
using an inverse discrete Fourier transform on the logarithm of
the periodogram, after which, the cepstral coefficients are win-
dowed and inversely transformed [30, pp. 494–495]. Using this
procedure, we obtain a smooth estimate

(4.5)

Fig. 15. Selecting the zeros from a periodogram.

Then, in view of (2.4), (2.6), (3.13), and (3.6), the basic spectral
estimation problem could be formulated in the following way.
Given the estimates (4.5), find pseudo-polynomialsand of
the form (3.5) and (3.12) such that

is minimized. This leads to a standard linear programming
problem in the variables ,
namely, to find that minimizes subject to the
constraints that

hold for . Here, the design parameter
must be chosen large enough to ensure thatand are positive
on the unit circle. Given the solution to this linear programming
problem, and can be obtained via spectral factorization
(3.13) and (3.6) of and .

Note that this procedure in general only provides a good es-
timate of the positive pseudo-polynomial, which is precisely
what we need. However, the estimate ofis good enough to
serve as an initial condition for the optimization algorithm,
which we will present next.

B. Algorithm

The minimization of (3.22) given the constraints (3.23) is a
convex optimization problem for which there are many stan-
dard algorithms and software that determine the minimizing

recursively. Most generic codes for convex op-
timization will compute the gradient (first derivative) and/or
Hessian (second derivative) for use in a recursive algorithm,
such as those defined, for example, by Newton’s method. How-
ever, for the specific problem of minimizing , both the gra-
dient and the Hessian can be computed directly, without com-
puting the values of the function (3.22), using the computation
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of the covariances of an associated process and using Fourier
transforms. (On the other hand, the values of can also be
computed in this way. These may be useful in deciding the step
size.) While the covariance data are well known to be com-
putable using just recursive algorithms employing only ordi-
nary arithmetic operations, the fact that the computation of the
Fourier coefficients can be computed using just recursive algo-
rithms and ordinary arithmetic operations is quite unexpected.
For this reason, a direct application of Newton’s method gives
an efficient and easily implementable algorithm.

More precisely, the gradient is given by (3.24), where the co-
variances can be determined, via ordinary arith-
metic operations, by first performing the factorization (3.13)
and then applying the procedure to determine covariance lags
described in Section III-A to . To implement Newton’s
method, we also need the Hessian of (3.22), i.e., the matrix func-
tion of second derivatives of (3.22), i.e.,

(4.6)

where

for

(4.7)
and . Consequently, are the
first Fourier coefficients of the spectral representation

(4.8)

Therefore, in the same way as above, the procedure described in
Section III-A to compute covariance lags can be used to com-
pute . Since the Hessian is the sum of a Toeplitz
matrix and a Hankel matrix, the search direction at the point

, i.e.,

(4.9)

(where and are the vectors with components
and , respectively) can then be

determined directly or via a fast algorithm [17].
In fact, Newton’s method amounts to recursively updating the

vector with components according to the rule

(4.10)

where is the search direction (4.9) at the point; see, e.g.,
[28, pp. 94–95]. Here, the step size is chosen so that
satisfies the constraints (3.23), which could be tested, for ex-
ample, in a preselected number of points on the interval
and/or through the positivity test performed in conjunction with
the factorization (3.13). An efficient alternative test is given in
[7]. For initial point , we may use the obtained by the linear

programming procedure in Section IV-A, or can be obtained
via

where is an arbitrary stable polynomial. For , we
could choose the polynomial obtained by the LPC (max-
imum entropy) procedure.

We can determine the gain parameters (3.29) from the LLN
filter polynomials and in the following way. For

, solve the recursions

(4.11)

for , and set . This is a well-
known procedure; see, e.g., [3], [4].

Given and , the recursive selection method for
determining the LLN gains is described in the flow chart
of Fig. 16. Starting with the initial pole polynomial, in
each step, we first determine the vectorwith components

via (3.26) in the manner described above,
taking . Next, we test whether the current
approximation of the partial covariance sequenceis within
the tolerance of . If it is not, we continue the recursive algo-
rithm by updating . If it is, we terminate the recursive steps
and determine the filter parameters (3.29) via the recursions
(4.11). The updating is performed by taking a Newton step
(4.10) as described above, computed from the present by
setting . The updated polynomial
is obtained by factoring the pseudo polynomial
corresponding to the updated point , thereby checking that
the positivity condition (3.23) is also fulfilled.

C. Examples

In this example, we continue the analysis of the frame of
speech acquired during the formation of the voiced nasal [ng].
Using the algorithm presented in this section, we developed an
LLN filter of order ten, corresponding to esti-
mated as

and matching the covariance lags given by

To the left in Fig. 17, we show a periodogram determined
from the frame of the voiced nasal [ng] together with the spectral
envelope of the corresponding tenth-order LLN filter. To the
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Fig. 16. Determining the LLN parameters.

right in Fig. 17, we compare the performance of this tenth-order
LLN filter with an LPC filter of order 20, which was obtained
from the data string , where the additional
data is given by

Unlike the sixth-order LLN filter presented in the previous
section (Fig. 12), the 20th-order LPC filter uses eight more
parameters but still cannot incorporate the notch occurring at
roughly . This series of simulations suggests that, at
least for certain signals, it is better to use extra parameters to fit
zeros than to fit additional poles, in harmony with the literature
on speech synthesis [5], [26], [33].

As a final illustration, we return to the example in [35] studied
in Section III in the context of designing LLN filters. More ex-
plicitly, we wish to illustrate the option, mentioned above, of
using gooda priori estimates of the modeling filter zeros as an
initial condition for the LLN algorithm. One source of sucha
priori estimates is, of course, zero estimates obtained from an
ARMA estimation scheme, where the estimated zeros can then
be used to produce an enhanced ARMA modelmatching the co-
variance window. Here, as an initial condition for the LLN algo-
rithm, we have used two sources for estimates of the zeros: the
zero estimates obtained from the CCM algorithm and the zero
estimates obtained in [35] i) as described above (see Fig. 18).

We then compare the resulting sequence of covariance
lags and the pole locations derived from this combination of
CCM/LLN with the locations obtained with CCM and from

the combination of [35] i)/LLN with the locations obtained in
[35] i).

It is interesting to note the tradeoff in cepstral matching for the
CCM filter—which was designed using a cepstral penalty—for
improved covariance matching for the CCM/LLN filter; while in
the case of the [35] i)/LLN filter, both cepstral matching and co-
variance matching were improved, as shown in Table II. These
results both confirm the fact that the use of gooda priori infor-
mation or estimation of the zero polynomial will be reflected in
the quality of the pole estimates for this method and that existing
ARMA schemes may in fact be used in conjunction with LLN
techniques to enhance the performance of both algorithms with
respect to covariance matching.

V. CONCLUSIONS

The methods for pole-zero modeling that we described in this
paper retain some of the most important features of LPC design,
namely, that the resulting modeling filter is rational of degree at
most , have stable zeros and poles, and match the finite window
of covariance lags. To start, we required the resulting modeling
filter to also match a finite window of cepstral coefficients. Gen-
eralizing the Newton sum formulae for LPC filters to the case
of pole-zero models, we show that each modeling filter of de-
gree determines, and is uniquely determined by, itsth-order
windows of cepstral and covariance coefficients. This character-
ization has an intuitively appealing interpretation of a character-
ization in terms of measures of the transient and the steady-state
behaviors of the signal, respectively. We show that this follows
from a convex minimization algorithm that yields a model with
the required matching properties, provided the filter has degree

.
Generalizing the maximum-entropy construction of LPC fil-

ters, we modified this scheme to a more well-posed optimiza-
tion problem, where the covariance data enters as a constraint,
and the linear weights of the cepstral coefficients are “posi-
tive”—in a sense that a certain pseudo-polynomial is positive.
This new problem is a homomorphic filter generalization of the
maximum entropy method, leading to the design of all stable,
minimum-phase modeling filter of degreethat interpolate the
given covariance window. This was illustrated in the context of
developing a spectral envelope for a frame of speech extracted
from an unvoiced sample in the case of both the new cepstral
maximization method for a system of order six and for the clas-
sical construction of an LPC (all-pole) model of order 12.

In the last section, it was first observed that by spectral factor-
ization, each choice of positive pseudo-polynomial determines,
and is determined by, a choice of stable zeros for the mod-
eling filter, giving an alternative derivation of the recent solu-
tion to the rational covariance extension problem in terms of the
assignability of the moving average part. This parameterization
of all modeling filters in terms of the modeling zeros and the
covariance window is another manifestation of our earlier de-
scription of modeling filters using measures of the transient and
the steady-state behaviors of the signal. Indeed, the choice of
zeros and covariance window determines, and is uniquely de-
termined, by a choice of zeros and poles of the modeling filter.
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Fig. 17. Periodogram with a tenth-order LLN (left) and 20th-order LPC spectral envelope (right).

Fig. 18. Poles and zeros for using CCM zeros (left) and zeros from [35] i) (right) versus true ones (bold).

TABLE II
COMPARING LLN USING ZEROS FROMCCM AND FROM [35] WITH THE CORRESPONDINGRESULT IN [35]

Since these filters can be realized in lattice-ladder form, and
since this provides a design method for deriving modeling filters
matching a covariance window but having arbitrary stable zeros
(or “notches” in the power spectrum of the ARMA model), these
filters are referred to in this paper as “lattice-ladder notch” fil-
ters, or LLN filters. An algorithm is presented for realizing LLN
filters in lattice-ladder form, given the covariance window and
the moving average part of the model. This is illustrated using
refinements of the spectral estimates developed in Section III
for a frame of unvoiced speech.

Finally, we illustrate the fact that while we also show how
to determine the moving average part using cepstral smoothing,
one can make use of anya priori (e.g., ARMA modeling) es-
timate for the system zeros to initialize an enhancement of the
modeling filter as well as to obtain better covariance matching.
Indeed, we concluded the paper with an example of this method,
incorporating an ARMA modeling technique from the literature
to obtain an initial estimate of the system zeros.
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