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1 Introduction

This lecture is a survey of some recent results in spec-
tral estimation, and it is based on joint work together
with C. I. Byrnes, P. Enqvist, T. T. Georgiou, S. V.
Gusev, and others. We shall generalize traditional LPC
filter design in several directions to obtain higher spec-
tral resolution. This is done in the context of new
paradigms for spectral estimation, based on analytic
interpolation.

We begin by reviewing some basic concepts.

Shaping filters
It is common to model a signal {y(t) | t ∈ Z} as a
convolution

y(t) =
t∑

k=−∞
wt−kuk

of some excitation signal {u(t) | t ∈ Z}. In the lan-
guage of systems and control, this amounts to passing
the excitation signal u through a linear filter with the
transfer function

w(z) =
∞∑

k=0

wkz−k,

which is assumed to be rational, thus obtaining the
signal y as the output, as depicted in Figure 1.

W(z)
u y

Figure 1: Representing a signal as the output of a black box.

More specifically, we take w(z) to be rational with w0 �=
0 and all zeros and poles in the open unit disc. In other
words, the system in Figure 1 is stable and minimum-
phase. Such a filter will be called a shaping filter.

Consequently, the signal y is modeled by a choice of
shaping filter and a choice of excitation signal u.

Let us begin by considering signals y for which the
excitation signal u is white noise, i.e., E{u(t)u(s)} =
δts, where δts is one if t = s and zero otherwise. Then y
is a stationary stochastic process with rational spectral
density

Φ(eiθ) = |w(eiθ)|2,
which is positive for all θ. It is well-known that the
spectral density has a Fourier expansion

Φ(eiθ) = r0 + 2
∞∑

k=1

rk cos kθ,

where the Fourier coefficients

rk =
1
2π

∫ π

−π

eikθΦ(eiθ)dθ (1)

are the covariance lags rk = E{y(t + k)y(t)}.

The positive real part of Φ
The spectral density Φ(z) is analytic in an annulus con-
taining the unit circle and has there the representation

Φ(z) = f(z) + f(z−1),

where f is a rational function with all its poles and
zeros in the open unit disc. Hence, in particular, f is
analytic outside the unit disc, and

f(z) =
1
2
r0 + r1z

−1 + r2z
−2 + r3z

−3 + . . .

Moreover,

Φ(eiθ) = 2Re{f(eiθ)} > 0,

for all θ, and therefore f is a real function which maps
{|z| ≥ 0} into the right half-plane {Re z > 0}; such
a function is called positive real. For this to hold, the
Toeplitz matrices

Tk =




r0 r1 · · · rk

r1 r0 · · · rk−1

...
...

. . .
...

rk rk−1 · · · r0


 (2)
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must be positive definite for k = 0, 1, 2, . . ..

Modeling from data
We would like to model the process y as the output of
a shaping filter (Figure 1), when the available informa-
tion about y is a finite record of observed data

y0, y1, . . . , yN . (3)

As an example, to which we shall return several times
in this lecture, let us consider a 30 ms frame of speech
from the voiced nasal phoneme [ng], depicted in Fig-
ure 2. Here N = 250, a typical sample length for a
mobile telephone.
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Figure 2: A frame of speech for the voiced nasal phoneme [ng].

Figure 3 depicts a periodogram of this signal, i.e., a
spectral estimate obtained by fast Fourier transform.
This spectral estimate can be modeled as a smooth
spectral envelope perturbed by contributions from an
excitation signal. The spectral envelope corresponds
to the shaping of the vocal tract, which is described by
the shaping filter.
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Figure 3: Periodogram for the voiced nasal phoneme [ng].

The contributions of the shaping filter and the excita-
tion signal to the spectral estimate are multiplicative.

If we consider the logarithm of the spectral density Φ,
the cepstrum, instead of the Φ itself, the contribution
of the excitation signal is superimposed on the that of
the shaping filter. The Fourier coefficients

ck =
1
2π

∫ π

−π

eikθ log Φ(eiθ)dθ (4)

of the cepstrum

log Φ(eiθ) = c0 + 2
∞∑

k=1

ck cos kθ

are called the cepstral coefficients and can be estimated
from data.
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Figure 4: Cepstrum of voice speech signal.

Figure 4 shows the estimated cepstral coefficients of a
frame of voiced speech. A contribution of the excitation
signal is seen as spikes at multiples of the pitch period,
corresponding to approximately n0 = 57 in Figure 4.
The spectral envelope can be estimated from a finite
window

c0, c1, . . . , cn (5)

of cepstral coefficients, where n < n0.

First, however, we shall consider the problem of esti-
mating the shaping filter from covariance data.

Estimating shaping filters from covariance esti-
mates
Given a finite observed record (3) of the process y, a
limited number of covariance lags rk := E{y(t+k)y(t)}
can be estimated via some ergodic estimate

rk =
1

N + 1 − n

N−n∑
t=0

yt+kyk. (6)

However, we can only estimate

r0, r1, . . . , rn, (7)

where n << N , with some precision. Therefore, in
order to determine Φ, we must determine

rn+1, rn+2, rn+3, . . .
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subject to the condition that f is positive real. This is
the covariance extension problem or the Carathéodory
problem. In order for this problem to have a solution we
must have Tn > 0, a condition which is guaranteed by
the ergodic estimates given above. Then the covariance
extension problem has infinitely many (meromorphic)
solutions [33].

However, we are only interested in rational solutions
of low order. It can be shown [5, 20] that the smallest
degree that can be guaranteed is n, so we shall be inter-
ested in f of degree at most n. Given such an f , there
is a unique stable minimum-phase rational function w,
of degree at most n, such that

|w(eiθ)|2 = Φ(eiθ) := 2Re{f(eiθ)}. (8)

We shall call such a w a modeling filter for (7). More
precisely, noting (1), a modeling filter for r0, r1, . . . , rn

is a rational, stable, minimum-phase function w such
that

1
2π

∫ π

−π

eikθ|w(eiθ)|2dθ = rk, k = 0, 1, . . . , n. (9)

Clearly, this is the type of shaping filter we are looking
for.

2 Linear predictive filtering

The most popular modeling filter is obtained by solving
the normal equations



r0 r1 · · · rn−1

r1 r0 · · · rn−2

...
...

. . .
...

rn−1 rn−2 · · · r0







ϕnn

ϕn,n−1

...
ϕn1


 =




rn

rn−1

...
r1




for the unique solution ϕn1, ϕn2, . . . , ϕnn (recall that
Tn−1 > 0) and then forming

ρn =
n∑

j=0

rjϕnj .

The polynomial

ϕn(z) = zn + ϕn1z
n−1 + . . . + ϕnn

is the n:th Szegö polynomial (of the first kind), and it
can be determined via the Levinson algorithm

ϕk+1(z) = zϕk(z) − γkzkϕk(z−1), ϕ0(z) = 1, (10)

where the Schur parameters {γk} are given by

γk =
1
ρk

k∑
j=0

ϕk,k−jrj+1.

In signal processing, the Schur parameters are often
called the PARCOR parameters. The condition Tn > 0
is equivalent to the condition that |γk| < 1 for k =
0, 1, . . . , n − 1.

Then, defining the Szegö polynomials of the second
kind, {ψk} , via

ψk+1(z) = zψk(z) + γkzkψk(z−1), ψ0(z) = 1,

the rational function

f(z) = r0
ψn(z)
ϕn(z)

is a solution of degree n to the covariance extension
problem. The corresponding modeling filter

w(z) =
√

ρnzn

ϕn(z)

is called the linear predictive filter or LPC filter and is
standard in, for example, speech processing [31]. How-
ever, since the corresponding spectral density

Φ(eiθ) =
ρn

|ϕn(eiθ)|2

has no zeros, this method has some problems picking
up the valleys in the spectrum, thus producing a “flat
speech” in speech processing. Often this is compen-
sated by choosing an appropriate excitation signal from
a code book.

Let us now return to the speech data in Figure 2. Fig-
ure 5 depicts the periodogram of Figure 3 together with
the spectral envelope determined by a tenth order LPC
filter, based on ergodic estimates of r0, r1, . . . , r10 from
the data in Figure 2.
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Figure 5: Spectral envelope of 10th order LPC filter.

It is seen that this estimate of the spectral envelope
does not reproduce the notches of the spectrum very
well. This is due to the fact that the zeros of the mod-
eling filter are as far away as possible from the unit
circle. This is one of the shortcomings of LPC filtering
which we shall want to rectify.
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3 Modeling filters with arbitrary zeros

The LPC solution is one of infinitely many solutions of
the covariance extension problem. In the case that the
positive real function f is not required to be rational,
the family of solutions was completely parameterized
by Schur [33]. In fact, each choice of free Schur param-
eters γn, γn+1, γn+2, . . . such that

|γk| < 1

corresponds to one and only one covariance extension,
and all covariance extensions are obtained in this way.
This extension is given by

rk+1 = ρkγk −
k−1∑
j=0

ϕk,k−jrj+1, k = n, n + 1, . . . ,

where ρk+1 = (1 − γ2
k)ρk and the coefficients of the

Szegö polynomials are given by the Levinson-Szegö re-
cursion (10). In particular, the LPC solution is the
solution obtained by choosing

γk = 0, k = n, n + 1, . . . .

It is also the solution which maximizes the the entropy
gain

c0 =
1
2π

∫ π

−π

log Φ(eiθ)dθ,

which is precisely the zeroth cepstral coefficient. There-
fore the LPC solutions is also called the maximum-
entropy solution.

Parameterization of all modeling filters
However, if we want to parameterize the subset of all
solutions to the covariance extension problem of degree
at most n, or any other maximal degree for that mat-
ter, there is no way to do this in terms of the Schur
parameters. Instead, we have the following result. Re-
call that a real polynomial is said to be stable if it has
all its roots in the open unit disc {|z| < 1}.

Theorem 1 Let r0, r1, . . . , rn be a partial covariance
sequence, i.e., real numbers such that the Toeplitz ma-
trix (2) is positive definite. Then, to any stable poly-
nomial

σ(z) = zn + σ1z
n−1 + . . . + σn−1z + σn

of degree n, there corresponds a unique pair of real sta-
ble polynomials

a(z) = a0z
n + a1z

n−1 + . . . + an

b(z) = b0z
n + b1z

n−1 + . . . + bn,

of degree n such that

a(z)b(z−1) + b(z)a(z−1) = σ(z)σ(z−1), (11)

and the rational function

f(z) :=
a(z)
b(z)

(12)

is a solution to the covariance extension problem, i.e.,
is positive real and satisfies

f(z) =
1
2
r0 + r1z

−1 + . . . + rnz−n + . . . (13)

Georgiou, who had proven the existence part of Theo-
rem 1 in [20], conjectured in [21] that uniqueness would
also hold. This conjecture remained open until 1993,
when in [4] we proved a stronger version of Theorem 1.

From (11) and (12) we see that

f(z) + f(z−1) = w(z)w(z−1),

where

w(z) =
σ(z)
a(z)

. (14)

Consequently, given the partial covariance sequence
(7), Theorem 1 states that to each choice of zero poly-
nomial σ(z) there is a unique pole polynomial a(z) such
that (14) is a modeling filter for (7). Hence, we have
a complete parameterization of all modeling filters in
terms of zeros.

The geometry of positive real functions
Theorem 1 is a corollary of a more fundamental result
[4, 11] about the space Pn of all positive real functions
of degree at most n, which is a manifold of dimension
2n. For n = 1, and a suitable choice of coordinates,
this manifold can be represented as the interior of the
diamond depicted in Figure 6, and it is divided into
disjoint submanifolds (hyperbolas in the figure).

α

γ

Figure 6: Filtering foliation of P1.

Such a decomposition is called a foliation in differen-
tial geometry, and the submanifolds are called leaves,
provided certain smoothness conditions are satisfied, as
is the case here. We call this foliation the filtering fo-
liation, since the leaves are the stable manifolds of a
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certain fast algorithm for Kalman filtering [15, 28, 29].
There is precisely one leaf for each choice of zero poly-
nomial σ(z). An analogous foliation result holds for
any n.

There is also another foliation of Pn with one leaf for
each choice of covariance data (7). For the case n =
1, it is depicted in Figure 7 (with horizontal lines).
The leaves of this foliation intersect the leaves of the
filtering foliation transversely (under nonzero angle) so
that each leaf of one foliation intersects each leaf of
the other in one, and only one, point in Pn; see [4,
11]. This point determines the unique pole polynomial
a(z) in Theorem 1. It also insures that the bijection of
Theorem 1 is a diffeomorphism.

α

γ

Figure 7: Filtering and covariance matching foliations of P1.

One might ask whether it is possible to prescribe the
poles instead of the zeros, but already the case n = 1
provides a counterexample as seen in Figure 8. In fact,
choosing an arbitrary leaf from the covariance matching
foliation and an arbitrary leaf from the pole foliation
(diagonal lines), they do not necessarily intersect.

α

γ

Figure 8: Pole and covariance matching foliations of P1.

A convex optimization approach to modeling-
filter design
The proof of Theorem 1 in [4], as well as the exis-
tence proof in [20, 21], was nonconstructive. A convex
optimization algorithm was given in [8]. Next, follow-

ing [9], we shall introduce this algorithm as the dual of
the problem to maximize a linear combination of co-
efficients in a cepstral window, subject to covariance
matching.

Recall that the LPC solution is the modeling filter
which maximizes the zeroth cepstral coefficient. Sup-
pose that we maximize instead a linear combination

p0c0 + p1c1 + . . . + pncn (15)

of the cepstral coefficients in the window (5). In view of
(4), this may be written as a generalized entropy gain

1
2π

∫ π

−π

P (eiθ) log Φ(eiθ)dθ,

where P is the symmetric pseudopolynomial

P (z) = p0 + 1
2p1(z + z−1) + . . . + 1

2pn(zn + z−n). (16)

We shall say that P ∈ D if P is nonnegative on the
unit circle and P ∈ D+ if it is positive there. We note
that the covariance matching condition (9) becomes

1
2π

∫ π

−π

eikθΦ(eiθ)dθ = rk, k = 0, 1, . . . , n (17)

in terms of Φ(eiθ) = |w(eiθ)|2.

We state the following theorem from [9].

Theorem 2 The problem to maximize (15) subject to
(17) has a finite solution only if the pseudo-polynomial
(16) belongs to D. If P ∈ D+, there is a unique solution
Φ, and this solution has the form

Φ(z) =
P (z)
Q(z)

, (18)

where

Q(z) = q0 + 1
2q1(z + z−1) + . . . + 1

2qn(zn + z−n)

belongs to D+.

Connecting Theorems 1 and 2, we see that if we take
P to be

P (z) = σ(z)σ(z−1),

then the unique a(z) in Theorem 1 is the stable poly-
nomial satisfying

Q(z) = a(z)a(z−1).

Consequently, if we can determine Q(z) in Theorem 2,
we have also determined a(z) in Theorem 1, and hence
the modeling filter corresponding to σ(z).

As we shall see below, it turns out that the algorithm
needed to determine Q is precisely the convex opti-
mization algorithm presented in [8]. In fact, as shown
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in [9], the dual problem, in the sense of mathematical
programming, of the maximization problem of Theo-
rem 2 is the problem to minimize

JP (q0, q1, . . . , qn) = r0q0 + r1q1 + . . . + rnqn

− 1
2π

∫ π

−π

P (eiθ) log Q(eiθ)dθ (19)

over all Q ∈ D. The functional JP is strictly convex.
The following theorem was proven in [8].

Theorem 3 The problem

min
Q∈D

JP (Q)

has a unique solution, and it belongs to D+.

Since JP takes its minimum in an interior point,

∂JP

∂qk
= rk − 1

2π

∫ π

−π

eikθ P (eiθ)
Q(eiθ)

dθ

equals zero there. This stationarity condition is pre-
cisely the covariance matching condition. The dual
problem is easily solved by Newton’s method [8,9]. We
shall call a modeling filter obtained from this procedure
an Ladder-Lattice-Notch (LNN) filter, since it can be
implemented by a ladder-lattice filter [9] and represents
the notches in the spectrum better.

Examples
Let us now return to the voice sample in Figure 2.
The periodogram of this voiced nasal phoneme [ng] is
depicted in Figure 3, and the spectral envelope of a
10th order LPC filter in Figure 5.

In order to compute an LLN filter we first need to es-
timate the zero polynomial σ(z), or equivalently P (z).
Since this estimate does not have to be very accurate –
it is anyway better than choosing all zeros at the origin
as the LPC filter – we may use one of several ad hoc
methods, which are not sufficiently accurate for deter-
mining the filter itself. In the present example, using
points on a smoothed periodogram Φ̂, we find the P
and Q which minimize

max
k

|Q(eiθk)Φ̂(eiθk) − P (eiθk)|

for equidistant points on the unit circle. We use this
P to form JP and the Q as an initial condition in the
convex minimization problem of Theorem 3 to compute
the optimal Q corresponding to P .

In Figure 9 we show the spectral envelope of a sixth or-
der LLN filter, which should be compared with that of
the 10th order LPC filter in Figure 5. Clearly the LLN
filter reproduces the notches much better although it is

lower order. If we take a 10th order LLN filter, we can
pick up more of the fine structure, as seen in Figure 10.
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LLN filter

Figure 9: Spectral envelope of a 6th order LLN filter.
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LLN filter

Figure 10: Spectral envelope of 10th order LLN filter.

4 Simultaneous covariance and cepstral
matching

We have shown that modeling filters, i.e., stable,
minimum-phase filters, which match a window of co-
variance lags of length n + 1, where n is an upper
bound for the degree of the filter, can be completely
parameterized in terms of its zeros, but not in terms of
its poles. It would be interesting to find out whether
it is possible to parameterize modeling filters in terms
of a window of cepstral coefficients, which like the co-
variance lags can be estimated from data. At a first
glance, this might be suggested by the following theo-
rem, which we quote from [9].

Theorem 4 Each modeling filter (14) of degree n
determines and is uniquely determined by its win-
dow r0, r1, . . . , rn of covariance lags and its window
c1, c2, . . . , cn of cepstral coefficients.
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In other words, the very nontrivial statement
of this theorem is that there is a one-to-one
correspondence between the 2n + 1 coefficients
r0, r1, . . . , rn, c1, c2, . . . , cn of the modeling filter (14)
and the 2n + 1 coefficients a0, a1, . . . , an, σ1, σ2, . . . , σn

of the denominator and numerator polynomials of
(14), provided the degree of w is exactly n. In fact,
r0, r1, . . . , rn, c1, c2, . . . , cn form local coordinates for
the space of pole-zero filters of degree n. The proof
is given in [10].

To this end, given observed records of r0, r1, . . . , rn and
c1, c2, . . . , cn, consider the problem of finding a spectral
density Φ which minimizes the “cepstral error”

n∑
k=0

∣∣∣∣ 1
2π

∫ π

−π

eikθ log Φ(eiθ)dθ − ck

∣∣∣∣
subject to the covariance-lag matching

1
2π

∫ π

−π

eikθΦ(eiθ)dθ = rk, k = 0, 1, . . . , n.

As seen from (8), finding a minimizing Φ is equivalent
to finding a minimizing modeling filter w or a positive
real function f .

As shown in [10] (also see, [19]), the dual problem (in
the sense of mathematical programming) is to maxi-
mize the concave, but not strictly concave, functional

J(p, q) = c1p1 + c2p2 + . . . + cnpn

−r0q0 − r1q1 − . . . − rnqn

− 1
2π

∫ π

−π

P (eikθ) log
P (eikθ)
Q(eikθ)

dθ

over all P ∈ D such that p0 = 1 and all Q ∈ D. It
can be shown [10] that there is a, possibly nonunique,
maximizing solution such that Q ∈ D+, whereas we
cannot in general insure that P ∈ D+.

Now,

∂J

∂qk
=

1
2π

∫ π

−π

eikθ P (eiθ)
Q(eiθ)

dθ − rk

∂J

∂pk
= ck − 1

2π

∫ π

−π

eikθ log
P (eiθ)
Q(eiθ)

dθ,

and hence we always have covariance matching, while
we may or may not have cepstral matching, depending
on whether P ∈ D+ or not.

Figure 11 shows the periodogram of a frame of speech
for the phoneme [s] together with a 10th order spectral
envelope produced by this method. In this case, P ∈
D+, so there is both covariance and cepstral matching.
In general, however, this is not the case, and then there
may be a duality gap. This can be seen already in
the case n = 1. In Figure 12 the covariance matching

foliation (straight lines) is depicted together with the
cepstral matching foliation (curved). As can be seen,
a leaf in one foliation in general does not intersect all
leaves in the other. Therefore, this problem, unlike that
of Theorem 2, is not well-posed.
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Figure 11: Spectral envelope of 10th order cepstral match filter.
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Figure 12: Cepstral and covariance matching foliations of P1.

5 A tunable high-resolution spectral estimator

So far we have been looking for shaping filters w with
the covariance-lag matching property (9). We recall (8)
to see that this is the same as looking for a positive real
f such that

f(z) =
1
2
r0 + r1z

−1 + . . . + rnz−n + . . . ,

or, equivalently, such that

fk(∞)
k!

= rk, k = 0, 1, . . . , n. (20)

Hence covariance matching is equivalent to finding a
positive real interpolant taking prescribed values at ∞.
Consequently we have a special case of Nevanlinna-Pick
interpolation. Recall that the stable zeros of f(z) +
f(z−1) are called the spectral zeros of f .
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In this context, LPC filtering amounts finding an in-
terpolant with all spectral zeros at the origin and all
interpolation points at infinity. The points z = 0 and
z = ∞ are the points, inside and outside the unit cir-
cle respectively, which are furthest away from the unit
circle, where the spectrum is evaluated. This explains
the shortcomings of the LPC filter.

The better resolution of the LNN filter comes from the
fact that the spectral zeros have been moved from the
origin to points in the open unit disc closer to the unit
circle at frequencies where the notches in the spectrum
occur. Still, however, the interpolation points are all
at z = ∞.

Now, suppose we are interested in some particular fre-
quency band, where we would like to have higher reso-
lution. It would then make sense to replace the inter-
polation condition (20) by a condition

f(zk) = wk, k = 0, 1, . . . , n, (21)

where z0 = ∞, and where the distinct points z1, . . . , zn

are chosen close to the unit circle in the selected
frequency band, but still outside the closed unit
disc, where f is analytic. We assume that the sets
{z0, z1, . . . , zn} and {w0, w1, . . . , wn} are self-conjugate,
i.e., the point are either real or occur in complex con-
jugate pairs. For notational reasons, to become clear
later, we introduce the points

pk := z−1
k , k = 0, 1, . . . , n, (22)

which then are all located in the open unit disc. In
particular, p0 = 0.

Nevanlinna-Pick interpolation with degree con-
straint
This leads to the following problem [11–13, 22, 23].
Given n + 1 points in the open right half-plane,
w0, w1, . . . , wn, with the property that the Pick matrix

Pn =
[

wk + w̄�

1 − pkp̄�

]n

k,�=0

(23)

is positive definite, find a positive real, rational func-
tion f of degree at most n which satisfies the interpo-
lation condition (21).

Define the polynomial

τ(z) :=
n∏

k=1

(z − pk),

and let S be the class of all real, rational functions of
the type

S(z) =
ρ(z)ρ(z−1)
τ(z)τ(z−1)

,

where ρ(z) is a stable polynomial of degree at most n.
Moreover, let S+ be the subclass of all S ∈ S which

are positive on the unit circle. Now, for any P ∈ S+,
define the generalized entropy gain

IP (f) =
∫ π

−π

P (eiθ) log(Re{f(eiθ)})dθ (24)

on the space C of positive real functions.

Then [12, Theorem 4.1] provides us with the following
result.

Theorem 5 Given any stable polynomial

σ(z) = zn + σ1z
n−1 + . . . + σn−1z + σn,

let P ∈ S+ be given by

P (z) =
σ(z)σ(z−1)
τ(z)τ(z−1)

. (25)

Then, the constrained optimization problem to maxi-
mize IP (f) over all f ∈ C subject to the interpolation
condition

f(p−1
k ) = wk, k = 0, 1, . . . , n, (26)

has a unique solution. This solution is of the form

f(z) =
b(z)
a(z)

, (27)

where a(z) and b(z) are polynomials of degree n such
that

a(z)b(z−1) + b(z)a(z−1) = σ(z)σ(z−1). (28)

Conversely, if f is a positive-real function which sat-
isfies the interpolation conditions as well as (27) and
(28), then it is the unique solution to the optimization
problem.

In particular, σ(z) ≡ τ(z) yields P = 1 so that IP (f)
becomes the usual entropy gain. There are fast al-
gorithms to compute the corresponding solution, the
central solution; see, e.g., [13].

In general, (28) yields

Φ(eiθ) = 2Re{f(eiθ)} =
P (eiθ)
Q(eiθ)

,

where

Q(z) =
a(z)a(z−1)
τ(z)τ(z−1)

.

Consequently, the optimal shaping filter is

w(z) =
σ(z)
a(z)

.

To determine it, we need to find a(z), or, equivalently,
Q. However, this optimization problem is infinite-
dimensional and therefore not easy to solve. As before,
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it has a dual with finitely many variables. Next, we
turn to this problem.

To this end, let w be any real rational function which
is analytic on and outside the unit circle and satisfies
the interpolation condition

f(p−1
k ) = wk, k = 0, 1, . . . , n. (29)

Note that w need not be positive real, so it is simple to
determine. For example, let w be a rational function
of degree n with an arbitrary stable polynomial as de-
nominator. Then the numerator polynomial satisfies a
linear (Vandermonde) system of equations.

Now, for any Q ∈ S+ define the functional

JP (Q) :=
1
2π

∫ π

−π

Q(eiθ)Re{w(eiθ)}dθ −

1
2π

∫ π

−π

P (eiθ) log{Q(eiθ)}dθ.

It can be shown that JP does not depend on the par-
ticular choice of w but only on the values of w at the
interpolation points.

Using duality theory, the maximization problem of
Theorem 5 can be seen to be equivalent to the following
convex optimization problem [12, Theorem 4.5].

Theorem 6 The convex optimization problem

min
Q∈S

JP (Q) (30)

has a unique solution, which belongs to S+.

To solve this convex optimization problem, one can use
a Newton-type search algorithm. Expressions for the
gradient and Hessian of JP , in suitable bases, are given
in [13], where a numerical algorithm is described in
detail.

Just as for the LNN filter, the bijection between the
zero polynomial σ(z) and the pole polynomial a(z) is
a diffeomorphism. In fact, as shown in [11], there is a
foliation of the space Pn with one leaf for each choice
of interpolation values w0, w1, . . . , wn, and the leaves
of this interpolation foliation intersect the leaves of the
filtering foliation, introduced above, transversely (un-
der nonzero angle) so that each leaf of one foliation
intersects each leaf of the other in one, and only one,
point in Pn. Figure 13 describes this situation in the
case n = 1.

α

γ

Figure 13: Interpolation and filtering foliations of P1.

A filter bank for estimating the interpolation
values
It remains to describe out how to estimate the interpo-
lation values w0, w1, . . . , wn from the data

y0, y1, . . . , yN .

To this end, we follow the procedure in [13].

The key observation in [13], relating interpolating val-
ues to covariance statistics, can be explained as follows.
Let

G(z) =
z

z − p
, |p| < 1, (31)

be a first-order filter
y−→ G(z) v−→

driven by the process y. Then it can be shown that the
output process v has the variance

E{v(t)2} =
2

1 − p2
f(p−1).

Now, the variance E{v(t)2} can be estimated from the
output data

v0, v1, . . . , vN

by an ergodic sum of type (6), and hence we obtain the
interpolation condition f(p−1) = w, where

w :=
1 − p2

2(N + 1)

N∑
t=0

v2
k. (32)

Next, consider a bank of first-order filters with filter
poles p0, p1, . . . , pn, all driven by y, as depicted in Fig-
ure 14. More precisely, the filters are

Gk(z) =
z

z − pk
, k = 0, 1, . . . , n.

Two first-order filters with complex conjugate poles
could be combined to one real, second-order filter, but
complex arithmetic could also be used.

The output data from each filter in the filter bank is
processed as in (32) to yield the interpolation values
w0, w1, . . . , wn.
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G0(z)

G1(z)

Gn(z)

✲
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✲
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✲
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





v(0)

v(1)

v(n)

y

Figure 14: Filter bank.

Examples
We conclude with two examples from [13] where a suit-
able choice of filter bank poles results in significantly
higher resolution than traditional techniques over the
arc which is adjacent to the poles of the filter bank.

Example 1: Let us first consider a stochastic process y
consisting of two sinusoids in colored noise. Figure 15
shows the spectrum, plotted on the unit circle, with
the two spectral lines marked as arrows. A choice of
filter bank poles in the vicinity of the spectral lines are
marked by × in the same plot.
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Figure 15: Spectrum plotted on unit circle.

Figure 16 compares the resolutions obtained by a pe-
riodogram based methods using state-of-the-art win-
dowing technology (first row) and an LPC filter (second
row) with that of our method [13] (third row), for which
we use the simple default setting of the central solution
(i.e., P = 1) and data obtained via a filter bank with
poles at 0,±.85, 0.9e±.42i, 0.9e±.44i, 0.9e±.48i, 0.9e±.50i.
In these plots the exact location of the spectral lines is
shown by vertical lines. In each case 300 data points
were used and the order of the AR model (using LPC
filtering) was chosen to be the same as that of the
model resulting from our technique. In the left column,
where five runs are superimposed to show the variabil-
ity, the separation between the two spectral lines is
0.11, while in the second column the lines have been
moved closer to a distance of 0.02, which is below the
theoretical limit for the fast Fourier transform (peri-
odogram). Thus the periodogram method, which does
OK in the first case, fails in the second. LPC filtering
fails in both cases. Finally, our method resolves the two
peaks also in the case when they are close. Hence, we
obtain a significant improvement in resolution by using

a filter bank and analytic interpolation techniques.
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Figure 16: Estimation of spectral lines in colored noise.

Example 2: To demonstrate the power of the method
when using nontrivial spectral zeros (P �= 1) , let us
next consider a spectrum with sharp transitions, as in
Figure 17. This corresponds to a process obtained by
passing white noise through a filter with a transfer func-
tion having poles and zeros close to each other. Such
estimation problems are difficult, and we do better if
we use the full power of our theory.
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Figure 17: Spectrum plotted on unit circle.

In Figure 18 spectral estimates are depicted for two
different processes of the type illustrated in Figure 17,
the true spectra shown with dotted line. The top row
shows periodogram estimates, the second row fourth
order maximum entropy filter estimates, and the bot-
tom row estimates obtained using our method with
filter-bank poles set at 0, .8e±.8i, .8e±1.3i and spectral
zeros at 0,−.8, .8e±iπ/3.3, as depicted in Figure 19.
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Figure 18: Estimating a spectrum with sharp transitions.

In this set of experiments we have used a data record
long enough to eliminate fluctuations of the estimated
spectra, namely 2000 samples. Noting that the order
is only four, our estimates are remarkably good. For
more discussion as well as further examples requiring
the full power of the theory (i.e., specifying nontrivial
spectral zeros) we refer to [13].
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Figure 19: Spectral zeros and filter-bank poles.

6 Conclusions

One of the most widely used methods of spectral esti-
mation in signal and speech processing is linear predic-
tive coding (LPC). LPC has some attractive features,
which account for its popularity, including the proper-
ties that the resulting shaping filter (i) matches a finite
window of n + 1 covariance lags, (ii) is rational of de-

gree at most n, and (iii) has stable zeros and poles. A
major disadvantage is that the modeling filter is “all-
pole”, i.e., an autoregressive (AR) model.

In this talk we reviewed some recent results in pole-zero
modeling, in which the nice properties (i), (ii), (iii) of
LPC filtering have been retained. The key observa-
tion is that covariance matching imposes interpolation
conditions on the positive real part of the spectral den-
sity. This leads to the application of very recent math-
ematical results of analytic interpolation with degree
constraint. In this context, LPC filtering amounts to
choosing the spectral zeros at z = 0 and the interpola-
tion points at z = ∞. The points z = 0 and z = ∞ are
the points, inside and outside the unit circle respec-
tively, which are furthest away from the unit circle,
where the spectrum is evaluated, explaining the short-
comings of the LPC filter.

We started by moving the zeros closer to the unit circle
at frequencies where notches occur, thus obtaining bet-
ter resolution in these parts of the spectrum. We con-
tinued by also moving the interpolation points closer
to the unit circle in a selected frequency band where
higher resolution is required. This leads to a radi-
cally radically different approach to spectral estimation
which is based on nontraditional covariance measure-
ments. The basic idea is to determine covariance esti-
mates after filtering the observed time series through a
bank of filters with different frequency responses, which
can be tuned as desired.
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[34] O. Toeplitz, Über die Fouriersche Entwicklung
positiver Funktionen, Rendiconti del Circolo Matem-
atico di Palermo 32 (1911), 191–192.

[35] J. L. Walsh, Interpolation and Approximation by
Rational Functions in the Complex Domain, Amer.
Math.Soc. Colloquium Publications, 20, Providence,
R. I., 1956.

p. 12


