IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 4, APRIL 2001 677

Cepstral Coefficients, Covariance Lags, and
Pole-Zero Models for Finite Data Strings

Christopher I. Byrnesrellow, IEEE Per Engvist, and Anders Lindquigiellow, IEEE

Abstract—One of the most widely used methods of spectral esti- I. INTRODUCTION
mation in signal and speech processing is linear predictive coding s .
(LPC). LPC has some attractive features, which account for its PURELY nondeterministic (zero-mean) Gaussian sta-
popularity, including the properties that the resulting modeling tionary process is fully characterized by its infinite

filter i) matches a finite window of n + 1 covariance lags, ii) is sequence of covariance lags, which are in fact the Fourier
rational of degree at mostn, and iii) has stable zeros and poles. coefficients of its spectral density. In particular, if this density

The only limiting factor of this methodology is that the modeling . . e .
filter is “all-pole,” i.e., an autoregressive (AR) model. is rational, an infinite sample of such a process determines a

In this paper, we present a systematic description of all autore- Unique autoregressive moving-average (ARMA) model for the
gressive moving-average (ARMA) models of processes that haveprocess, leading to an explicit description of a spectral density
properties i)-iii) in the context of cepstral analysis and homomor- and to a modeling filter that can regenerate the entire process
phic filtering. Indeed, we show that each such ARMA model deter- i the sense that it shapes white noise into a process with the

mines and is completely determined by its finite windows of cep- ; .
stral coefficients and covariance lags. This characterization has an same covariance sequence. These equivalent models of the

intuitively appealing interpretation of a characterization by using process.play.f’;l fgndamental role in spectral estimation [_11],
measures of the transient and the steady-state behaviors of the System identification [2], [23], [35], [39], speech processing
signal, respectively. More _precisely, we show that theseth-order  [13], [24], [26], [32], [33], and several other applications in

windows form local coordinates for all ARMA models of degree signal processing and systems and control [8]—[10], [16], [19],
n and that the pole-zero model can be determined from the win- 1,5 1 vever, one never really has an infinite sample of a time

dows as the unigue minimum of a convex objective function. We re- . e . .
fine this optimization method by first noting that the maximum en-  S€ries but rather a finite window of data, leading to a far more

tropy design of an LPC filter is obtained by maximizing the zeroth complicated set of modeling issues. However, from this data,
cepstral coefficient, subject to the constraint i). More generally, one can estimate a window of approximate covariances, having

we modify this scheme to a more well-posed optimization problem 3 rather appealing and useful interpretation as moments that
where the covariance data enters as a constraint and the linear approximate the true covariances [22)].

weights of the cepstral coefficients are “positive”—in a sense that . . . . .
a certain pseudo-polynomial is positive—rather succinctly gener- | € basic inverse problem with which we begin, then, is that

alizing the maximum entropy method. This new problem is a ho- 0f finding a spectral density, positive on the unit circle, matching
momorphic filter generalization of the maximum entropy method,  a finite covariance sequence that is positive definite in an appro-
providing a procedure for the design of any stable, minimum-phase priate sense [19], [31]. An autoregressive (AR) solution to this
modeling filter of degree less or equal tor that interpolates the problem is provided by the linear predictive coding (LPC) filter

given covariance window. . . . .
We conclude the paper by presenting an algorithm for realizing [31]. The LPC filter can be realized by an all-pole lattice filter

these filters in a lattice-ladder form, given the covariance window architecture, whose gains can be easily computed using stan-
and the moving average part of the model. While we also show how dard algorithms. Nonetheless, the need for ARMA modeling,
to determine the moving average part using cepstral smoothing, incorporating both poles and zeros, has long been understood in

one can make use of any good priori estimate for the system zeros : . . .
to initialize the algorithm. Indeed, we conclude the paper with an spectral estimation and signal processing [18], [21], [37], [38].

example of this method, incorporating an example from the litera- FOF e)fampltla, in speech processing, Atal has pointed out that th?
ture on ARMA modeling. perceived differences between real speech and the best synthetic

Index Terms—Autoregressive moving average processes,speech obtainable using an I__PC filter are at Ieas_t pa_rtiz_;llly_due
cepstral analysis, covariance analysis, identification, maximum O the all-pole model restriction [26, p. 271], which limits its
entropy methods, optimization methods, spectral analysis, speech power spectral density from matching the “nulls,” or “notches,”
analysis. in the periodogram of the data. Indeed, it is widely appreciated

in the speech processing literature that regeneration of certain
features of human speech, for example, sounds involving frica-
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coefficients. As it turns out, the information contained in a Since these filters can be realized in lattice-ladder form, and
finite window of cepstral coefficients is complementary to theince this provides a design method for deriving modeling fil-
information contained in a finite window of covariances so thaérs matching a covariance window but having arbitrary stable
by combining cepstral analysis with covariance methods, oneros (or “notches” in the power spectrum of the ARMA model),
can actually obtain a solution to the problem of covariandbese filters are referred to as “lattice-ladder notch” (LLN) fil-
extension. Indeed, one of the main results obtained in th&rs. Thus, the class of LLN filters coincide with the class of
paper is that any pole-zero model of fixed degree determinéagar modeling filters, of degree at mostwhich shape white
and is uniquely determined by, a prescribed window of cepstradise into a process with the observed covariance data. This is
coefficients and a prescribed window of covariances. Thitustrated using refinements of the spectral estimates developed
result has a number of amplifications and new consequendaesection Il for a frame of unvoiced speech.
for pole-zero modeling of observed data. Finally, we wish to emphasize that the algorithm presented
We begin in Section Il by setting notation and reviewing thibere provides a new computational scheme for realizing these
derivation of linear predictive coding filters from a covariancélters, given the covariance window and the moving average
window or, what is equivalent, a window of PARCOR coeffipart of the model. While we also show how to determine the
cients. We then examine the LPC filter in terms of cepstral anahoving average part using cepstral smoothing, apyiori es-
ysis, obtaining an interesting interpretation of its maximum etimate of the zero polynomial can be used as an initial condition
tropy filter aspects in terms of maximization of cepstral gairin our algorithm. In particular, one can make use of any ARMA
which is a problem that we later generalize in a substantial wagodeling estimate for the system zeros to initialize an enhance-
In Section I, we present our first main resuliz, that the ment of the modeling filter as well as to obtain better covari-
finite cepstral and covariance windows can be interpreted as é#ce matching. Indeed, we conclude the paper with an example
ordinates for stable, minimum-phase pole-zero models of fix@fi this method, incorporating the ARMA modeling techniques
degree. In particular, we give formulae for the cepstral coeffof [35] to obtain an initial estimate of the system zeros.
cients in terms of differences of Newton sums of the poles and
of the zeros, generalizing the usual formulae in terms of Newton Il. PRELIMINARIES

sums of the poles for LPC filters. We then show how a mod- A ngamental problem in systems and signals is to determine

eli_ng f_ilter ofdegre_ez ari_ses as the unique minimum ofan c_)pti—a model for a stationary random proces&t)} from a finite
mization scheme involving cepstral and covariance functiongig, oy of data. A linear model for the data would consist either

together with a generalized entropy integral. After iIIustratingf a state-space model having the process as an output or of a

this minimization scheme in a simple example from the litelze s rintion of the:-transform of the system, which, of course,
ature, we modify this scheme to a more well-posed Opt'm'ZE‘én be determined by the filter zeros, poles, and the high fre-

tion problem, where the covariance data enters as a Consna('{&%ncy gain. Among the popular approaches to this problem are

and the linear weights of the cepstral coefficients are “posiy, approach based on matching the covariance lags—notably

tive"—in a sense that a c.ertain pseudo.-polynomial is positivmqear predictive coding, which is an approach based on cep-
rather succinctly generalizing the maximum entropy methogy 5| methods and homomorphic filtering, and approaches based
This new problem is a homomorphic filter generalization of thg,, yariants of system identification methods for autoregressive

maximum entropy method, leading to the design of all stabl@R) or autoregressive moving-average (ARMA) models.
minimum-phase modeling filters of degre¢hat interpolate the

given covariance window. We conclude Section lll with anillusa. Analysis Based on Infinite Data
tration taken from speech synthesis.

. . ' Of course, if one had an infinite data record, the problem

ARMA processes can be realized as lattice-ladder filters . o
. ) . . would be much easier. For example, it is well known that the
enhancing the lattice description of the AR model given by the

LPC filter. In Section IV, we also show how the generalizeapeCtral densityb(z) of a (purely nondeterministic) stationary

maximum entropy method leads to a convex optimizatiorr"?mdom procesgy(t)} is given by the Fourier expansion

scheme that uniquely determines the parameters in the lat- . 0 o
tice-ladder filter, given the window of covariance lags and ()= Y e (2.1)
the choice of positive pseudo-polynomial in the generalized k=—o0

maximum entropy problem. It is also noted that by spectr8|1 the unit circle, where the covariance lags
factorization, the choice of positive pseudo-polynomial corre-

sponds to a choice of stable zeros of the numerator polynomial = E{y(t + k)y(t)} k=012, - (2.2)
for the modeling filter. Thus, this homomorphic filtering

generalization of maximum entropy methods gives a nesatisfy

derivation, based on cepstral analysis, of the recent resolution 1 =

of the rational covariance extension problem. Briefly, in the - / I B(e??) df. (2.3)

early 1980s, Georgiou [16] proved the remarkable result that 20—

for a given covariance window, ARMA filters exist f@any consequently, the unique rational, stable, minimum-phase func-
choice of stable zeros (inside the unit disc). Georgiou alggn W (z) satisfying

conjectured the uniqueness of such modeling filters, which was

an issue finally resolved in the positive in [8]. W)W (z™h) = &(z2) (2.9)
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is the transfer function of mnodeling filter is available, and both of the approaches outlined above need
considerable refinement. I¥ is sufficiently large, the estimate

input — — output (2.5) L Az_:k Yerr e (2.12)
t=0

N+1

which shapes white noise into a random process with the covdgr example, is a good approximation of, but now, only a
ance lags given by (2.3). Here, the rational transfer function finite covariance sequence

B(2) Fo, 71, T2, ey T (2.13)

e (2.6)
g wheren < N, can be produced. However, at least using the

is minimum-phasé.e., the denominator polynomial(z) and Ccovariance estimates (2.12), the Toeplitz matrix
the numerator polynomiaB(z) both have their roots strictly

W(z) =

S o o O TL o Tw
inside the unit circle; such a polynomial will be callstble
In particular, given an (infinite) string of observed data oottt Tl
P .9 ( ) string T, = o _ (2.14)
Yo, Y1, Y2, Y3, - (27) . .
Tno Tl 0 T0

satisfying an appropriate ergodicity property, the covariance ?g'positive definite, as required

quencero, 1, 2, 73, -+ - can be determined as Indeed, in spectral estimation [11], identification [2], [23],

T [39], speech processing [13], [24], [26], [32], [33], and several
Z Yotnle (2.8) other applications in signal processing and systems and control
o [8]-[10], [16], [19], [20], one is typically faced with the inverse

problem of finding a spectral density, positive on the unit circle
which defines a unique spectral density and, hence, a uniqugl of degree at most, given only a sequence (2.13) for which
modeling filter. the Toeplitz matrix (2.14) is positive definite. Finding any such
Cepstral analysis also provides a means of determining #sectral density is the same as finding a modeling filter, of de-
poles, zeros, and high frequency gain of the modeling filter. Tlhygee at most, which shapes white noise into a process with the

I 1
T = lm
k T—oo 1T+ 1

starting point is the Fourier analysis of the (rezdpstrum observed window of covariance data. An autoregressive solu-
- tion to this problem is provided by the linear predictive coding
() — ik ' (LRC) fllter [31], vyhlch, asis well-known, can pe regllzed by a
log ®(e”") k_z_: ke (2.9) |lattice filter, containing unit delays™*, summing junctions, and
- gains, as illustrated in Fig. 1. The gaing, Vi, v2, -+, Yn—1
The Fourier coefficients and
n—1
1 h
= | " log®(ci?) do (2.10) pni=70 [J Q=D
2 J . k=0
are known as theepstral coefficientd\Ve note that_;, = ¢, for are recursively defined from the covariance lags 1, 72,
all k. Computing the logarithmic derivative @, it can be seen - -, =, via theLevinson algorithm
that the series with Fourier coefficierts; has its poles at the .
poles and zeros of the modeling filter [29]. A second property of _ 1 . 215
the cepstrum is key to homomorphic filteringg ., if the process i Pt kz_o Pkl (219)
{y(t)} is the response to a signflk(¢)} driving the modeling _
filter W(z), then the cepstrum ofy(¢)} is the superposition Pro1j =P~ B3 oo =1 (2.16)
of the cepstrum of the impulse response of the modeling filter pre1 =p(l=7);  po=ro (2.17)

and the cepstrum of the input. In particular, if the impulse re-
sponse of the filter is slowly varying compared with the inputvherey,; = 1 andy, 41 = 0; see, e.g., [26] and [31]. The

a finite window of cepstral coefficients will capture most of thgainsyo, v1, v2, - - -, 7n—1 are calledeflection coefficientsr

information about the filter. Of course, there is a one-to-one cdschur parameterand have the property thag,| < 1 for k =

respondence between titdinite sequencesy, r1, 2, ---and 0,1, ---, n.

Co, €1, C2,y - - - The reflection coefficients can be determined either directly
from the data (2.13) by some version of the Burg’s algorithm

B. LPC Filters [31, p. 175] or from the covariance estimates (2.12) via (2.15).

In practice, however, only a finite string of observed data The filter has the transfer function

_ VP

W(Z) B <Pn(z)

Yo, Y1, Y2, " YN (2.112) (2.18)
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Fig. 1. Lattice filter representation of an LPC filter.

wherey,,(z) is thenth Szeg6 polynomial Therefore, if the correlation coefficients,, r1, ---, r, are
given, the first two terms in (2.25) are fixed, and all possible
on(2) = 2"+ 012"+ + O (2.19) modeling filters having this window of covariance lags are
obtained by choosing,., v.+1, - - - in the last term appropri-

with the coefficients{¢,,; } being defined by (2.15), leading to gtely. Obviously, the entropy gain is maximized if these free
the AR model reflection coefficients are chosen to be all zero as in (2.23),

which is the LPC solution. On the other hand, by definition, the
Y(t) + on1y(t — 1) + - + @nay(t — n) = /pau(t) (2.20) cepstral gairc, is given by

where {u(t)} is normalized white noise, i.eE{e(t)e(s)} = 1 (7 .

tu(®)} telt)els)} o= — log ®(c?) do (2.26)
6t5' 2 —r
C. Cepstral Maximization and LPC Filters which gives a derivation interpreting a LPC filter asyaximum

Returning briefly to the case of infinite data, any modelin§ntropy filter
filter gives an infinite sequence of covariance lags from which
one can generate an infinite sequence of Schur parameters sdtl. H OMOMORPHICFILTERING AND GENERALIZATIONS OF
isfying LINEAR PREDICTIVE FILTERING

In the previous section, we noted that the maximum entropy
(2.21) design of LPC filters can be interpreted as a problem of max-
via Levinson’s algorithm. In this case, the square of the filtérrniZing avery sp(_ecial p_iece of the cepstral window, subject tq
gain is given by cqn_stralnts on a given window o_f covariance data. !ndeed, maxi-
mizing the zeroth cepstral coefficient yields the unique all-pole,
o0 or AR, modeling filter that matches the given covariance data.
W(x) = poo i= 10 H (1—~3). (2.22) The point of this paper is a generalization of this observation.
k=0 That is, by blending the information in a covariance window
with a window of cepstral coefficients, rather than with just the

(See, e.g., [8].) Every choice of Schur parameters satisfyin

(2.21) corresponds to a not necessarily rational filter that shap%egsrOth cepsiral coefficient, it should be possible to develop a

) . : . . arameterization of the ARMA, or pole-zero, model that gener-
white noise into a process with the given covariance lags. T . o )

o . ; ates these windows. Based on such a generalization of LPC filter
problem of determining which Schur sequences are rational Of .

degree at most is challenging and unsolved [9], [15]. [19].(?e3|gn, one cou!d_also ask Whe_ther, given the possible WIndOWS
. . of cepstral coefficients of covariance lags, we can parameterize

However, it is known that the choice : S )
each of the corresponding modeling filters as the solution of

|7k|<1a k:0a1a2a"'

= A1 = =0 (2.23) some parameterized family of optimization problems. Indeed,
e it turns out that each modeling filter—witnpriori constrained
always leads to an LPC filter. covariance lags—is the maximum of an optimization problem

In fact, the LPC filter is the filter obtained by maximizing thefor some (positive, in a suitable sense) linear combination of
zeroth-order cepstral coefficiens once the correlation coeffi- C€pstral coefficients, generalizing maximum entropy filtering in
cientsro, 71, - - - , 7, have been fixed. To see this well-knowr homomorphic filtering context.

fact, note that the cepstral gaip is the logarithm of the mod- . . ]
eling filter gain (2.22), i.e., A. Cepstral and Covariance Windows as Local Coordinates

for Pole-Zero Models

co = —2logag = 1og peo- (2.24)  On the real number lin&, there are many choices of coor-
dinates. A smooth functiop is said to be a local coordinate
nearz = 0 if every smooth functiory can be expressed, near
el o 0, asf(x) = h(g(x)) for some smooth function. For ex-
co =logro+log [T(1=73) +log [T 1 —13). (2.25) ample, g(z) = sinx is a local lcoorrdmate near = 0, and
kl;[() § ,EL § g(z) = z? is not. In general, ifR™, N smooth real-valued

Again, appealing to (2.22), this yields
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functionsg:, go, - - -, gy are local coordinates neag if every vyields g,+1, gny2, -
smooth real-valued functiofi can be expressed, neay, as

, g2 Finally, the coefficientsrq, 1,
-+, 1, are obtained from

7j = pog; + Z pi (91—t + 9i+5) (3.4)

i=1

f(#) = M), ga(x), - -+, gn ()

for some smooth functioh. In particular, we are interested inwherepg, p1, - -
whether the coefficients of pole and zero polynomials are fungemial
tions of cepstral coefficients and covariance lags. . .
The methods we now describe for pole-zero models for finite’(z) =po+ 5p1(z +277) + -+
data strings retain some of the most important features of LP%
. . . R . where
design. We require that the resulting modeling filter be rational

-, pn, are the coefficients in the pseudo-poly-

+pa(z" +27T) (35)

of degree at most, have stable zeros and poles, and match the P(z) = B(z)B(z™Y). (3.6)
finite window of covariance lags. As in [21], we will begin by
also incorporating the superposition property of homomorphigonsequently, the covariance coefficieryss, - - -, r, can be

filtering, viz., we will initially require the resulting modeling computed using just recursive algorithms and ordinary arith-

filter to also match a finite window of cepstral coefficients.

metic operations.

Our first new result is that there is a one-to-one corre- For the sake of completeness, we also give the explicit for-

spondence between th&n + 1 coefficients rq, r{, ---

?

Ty, C1, C2, ~-, ¢, and the 2n + 1 coefficients ag, a1,
0y Gp, by, bo,y
polynomials
A(z) =ap?" + a2 L+ +a, (a0 >0) (3.1)
B(z)=2"4+b2""1 4+ +b, (3.2)

of the corresponding modeling filter (2.6), provid&d hasex-
actly degreen.

Theorem 3.1:Each modeling filter (2.6) of degree deter-
mines and is uniquely determined by its windeyy r1, - -
of covariance lags and its windaw, ¢, - - -
efficients.

It is, of course, clear thaty, 71, -- -, 7, 1, Co, -~
determined by a modeling filter (2.6) of degree

T

, ¢, Of cepstral co-

-, Cp IS

mulae for the cepstral coefficients, ¢, -- -, ¢, in terms of
the poles and zeros of (2.6), generalizing the well-known for-

-, b, of the denominator and numeratormulae for the case of LPC filters in the literature [25].

co =—2logag
. % (sn(A) —su(B)}  k=1,2,3 - (3.7
where
sk(A) =pf +p5+- -+ 1), (3.8)
si(B) =2 + 72 + -+ 2 (3.9)

and where py, p2, ---, p, are the roots of A(z), and

-, z, are the roots oB(z). Moreover, by Newton’s
identities [14], we have the recursion formulae for the cepstral
coefficients, generalizing those known in the literature for the
case of LPC filters:

R1y B2, -

For example, for any (stable) polynomials (3.2) and (3.1), the

coefficientsrg, r1, -- -, 7, in the expansion

| B[

T =+ 2
A ~ 0 F

“n+zY

k=1

7y, cos(k€) (3.3)

can be determined from (2.6) via (2.3) and (2.4), using the in
verse Levinson algorithm [31] in the following way. We beginalhere fork > n, we seta

by determining the coefficients,, ¢1, - - -
sion

, g2n, in the expan-

1

[A(G®) =go+2 Z g, cos(k0)

k=1

k—1
ag Ax—j
sp(A) = —k—% — s;(A 3.10
W(A) =~k 2 2:30 i(4) (310
k—1
su(B) =—kb, — > bi_js;(B) (3.11)
j=1

= 0andb, = 0.

Conversely, itis much more nontrivial, and certainly new, that
the modeling filter can be recovered from the observed covari-
ance and cepstral windows. One of the key points of this obser-
vation, then, is thatg, r1, -- -, s, ¢1, €2, - - -, ¢, form local
coordinates for the space of pole-zero filters of degrewith
respect to which one can use calculus. In fact, the proof of the
converse uses a minimization argument in the coefficients of

corresponding to a LPC filter. This is done by first applying the 514 B in a coordinate system adapted to take advantage of

inverse Levinson algorithm [31, pp. 47, 165] 4qz) for com-

puting the reflection coefficients and then the inverse Schur

gorithm [31, p. 166] for computingy, g1, - - -
the recursion

, gn, after which,

k—1

gn+k = — Z

=0

a;
— On—it+1
[270) +

tools, such as convexity, in optimization. More explicitly, the
Seudo-polynomialP that we constructed fron® above lies

in the spacéD of all pseudo-polynomials (3.5) of degreehat

take non-negative values on the unit cirdEs a closed, convex

set with interior consisting dP_, which are those pseudo-poly-

nomials that take positive values on the unit circle. SibcEs

a Schur polynomial, i.e., a monic polynomial with all its roots
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Fig. 2.

Level sets for (lefty, and (right)c, in the caser = 1.

in the open unit discP” actually lies inD,.. Since the space of polynomials, i.e., when the filter is of degree preciselythe
Schur polynomials is not convex fer > 3 [6], we will also modeling filter is uniquely determined by the spectral density
convertA to a pseudo-polynomial

P(z)

1 -1 1 n -n (P(Z) = )

Q) =wp+zul+z2 )+ +56(E"+2") (312) Q(z)
defined via Now, 7q, 71, -+, Tn, C1, C2, -+, ¢y CaN be estimated from

data; see, for example, (2.12) for the covariance lags and [30]
for the cepstral coefficients. A modeling filter (2.6) obtained
in this way by minimizing (3.14) will be referred to as a
Cepstral-covariance matching (CCM) filter

This result gives a method for regenerating a modeling filter

Qz) = A()AG ).

The polynomials4 and B can, of course, be recovered frat
and @ using spectral factorization.

(3.13)

Inthis context, givemo, 71, -+, 7, c1, 2, -+, ¢a, WE Pro-  of degreen from its covariance and cepstral windows of length
pose to minimize the convex functional n. In Figs. 2 and 3, we illustrate this result in the case= 1
by showing the level sets for the cepstral coefficienand the
J(p, @) =700 + 1@+ Tadn covariance lag, where we have set, = 1.
—C1P1 — C2P2 — * — CnPn We note that the level sets coincide whgn= 0 andr; =
1 7 o P(ci?) 0, i.e., whenA and B have a common factor (and therefore
to- i P(e’”)log Q) df (3.14) coincide). This holds for ath mutatis mutandis

Remark 3.2:1n Figs. 2 and 3, the maximum entropy filters
with the pseudo polynomials (3.5) and (3.12), which are givéie@ on the horizontal linéy; = 0. One can see that when re-
by (3.13) and (3.6) respectively, ranging over the closed convsixicted to this (or any horizontal) line, eithe@ror r; is a coor-
region in R?"*1 of variablespy, p2, -+, Pn, 90, ¢1, -+, ¢ dinate function and hence—for maximum entropy filters—one
such that the pseudo-polynomials (3.5) and (3.12) are non-negn express; orr; as a function of; or c;, respectively. While
ative on the unit circle. this result holds for arbitrary, when restricted to (the-dimen-

While .J is nonlinear, it always has a minimum since it is &ional submanifold of) LPC filters, for arbitrary ARMA models,
convex function defined on a closed convex set. Moreover, sinoer result asserts that rather than being dependent variables on
we assume that the datg, r1, -- -, 74, c1, C2, -+ -, ¢ IS @€N-  0ONne another, the windows, 71, - --, 7, and ofcy, ¢, -+ -, ¢,
erated by a pair (2.6) of Schur polynomials, the correspondiage complementary sets of partial coordinates, which together
pseudo-polynomials lie in the open g&t. Therefore, to estab- are uniquely defined by, and uniquely define, stable, minimum
lish uniqueness of the pair (2.6), it is sufficient to show thiat phase filters of degree.
has a uniqgue minimum i®,, which we can do by using the In general, it has been long appreciated that autoregressive,
first derivative test (sincd is convex). Such a minimum there-moving-average (ARMA) alternatives to LPC filter design
fore must satisfy would be desirable in signal processing. Early work in this
direction was developed in [21] in which the LPC method was

9J = 1 . eike P(e’?) do—r. =0 (3.15) used tofirstfind a candidate pole polynomial from which a zero
Og 27 J_, Q(e?) polynomial was found using Shanks’ method [26]. Inspired by
9.7 1 (™ e P(c?) thisf work, Stieglitz [38] developed a method to_ simgltaneoqsly
o =% 2n ¢’ log Q) df=0. (3.16) estimate the poles and zeros of the modeling filter noting,

however, that the algorithm could lead to unstable pole polyno-
In particular, it follows from (2.3) and (2.10) that any minimunmials, which would cause divergence. In general, algorithms
of J must define a modeling filter that matches the covariangeoducing pole-zero models or, equivalently, the parameters in
and the cepstral window. Moreover, whdrand B are coprime an ARMA model, are known to have convergence problems
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Fig. 4. First-order CCM spectral envelope (dashed line) for [36, Ex. 9.6].

and several proposed schemes [18, ch. 10] do not guarantee
that the numerator or denominator in a resulting modeling
filter will be stable. This is in part because these optimization
schemes are nonlinear but nonconvex, as can be seen in detail
in, for example, [36, p. 333, (9.47), p. 334, (9.48)].

The example analyzed in [36, p. 340, Example 9.6], which 2o}
is a one-dimensional (1-D) ARMA process with a pole and
zero near the unit circle, illustrates the fact that global conver- sor
gence of the associated algorithms may fail depending on the O
choice of certain design parameters (e.g., forgetting factors) that o o1 0z o3 a4 o5 o5 o7 o8 o5 1
need to be set in the standard algorithms—in sharp contrast to
the convex minimization scheme presented here. In F|g 4, wegd. 7. Second-order LPC spectral envelope (dashed line) for [36, Ex. 9.6].
depict the periodogram of the system response to white noise
and the corresponding true spectrum as a solid curve, whereakig. 6 shows that the problem data for [36, p. 340, Ex. 9.6],
the dashed curve represents the spectral envelope of the comtgich is depicted by a dot, does lie in the feasible region of
sponding CCM filter. This compares quite favorably with theepstral/covariance pairs.
simulations in [36] for various choices of forgetting factors. We also note that for this example, the first covariance coef-

If n = 1, it follows that the cepstral coefficient must satficient 1, with o normalized to be 1, lies in the feasibility re-
isfy —2 < ¢; < 2 while the positive definiteness of the assogion 1 > »? for LPC filtering. Moreover, estimating, for [36,
ciated Toeplitz matrix (2.14) constrains the covariance lags Ex. 9.6] renders the corresponding Toeplitz matrix (2.14) pos-
satisfyr3 — #2 > 0. Normalizingro = 1, Fig. 5 illustrates itive definite. The spectral envelope, for the second-order LPC
the possible values of an attainable cepstral coefficient, covdiiter fitting this pair of data, is illustrated in Fig. 7 with a dashed
ance coefficient paifc;, r1) as the shaded subregion withincurve.
the larger region dictated by the constraintseprand»; sep- As another illustration, let us consider an example in [35].
arately. One also sees that the coordinatesr ) are singular Consider a data string (2.11) with = 512 obtained by
at(cy1, r1) = (0, 0), whereA and B have a common factor.  passing white noise through a fourth-order filter with poles at

o 3
T T

L
3
T

Power Specirum Magnitude (dB)
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Fig. 8. Poles and zeros for CCM filtering (left) and [35] i) (right) versus true poles and zeros (bold).

TABLE | dows that can arise from a modeling filter of degre&Ve have
CEPSTRAL AND COVARIANCE ERRORS already seen that this problem is considerably complicated by
1 time | 10 times | 100 times || [35](1) | [35)(ii) | [35](ii) the fact that there is a nontrivial coupling between attainable
cepstral error 1404 .0300 .0098 .0661 .1005 1549 JOlnt windows. even in the case = 1.
covariance error | .0789 .0334 .0128 .0765 0677 .3348 ’

As we show in the next subsection, there is a rather appealing
alternative optimization problem for which the parameters can
0.95¢170-47 () 95011077/180 and zeros af.85¢+770-47/180  pe chosen from aa priori given set and provides a direct gen-
0.85¢+7109.67/180 - The performance of three methods areralization of the maximum entropy design for LPC filters.
compared in [35]. The first and second are ARMA algorithms o o )
that see(ro, r1, -+, rs) and (ro, 71, -+, 79), respectively, B. Cepstral Maximization and a Generalization of LPC Design
and estimate the AR and MA parts separately [27], [34]. In contrast to the cepstral window, for which we have only
The third ARMA algorithm estimates the model componentsecessary conditions, the constraints on the covariance lags for
simultaneously [1]. The corresponding estimates in [35] ahgghern are given by the positive definiteness of the Toeplitz
determined from the pole and zero averages computed thetatrix (2.14).
from 100 Monte Carlo runs and are shown in Table I. The This suggests a generalization of the maximum entropy ap-
three algorithms in [35] are denoted here as i), i), and iii). F@roach in a homomorphic filtering context. More explicitly, we
comparative purposes, algorithms 32 i) and 32 iii) are closesinsider maximizing alinear combination of the window of cep-
to what we will employ here since the covariance lag recordsral coefficients
have the same length.

For the sake of illustration, in this paper, we describe two Poco +pic1 + -+ pucy (3.17)
sets of simulations with this example, returning to the second
in Section IV. For this simulation, we made one, ten, or 100"
Monte Carlo runs and take the average of the filter coefficients 1

bject to the interpolation condition

/ (eI df = 1y, k=0,1,---,n. (3.18)

ag, ai, *-, an, b1, b, ---, b, thus obtained from the under- 9,

lying model data. Based on these averages, the corresponding ] ]

values ofrg, 71, -+, T, €1, Ca, - -, Cy, are computed via (3.4) For the maximal entropy.f!lt.er, one choosgas > 0 andp; =
and (3.7), and thé, norms of the errors in the vectors of cep: "~ = Pn = 0. The positivity ofp, reflects the fact that in

stral and covariance lags are computed. The results are showRif maximization (or minimization) problem, there needs to be
Table I. For comparison, the corresponding errors in [35], whi@®me fixing of sign definiteness. In the more general case, we
are determined from the pole and zero averages computed st that the associated pseudo-polynomial (3.5) be positive on
from 100 Monte Carlo runs, are shown in Table I. the unitcircle, i.e., thaP lie in D4. This maximization problem
We note that the average covariance errors incurred in ﬂﬁ@QS to a rather neat solution, directly generalizing linear pre-
CCM algorithm and the algorithm [35] i) are of the same ordé}ictive code filters. o _
of magnitude for 100 Monte Carlo runs. There is, however, a Theorem 3.3:The problem to maximize (3.17) subject to
greater difference in the cepstral coefficients, presumably sirlce18) has a finite solution only if the pseudo-polynomial (3.5)
[35] i) did not use any measure of cepstral distance as a pen&gjongs taD. If P ¢ D, there is a unique solutio, and this
function. In Fig. 8, we depict the estimated poles and zeros (ag0!Ution has the form
andx, respectively) versus the true poles and zeros (in bold) for P(2)

both the CCM algorithm and the algorithm [35] i). The results O(2) = Q=) (3.19)
compare favorably, as one should expect from the closeness of ) o )
These examples are in harmony with our experienge, from the stable, minimum-phase spectral factor
such simulations work reasonably well when the cepstral and
- - B(z)
covariance data are generated by a modeling filter of degree W(z) = A(z)
However, the problem of optimizing a modeling filter from can- i
didate cepstral and covariance data requires, of course, safi®(z). In particular,A(z) andB(z) are the unique stable poly-

knowledge of the inverse problem of determining those wimomial factors (3.13) and (3.6) 6J(z) and P(z), respectively.
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Fig. 9. Level sets for, (left) andp, (right) forn = 1.

We now briefly outline the proof of Theorem 3.3. In view of

| | | ’ / (2.10) and (3.5), the cost function (3.17) can be written as
7 :
/ / / / /// % P(%) log ®(c7*) df. (3.20)

-7

o
@
T

>

- L Therefore, the optimization problem of Theorem 3.3 is reduced

9%/ /// // / / to finding the spectral density
4.4-/// / / / (e = fo +2 i frcoské

N /e
M// f ——— that maximizes the generalized entropy gain (3.20) subject to

WTms w6 we W2 o oz o4 e o8 the covariance matching condition (3.18).

More precisely, consider the infinite-dimensional convex op-
timization problem to maximize (3.20) subject to the- 1 con-
straints (3.18) over all sequencgs= (fo, f1, f2, - --) suchthat
®(¢??) > 0 forall § € [0, 2x]. In order to solve this (primal)

Thus, in contrast to the nontrivial coupling between attaiproblem, we must find the saddle point of the Lagrangian
able cepstral and covariance pairs, the feasible covariance win-
dows and the set of positive pseudo-polynomials are indepen- f, @) = — /7T log
dent quantities. Indeed, one should expect that these sets of =’ 2r J_,
quantities would form complementary sets of coordinates for .

Fig. 10. Complementarity of the level sets farandp, forn = 1.

fo+2> frcoskf| P(e’®)db

k=1

the space of modeling filters, and this is a fact we illustrate in + (e — fi)

Figs. 9 and 10 for the case= 1, where we have normalized

so thatpy = 1.
These figures are in sharp contrast to Figs. 2 and 3 in a ffi® fOr €xample, in [28]. Itis not hard to see that the Lagrangian

damental way. In contrast to the level sets for cepstral codf@S @ finite maximum only if bot# and ) belong toD. Any

ficient, covariance coefficient pairs, each covariance level d&@siPle maximum will occur in a stationary point

meets each level set of the linear combination veptior one oL

and only one point. In particular, the set of feasible pairs is 8—fk =0, k=012

uncoupled, being determined separately by the positive defi-, . . i .

niteness of the corresponding Toeplitz matrix and the correhis stationarity condition can bg seentobe gtngalentto (3.19),

sponding pseudo-polynomial. This overcomes the limitatiof€'d hence , we must haygand® in D for &(¢’") > 0to hold

of cepstral-covariance minimization in a very effective manné(f?r all 9_6 [0, 2]. ) L

For example, choosing a cepstral coefficient, covariance coef-0rming the functio — max L (/; g) then leads to a finite-

ficient pair (c,, 1) outside the attainable region in Fig. 5 am@mepsmnal dual problem, namely, the problem to minimize the

running the minimization algorithm always yields an ARMAfUNCtion

system with zeros on the unit circle because while the station-

(3.21)

k=0

J ) s "y Un
arity condition (3.15)—ensuring covariance matching—will al- P(_qo) « i ) )
ways be satisfied, the cepstral matching condition (3.16) may =70G0 + 7191 + -+ Tndn
fail. Theorem 3.3 asserts that this strong form of transversality 1 /7

j6 R j6
of the level sets holds for afl. 5 P(e’")log Q(e’”) db (3.22)

—T
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Q(?) >0 forallb e[, 7). (3.23)
g
The functional (3.22) was introduced in [10], where it was g
shown that it has a uniqgue minimum1m, . §
It is readily seen that the gradient of (3.22) is given by g
o0 :
T (G0 @ @) =7 = (324) %
where
1 (™ ., P> A
fo=— eI (e,)de fork=0,1,2,---,n . i i j ; ; ; i .
2r J_. Q(ew) ) ) w eo w W @ W @
(3.25) e
are the covariance lags corresponding to a process with spectralig. 11.  sixth-order filter withpo = 1 andp: = ps = --- = ps = 0
density
ot - 4 . . . 4 4 ;
QEGJG; = fo+2 Z Jr cos(kB). (3.26) ”
k=1
Since the gradient is zero at the minimizing point g °f
(g0, 1, - -, qn), We have, at this point 3 !
T
1 [T e P> H
= — IR Z 2L k=0,1,2, - § :
which, as seen from (2.3), are preciselythel first covariance € a0 f
lags whered is given by (3.19).
Example 3.4:We now illustrate the use of this generalized -40 :
maximization problem in the design of filters for signals arising ; 3 ; ; : : é
in speech analysis. In speech synthesis, conventional vocoders e % &% % w0 i w0 e &

Frequency

identify phonemes into voiced and unvoiced speech. A single
phoneme evolves on the order of magnitude of 100 ms. Thg. 12. sixth-order filter with(po, p1, -
speech pattern is usually divided into frames of a few tens ef.4440, —0.7453, 0.5203, 0.4486).
milliseconds, where it is regarded to be stationary. On each such

20-30 ms frame of speech, the signal is sampled to yield the 0.0478, —0.4831, —0.4440, —0.7453, 0.5203, 0.4486)

speech datayo, 41, y2, - -, yn, Where N is typically on the designed from the same frame of the voiced nasal [ng].
order of 200 to 300. To illustrate Theorem 3.3, we will compare Following our derivation of the generalized maximum en-
the performance of three filters with respect to a frame of speettbpy optimization criterion, it is clear that the spectral enve-
acquired during the formation of the voiced nasal [ng]. We halepe depicted in Fig. 11 is that of the LPC filter determined by
sampled the phonemes at a rate of 8000 samples/s and retatheccovariance window of length 6. While this filter does cor-
250 sample points for each frame. Thus, each frame represeatgpond to the default choigg = 1 andp; = -+ = pg = 0

a time history of speech over a period of roughly 30 ms. From our current design scheme, it is also fair to note that in gen-
this data, the firsta + 1 covariance lagsy, r1, r2, ---, 7, €ral, this filter only makes use of the datg r1, 72, -- -, 76,
have been estimated, For the sake of exposition, we begihereas the filter of Fig. 12 makes use of the additional data
with n = 6 and two choices of a sixth-degree positivestringp;, -- -, ps. Therefore, it is better to compare the perfor-
pseudo-polynomial. Using ergodic estimates (2.8), we obtaimance of the second filter with an LPC filter of order 12 ob-
(ro, ri, 72, -+, 1¢) =  (0.7468, 0.6487, 0.4335, 0.1885, tained from the data stringy, 71, 72, - - -, r12. Fig. 13 shows
—0.0040, —0.0990, —0.1265). For the sake of compar-a periodogram determined from the frame of the voiced nasal
ison, we then illustrate the case of a 12th-order LPC filteing] together with the spectral envelope of a 12th-order optimal
for which we also need the estimatés;, rg, ---, r12) = filter with po = 1 andp; = --- = p;» = 0 designed from the
(—0.1105, —0.0700, —0.0085, 0.0706, 0.1559, 0.2160). same frame of the voiced nasal [ng].

Fig. 11 shows a periodogram determined from the frameWhile the spectral envelope derived from a generalized max-
of the voiced nasal [ng] together with the spectral ernmum entropy design compares favorably with the spectral en-
velope of a sixth-order optimal filter wittp, = 1 and velopes of an LPC filter with twice the order (but, of course,
pp = --- = pg = 0 designed from this frame. Fig. 12an equal amount of data points), a key issue is how to choose
shows the same periodogram together with the spectral entree coefficienty;. We note from Fig. 9 that fon = 1, to set
lope of a sixth-order optimal filter with{po, p1, ---, ps) = p1 constantis to sdl; constant. More generally, from spectral

-,pe) = (1,0.0478,—0.4831,
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Then, using formulas in [3, pp. 117-118], the pole-zero model
obtained in this way can be realized by the lattice-ladder filter
depicted in Fig. 14, where the gains

g g, g, ", Up—1, ﬁoa ﬁla T, ﬁn (329)
E" are given by
€
2
% ox =k, k=0,1,---,n—1
& )
Pk
z Br = ——= Bi(0), k=0,1,---,n
V Pn
. : : : 5 . : This approach, however, turns out to be naive in that it does
80— e —— not solve the problem stated above. In fact, if
Frequency
_ -1 —2
Fig. 13. Twelfth-order filter withpo = 1 andp; = p> = - -+ = p1> = 0. Wo(2) = ho + h1z™" + hoz™" +- -

is the Laurent expansion of the proper rational functidi
factorization, it follows that to fix the positive pseudo-polynoabout infinity
mial P constant is to set the numerator polynonftatonstant.
Tuning the zeros of a modeling (or shaping) filter has long been
a desired goal in the ARMA modeling of signals and systems.
One approach to the identification of zeros (and poles) from
data has been cepstral analysis, particularly the use of cepsarzl consequently, the partial covariance sequenge™,
windowing and smoothing. In the next section, we will describe -, 7, will depend on the infinite sequence, r1, 2, ---
methods for using cepstral analysis to estimate the zeros, as wadiher than on the partial covariance sequence (2.13). Therefore,
as to compute the pole polynomidlfrom the estimates of the this construction of an ARMA model will not reproduce the
zeros and the covariance window—Ieading to a realization akvariance data of the original process. Moreover, to obtain a
gorithm for representing this particular ARMA model in a latstationary output proces:(¢)} in (3.27), we need to let the
tice-ladder architecture, as depicted in Fig. 14. system come to steady state, which will require many steps if

We conclude this section by illustrating that the realizatiotie roots ofB(z) are close to the unit circle.
issues here need to take into account the fact that we are devel-
oping models from a finite, not an infinite, data string. V. REALIZATION ALGORITHMS FORLATTICE-LADDER
Remark 3.5: At first blush, given the numerator polynomial NoTCH (LLN) FILTERS

B(z), it might seem possible to develop an ARMA model for
a finite covariance window by first passing the observed sign&#
through a zero filter as a prefilter

oo

i o= E{o(k)u(0)} = PP T e k—m
£=0

m=0

The desirability of being able to assign zeros to modeling (or
aping) filters has been widely cited, for example, in speech
processing [5, p. 1726], [26, pp. 271-272], [33, p. 105, 76-78].
With its ability to guarantee stability of the numerator and de-

. N nominator of the ARMA model, the generalized maximum en-
input —- — output (3:27) tropy scheme we presented in the previous section also gives an
independent solution of the long standing problem of realizing
a covariance window with a guaranteed stable and minimum
phase modeling filter. This is the problem of covariance exten-
sion by a positive real rational function of bounded degree.

In [15] and [16], Georgiou proved that, given a covariance
window for which the Toeplitz matrix (2.14) is positive defi-

and then to derive an LPC “all pole” filter from the filteredmte’ for any choice of a Schur polynomi&lof degreen, there

observations in order to generate an ARMA model. To this erﬁ;'Sts a Schur polynomial of degreer for which the modeling

. . er W determines a spectral densibymatching the window
suppose for the moment that the output proaessstationary . . .
: . . e . of covariance lags. He also conjectured uniquenes4 ahd,
having partial covariance sequenég, 71, ---, 7, and let

- oL 5 5 ... 5 and the Szedd pol nornialshence,W and ¢, which would give a well-posed solution of
Y0, Vs 0 Yn—ls P05 Py "5 Pn £€9o poly the covariance matching problem with guaranteed stability of
@o(2), 91(2), -- -, ¥n(2) be the corresponding outputfromthet : : N

. . he numerator and denominator of the (unique) modeling filter.
Levinson algorithm (2.15). Moreover, fér=0, 1, ---, n, let C : finall lished i .

By(2) be a polynomial of degrele generated by the recursion Geor_glou s conjecture was tinatly es_tab ished in [8] using geo-
kA< metric methods and, later in [10], using a convex minimization
. A argument that turns out to be equivalent to the dual optimiza-
Br-1(z) = 27 [Br(z) — Be(0)z"or(27 )], Bu(z) = B(2).  tion problem used in the above proof (after one identifies the

(3.28) linear coefficients in the cepstral maximization problem with the

with transfer function
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Fig. 14. Lattice-ladder filter.

coefficients of the defining pseudo-polynomid). The primal i) For the covariance coefficientsy, 71, ro, -+ -, 7, €X-
problem of maximization of the cepstral coefficients presented  tracted from the finite data record, the (stable) transfer
here is, however, new and has the results of [8] as a corollary, function satisfies

which we now state for the sake of completeness.

Corollary 4.1 (Moving-AveageAssignability Theorem)Let |W(ej9)|2 = fo+2ficos + 2f,cos20 + - - (4.2)
ro, 1, - - -, T D€ @ given positive partial covariance sequence.
Then, given any stable polynomial (3.2), there exists a unique where
stable polynomial (3.1) such that
Jue =7k fork=0,1,---, n. (43)
B(z)
W(z) = A(z) (4.1) ii) The filter has prescribed zerasg, ¢z, - - -, ¢, inside the
unit disc determined by a prescribed positive pseudopoly-
is a minimum-phase spectral factor of a spectral denbity) nomial P.
satisfying Here,P(z) = B(z)B(z 1), and the transmission zeros are de-
termined as the (self-conjugate) roots of the numerator polyno-
- mial
B = fo +2 Z S cosko;
=t B(z) = (2= () (z = G2) -+ (2 = o)
S =71 fork=0,1,---, n. =2"+ b 2" 4 4 by, (4.4)

In particular, allnth-order ARMA models for the given partial By Theorem 4.1, there is exactly one filter (4.1) that satisfies
covariance data are in one—one correspondence with self-cthese specifications.
jugate sets of. points (counted with multiplicity) lying in the  In automatic control, filters having prescribed transmission
open unit disc, i.e., with all possible zero structures of modelirgros are referred to astch filters Notch filters have been used
filters. Moreover, the modeling filtéiV (=) depends analytically as dynamic compensators to attenuate stable harmonic fluctu-
on the covariance data and the choice of zero polynoB{a). ations by achieving desired pole-zero cancellations. Although
Taking this intuitive parameterization of all ARMA modelingthe desirability of notches in the power spectrum of the filters
filters that match the given covariance data as the starting poimtesented in this paper plays a quite different role for signal pro-
the purpose of this section is to describe a computationally ekssing and speech synthesis than the role played by notch fil-
fective algorithm for realizing filters satisfying the same interters in automatic control, the analogy suggests that we refer to
polation properties as the LPC filter but allowing for the coefthe filters satisfying specifications i) and ii) &N filters. This
ficients of the positive pseudo-polynomi&l—or, equivalently, acronym also reflects the lattice-ladder architecture that can be
the zeros of the modeling filter—to be set arbitrarily or to based to implement these filters, as illustrated in Fig. 14.
determined from data using, for example, cepstral methods. InWe observe that the lattice-ladder filter representation is
this section, we will also develop an algorithm for computingn enhancement of the lattice filter representation depicted in
the pole polynomial, and we will also illustrate how to updatfig. 1, where the difference is the incorporation of the spec
the parameters of a lattice-ladder filter realization of such mogarameters denoted I8 which allow for the incorporation of
eling filters, enhancing the lattice realization of LPC filtering. the prescribed zeros into the filter design. In fact, the lattice
In this language, we require the filter to meet the followingjiter representation of an all-pole filter can be designed from
specifications. the lattice-ladder filter architecture by setting the parameter
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specificationsty = /%, B = o = --- = B, = 0 and
ap=mnfork=0,1,---,n—1.

In this section, we will describe an effective computationaév‘0
algorithm for finding the parameters [see (3.29)] for an LLI\i_zo_
filter, given a fixed positive pseudo-polynomial and covarianc¢ _ |
window. We begin by discussing various methods for choosir§w .
the positive pseudo-polynomial from covariance and cepstr
data, presenting a form of cepstral smoothing as the preferr 1
method when the positive pseudo-polynomial is agpriori
available. o8

10

lagnitude (dB)

of

A. Selecting the Positive Pseudo-Polynomial

~0.5

As mentioned above, LPC design has some attractive featul
that account for its popularity. These include the properties th .
the resulting modeling filter is rational of degree at moshas -
stable zeros and poles, and matches the finite window of covari- Fig. 15. Selecting the zeros from a periodogram.
ance lags. The major disadvantage is that the zeros are in the

default settingz: = 0. The LLN filter allows for placing the then in view of (2.4), (2.6), (3.13), and (3.6), the basic spectral
zeros arbitrarily while retaining the features of LPC filteringtimation problem could be formulated in the following way.

mentioned above. The basic idea is that even an approximgi€en the estimates (4.5), find pseudo-polynomialand( of
choice of zeros is better than just placing them at the origifhe form (3.5) and (3.12) such that

Therefore, except for certain applications where zeros are part
of the specifications, when this is a measured variable, for ex- max Q(eﬂ’k)é;(em) — P(eiek)
ample, through an enrollment session such as occurs in speaker k
verification, we are left with the task of estimating the positivis minimized. This leads to a standard linear programming
pseudo-polynomial’ or, equivalently, the numerator polyno-problem in the2n + 2 variabless, p1, - - -, pn, 90, G1, - 5 Gn,
mial B. namely, to findé, P, Q that minimizesé subject to thed vV
A straightforward way to determinE would be to estimate constraints that
the phase and the moduli of the zeros from the notches in an

observed spectrum, as represented by a periodogram or as com- Q7 )d(%) — P(%) — 6 <0
pgted using fast Foqrier transfprms (FFTs). This is depicted in _Q(ejek)(i)(ejek) + P(ejek) —§<0
Fig. 15, where a periodogram is used. The depth of the notches ,

determines the closeness to the unit circle. P(%) >«

Alternatively, B could be determined from any of the ARMA Qe') > &
(or MA) procedures described in [26, pp. 271-275] or [18, -
ch. 10], including Prony’s method with constant term. Thesgyld fork = 1, 2, ---, N. Here, the design parameter> 0
methods are by themselves less than satisfactory in producifigst be chosen large enough to ensurefhand( are positive
synthetic speech because they do not match the finite windgyythe unit circle. Given the solution to this linear programming
of covariance lags and may not yield stable minimum-phaggoblem, A and B can be obtained via spectral factorization
models. However, the estimates of the zeros need not (8e13) and (3.6) of? andQ.
perfect since our procedure produces corresponding poles sfjote that this procedure in general only provides a good es-
that the overall Zero-pole model matches the finite window (ﬁf'nate of the positive pseudo-polynomifl| which is precisely
covariance lags and is stable minimum phase. what we need. However, the estimate@fis good enough to

With all this in mind, we now proceed to describe the methoskrve as an initial condition for the optimization algorithm,
for zero estimation that we propose and that we have used in {fiich we will present next.

simulations in this paper. It has several features in common with
the procedures described in [38], but it always yields a stalite Algorithm

numerator polynomial3. The spectrum is estimated using @ The minimization of (3.22) given the constraints (3.23) is a
smoothed periodogram obtained by cepstral smoothing. ExpliGsnvex optimization problem for which there are many stan-

itly, the cepstral parameters are calculated from the data (248yq algorithms and software that determine the minimizing
using an inverse discrete Fourier transform on the logarithm @Ifo @1, -+, qn) recursively. Most generic codes for convex op-
7 7 7 .

the periodogram, after which, the cepstral coefficients are Wigimization will compute the gradient (first derivative) and/or
dowed and inversely transformed [30, pp. 494-495]. Using thigssian (second derivative) for use in a recursive algorithm,
procedure, we obtain a smooth estimate such as those defined, for example, by Newton’s method. How-
ever, for the specific problem of minimizing,-, both the gra-
dient and the Hessian can be computed directly, without com-
B(ei?), k=1,---, N. (4.5) puting the values of the function (3.22), using the computation
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of the covariances of an associated process and using Foupimgramming procedure in Section IV-A, gt can be obtained
transforms. (On the other hand, the values/pfcan also be via
computed in this way. These may be useful in deciding the step
size.) While the covariance data are well known to be com- Q°(¢’®) =¢3 + ¢?cosf + ¢8 cos 26 + - - - + ¢° cos né
putable using just recursive algorithms employing only ordi- _ |A0(ej6)|2
nary arithmetic operations, the fact that the computation of the
Fourier coefficients can be computed using just recursive al%hereAO
rithms and ordinary arithmetic operations is quite unexpectecqJulol ch
For this reason, a direct application of Newton’s method giv
an efficient and easily implementable algorithm.

More precisely, the gradient is given by (3.24), where the A

(2) is an arbitrary stable polynomial. Fet®(z), we
oose the polynomial(z) obtained by the LPC (max-
fhum entropy) procedure.

We can determine the gain parameters (3.29) from the LLN
er polynomialsA andB in the following way. Fok = n, n—

variancesfy, fi, ---, f» canbe determined, via ordinary arith-, 1. solve the recursions
metic operations, by first performing the factorization (3.13])’ T
and then applying the procedure to determine covariance lags ¢ ay_1, ; = ax; + ox—1ax, 1—;, Unj = a;
described in Section Ill-A tod(z). To implement Newton's Ahk
method, we also need the Hessian of (3.22), i.e., the matrix func- | -1 = " aro
tion of second derivatives of (3.22), i.e., b1y = by — Bran ks bug = (4.11)
Hij(qo, 01, an) Br = D
92Jp ko
= 90.0 '((JO7QI7"'7(]n) . -
q:0q,; forj =0,1,---, k, and setdy = boo/aoo. This is a well-

(4.6) known procedure; see, e.g., [3], [4].
' Given r and B(z), the recursive selection method for
determining the LLN gains is described in the flow chart

:%(hz-ﬁ]—i_h’zf}) i,j:0,1,2,"',7’L

where of Fig. 16. Starting with the initial pole polynomial, in
1 T ke P(ci?) each step, we first determine the vectbmwith components
hi = o e ()2 df, fork=0,1,2--.2n £, £ .-+, fn via (3.26) in the manner described above,
o 4.7) takingQ(e’?) = |A(¢?°)]. Next, we test whether the current
andh_j; = hy. Consequentlyio, 1, - -+, ha, are the2n + 1 approximation? of the partial covariance sequencé within
first Fourier coefficients of the spectral representation the tolerance of ¢. If it is not, we continue the recursive algo-
rithm by updatingA(z). If itis, we terminate the recursive steps
P(e®) 0 and determine the filter parameters (3.29) via the recursions
Q2 ~ ho+2 Y hy, cos(kf). (4.8) (4.11). The updating is performed by taking a Newton step

k=1 (4.10) as described above, computed from the predént by

; P T AN 6|2 ;
Therefore, in the same way as above, the procedure describe%jeltr%mg Q(e ) = |A(e_ )I°. The updatedd(») po.ly',?flm'al
Section IlI-A to compute covariance lags can be used to com- obtalned_ by factoring the pseudo polynomig . (#)

corresponding to the updated poifit !, thereby checking that

putehg, hi, - -+, hoy. Since the Hessian is the sum of a Toeplit o I . .
matrix and a Hankel matrix, the search direction at the poiﬁﬂe positivity condition (3.23) is also fulfilled.
qo, 41, ** "5 Gn, 1.€., C. Examp|eS
dim HN(f —7) (4.9) In this example, we continue the analysis of the frame of

speech acquired during the formation of the voiced nasal [ng].
Using the algorithm presented in this section, we developed an
LLN filter of order ten, corresponding ta, p1, - - -, p1o €Sti-
mated as

(where  and f are then + 1 vectors with components
To, 1, -+, Tn @Nd fo, f1, -+, fn, respectively) can then be
determined directly or via a fast algorithm [17].

In fact, Newton’s method amounts to recursively updating the §.5239, —12.7547, 3.6721, 44813, —8.4441, 7.3920

vectorg with componentsyg, ¢1, - - -, ¢, according to the rule
—3.3536, 0.1054, 0.9298, —0.6658, 0.1987
¢t ="+ N\ dF (4.10) . . .
and matching the covariance lags, 71, - - -, r10) given by
whered® is the search direction (4.9) at the poift see, e.g., ] ]
[28, pp. 94-95]. Here, the step si2g is chosen so that*+1 (0.7468, 0.6487, 0.4335, 0.1885, —0.0040, —0.0990
satisfies the constraints (3.23), which could be tested, for ex-  —0.1265, —0.1105, —0.0700, —0.0085, 0.0706).

ample, in a preselected number of points on the intérval «|

and/or through the positivity test performed in conjunction with To the left in Fig. 17, we show a periodogram determined
the factorization (3.13). An efficient alternative test is given ifrom the frame of the voiced nasal [ng] together with the spectral
[7]. For initial pointg®, we may use thé obtained by the linear envelope of the corresponding tenth-order LLN filter. To the
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) the combination of [35] i)/LLN with the locations obtained in
[35] ).
L Itis interesting to note the tradeoff in cepstral matching for the
CCM filter—which was designed using a cepstral penalty—for
AG) l‘ A) improved covariance matching for the CCM/LLN filter; while in
the case of the [35]i)/LLN filter, both cepstral matching and co-
B(2) Calculation of Recursive variance matching were improved, as shown in Table Il. These
— ™| covariance covanance results both confirm the fact that the use of g@opriori infor-
estimates ¢ extension solver . . . ) . .
mation or estimation of the zero polynomial will be reflected in
¢ the quality of the pole estimates for this method and that existing
ARMA schemes may in fact be used in conjunction with LLN
y techniques to enhance the performance of both algorithms with
16 -rf<ed NO respect to covariance matching.
YES
A(z), B2) V. CONCLUSIONS
'. ] The methods for pole-zero modeling that we described in this
ﬁn[)eefﬁﬁ"m'ﬁ?irs paper retain some of the most important features of LPC design,
namely, that the resulting modeling filter is rational of degree at
mostn, have stable zeros and poles, and match the finite window
Oo> %y r s Oy of covariance lags. To start, we required the resulting modeling
Bo: Bt: By filter to also match a finite window of cepstral coefficients. Gen-

eralizing the Newton sum formulae for LPC filters to the case
of pole-zero models, we show that each modeling filter of de-
green determines, and is uniquely determined bypitis-order
windows of cepstral and covariance coefficients. This character-
rightin Fig. 17, we compare the performance of this tenth-ordization has an intuitively appealing interpretation of a character-
LLN filter with an LPC filter of order 20, which was obtainedization in terms of measures of the transient and the steady-state

Fig. 16. Determining the LLN parameters.

from the data stringy, 1, 72, - - -, 720, Where the additional behaviors of the signal, respectively. We show that this follows
data(ri1, 712, -+, 720) iS given by from a convex minimization algorithm that yields a model with
the required matching properties, provided the filter has degree

(0.1559, 0.2160, 0.2192, 0.1591, 0.0413, —0.0968 .

Generalizing the maximum-entropy construction of LPC fil-
—0.2131, —0.2811, —0.2772, —0.2103).

ters, we modified this scheme to a more well-posed optimiza-
tion problem, where the covariance data enters as a constraint,
Unlike the sixth-order LLN filter presented in the previousind the linear weights of the cepstral coefficients are “posi-
section (Fig. 12), the 20th-order LPC filter uses eight moti&e"—in a sense that a certain pseudo-polynomial is positive.
parameters but still cannot incorporate the notch occurring Etis new problem is a homomorphic filter generalization of the
roughly # = = /2. This series of simulations suggests that, amaximum entropy method, leading to the design of all stable,
least for certain signals, it is better to use extra parameters tafinimum-phase modeling filter of degreghat interpolate the
zeros than to fit additional poles, in harmony with the literaturgiven covariance window. This was illustrated in the context of
on speech synthesis [5], [26], [33]. developing a spectral envelope for a frame of speech extracted
As afinalillustration, we return to the example in [35] studieffom an unvoiced sample in the case of both the new cepstral
in Section 11l in the context of designing LLN filters. More ex-maximization method for a system of order six and for the clas-
plicitly, we wish to illustrate the option, mentioned above, o$ical construction of an LPC (all-pole) model of order 12.
using gooda priori estimates of the modeling filter zeros as an In the last section, it was first observed that by spectral factor-
initial condition for the LLN algorithm. One source of suah ization, each choice of positive pseudo-polynomial determines,
priori estimates is, of course, zero estimates obtained from amd is determined by, a choice of stable zeros for the mod-
ARMA estimation scheme, where the estimated zeros can thedimg filter, giving an alternative derivation of the recent solu-
be used to produce an enhanced ARMA madatching the co- tion to the rational covariance extension problem in terms of the
variance windowHere, as an initial condition for the LLN algo- assignability of the moving average part. This parameterization
rithm, we have used two sources for estimates of the zeros: tfeall modeling filters in terms of the modeling zeros and the
zero estimates obtained from the CCM algorithm and the zerovariance window is another manifestation of our earlier de-
estimates obtained in [35] i) as described above (see Fig. 183cription of modeling filters using measures of the transient and
We then compare the resulting sequence of covariante steady-state behaviors of the signal. Indeed, the choice of
lags and the pole locations derived from this combination @kros and covariance window determines, and is uniquely de-
CCM/LLN with the locations obtained with CCM and fromtermined, by a choice of zeros and poles of the modeling filter.
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Periodogram with a tenth-order LLN (left) and 20th-order LPC spectral envelope (right).
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Fig. 18. Poles and zeros for using CCM zeros (left) and zeros from [35] i) (right) versus true ones (bold).

TABLE I
COMPARING LLN USING ZEROS FROMCCM AND FROM [35] WITH THE CORRESPONDINGRESULT IN [35]

LLN with CCM zeros

LLN with zeros from [35](i)

CCM | B3]

cepstral error 0270

.0395 .0098 | .0561

covariance error .0099

.0191 .0428 | .0765

Since these filters can be realized in lattice-ladder form, andj4] ——, “Evaluation of quadratic loss functions for linear systems,”

since this provides a design method for deriving modeling filters

matching a covariance window but having arbitrary stable zeros
(or “notches” in the power spectrum of the ARMA model), these [5] C. G. Bell, H. Fuijisaki, J. M. Heinz, K. N. Stevens, and A. S. House,

filters are referred to in this paper as “lattice-ladder notch” fil-
ters, or LLN filters. An algorithm is presented for realizing LLN
filters in lattice-ladder form, given the covariance window and
the moving average part of the model. This is illustrated using
refinements of the spectral estimates developed in Section Il

for a frame of unvoiced speech.

Finally, we illustrate the fact that while we also show how

(6]

to determine the moving average part using cepstral smoothing[,s]

one can make use of amypriori (e.g., ARMA modeling) es-

in Fundamentals of Discrete-Time Systems: A Tribute to Professor
Eliahu 1. Jury, M. Jamshidi, M. Mansour, and B. D. O. Anderson,
Eds. Albuquerque, NM: IITSI, 1993, pp. 45-56.

“Reduction of speech spectra by analysis-by-synthesis techniqlies,”
Acoust. Soc. Amewol. 33, pp. 1725-1736, 1961.

C. I. Byrnes and A. Lindquist, “On the geometry of the Kimura—Geor-
giou parameterization of modeling filterJht. J. Contr, no. 50, pp.
2301-2312, 1989.

——, “Rational solutions of the covariance extension problem,” in
Linear Circuits, Systems and Signal Processing: Theory and Applica-
tion, C. I. Byrnes, C. F. Martin, and R. E. Saeks, Eds. Amsterdam,
The Netherlands: North-Holland, 1988.

C. I. Byrnes, A. Lindquist, S. V. Gusev, and A. V. Matveev, “A com-
plete parameterization of all positive rational extensions of a covariance
sequence,lEEE Trans. Automat. Contwol. 40, pp. 1841-1857, 1995.

timate for the System zeros to initialize an enhancement of thdg] C. |. Byrnes and A. Llndqu|$t, “On the partlal stochastic realization

modeling filter as well as to obtain better covariance matchingy;

Indeed, we concluded the paper with an example of this method,

incorporating an ARMA modeling technique from the literature

to obtain an initial estimate of the system zeros.
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