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Abstract—Consider a Gaussian stationary stochastic vector
process with the property that designated pairs of components
are conditionally independent given the rest of the components.
Such processes can be represented on a graph where the compo-
nents are nodes and the lack of a connecting link between two
nodes signifies conditional independence. This leads to a sparsity
pattern in the inverse of the matrix-valued spectral density. Such
graphical models find applications in speech, bioinformatics,
image processing, econometrics and many other fields, where the
problem to fit an autoregressive (AR) model to such a process
has been considered. In this paper we take this problem one step
further, namely to fit an autoregressive moving-average (ARMA)
model to the same data. We develop a theoretical framework and
an optimization procedure which also spreads further light on
previous approaches and results. This procedure is then applied
to the identification problem of estimating the ARMA parameters
as well as the topology of the graph from statistical data.

Index Terms—Autoregressive moving-average (ARMA) mod-
eling, conditional independence, graphical models, system identi-
fication.

I. INTRODUCTION

G RAPHICAL models represent families of probability
distributions in the form of graphs which expose relative

conditional independences. In this paper we consider a real,
-dimensional, zero-mean, Gaussian, stationary stochastic

vector process with the property that designated
pairs of components are conditionally independent given the
rest of the components. In fact, such processes can be repre-
sented on a graph where the components are nodes and the lack
of a connecting link between two nodes signifies conditional
independence [4]. As was shown in [3], this is manifested by
a sparsity pattern in the inverse of the matrix-valued
spectral density

(I.1)
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where

(I.2)

and where we assume that for all . Let
denote the class of such spectral densities that are integrable

on . In fact, as we shall demonstrate in more detail in
Section III, it can be shown that

(I.3)

for pairs such that and are conditionally indepen-
dent given the rest of the components of the process ; also
see [3], [4]. Such graphical models find applications in speech,
bioinformatics, image processing, econometrics and many other
fields [1], [2], [6], [7].
More precisely, given and

for an arbitrary index set , (I.3) holds for all pairs
such that and are conditionally independent given

, which we write as

The set of all such conditional independence relations consti-
tutes a graph where , defined as above, is the set
of vertices and is a set of edges defined in the fol-
lowing way:

A typical such graph is depicted in Fig. 1, where the lack of an
arch between nodes and signifies conditional independence
between the processes and given the rest of
the component processes. Graphs of this type are referred to as
a partial/conditional independence graph or, more simply, as
an interaction graph in the literature. A model of the process
which takes conditional independence relations into consider-
ation is commonly referred as a graphical model. In Section II
we present somemotivating examples of applications exhibiting
such graphical models.
The problem to fit an autoregressive (AR) model to such a

process has been considered in [4], [6] as a means for assessing
conditional independence. The basic idea is to use a maximum
likelihood and ask for consistency of the AR model with the
data together with conditional independence between particular
nodes. More precisely, given the (estimates of) autocovariances

, the problem in these papers is to find a multi-
variate autoregressive model

(I.4)
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Fig. 1. Example of an interaction graph. For instance, .

that satisfies the sparsity constraint (I.3). Here is a
white noise process and are matrices
such that the determinant of the matrix polynomial

(I.5)

has all its zeros in the unit disc of the complex plane and
.

However, there are examples where AR models are insuf-
ficient, for example when the process has zeros close to the
unit circle. Moreover, an AR model of exceedingly high order
can be approximated by a low order ARMA model. Therefore,
in this paper we take this problem one step further, namely to
fit an autoregressive moving-average (ARMA) model, while
respecting the sparsity constraint (I.3), to the same data. In fact,
the problem at hand is equivalent to a covariance extension
problem, namely a problem of finding an infinite extension

of the given sequence ,
preserving positivity of the corresponding block Toeplitz
matrices; see, e.g., [8], [9]. In this context, the AR solution
corresponds to very special covariance extension, namely the
maximum entropy one. By allowing for ARMA models, we
may choose from a continuum of infinitely many solutions, one
of which might satisfy the required graph topology better.
The ARMA models that we shall consider here take the form

(I.6)

For technical reasons we shall here assume that the matrix co-
efficients of the moving-average part has the form

(I.7)

where the scalar polynomial

(I.8)

has no zeros in the closed unit disc. Of course one or several
of the coefficients may be zero. Then the spec-
tral density of the stationary vector process becomes

, where .
Note that any ARMA model (I.6) can be reduced to a form

where (I.7) holds. Naturally, in general this comes with an in-
crease in the model order and ultimately of the number of pa-
rameters to be estimated. In particular, any ARMA model of
order can be represented by a ARMA model satisfying (I.7)
of order . To see this note that an ARMAmodel of order
has a state space representation

of dimension with transfer function
. The inverse system

has transfer function with
. The number of parameters of the repre-

sentation will in general grow from to . On
the other hand, the representation satisfying (I.7) will be sparse
whenever conditional independence relations hold, as we shall
see in Section III. For highly sparse models the two ARMA rep-
resentations will have a similar number of parameters.
Consequently, our basic problem is to determine a spectral

density of the form

(I.9)

satisfying the sparsity constraint (I.3) and the moment condi-
tions

(I.10)

where is a scalar pseudo-polynomal1 of degree at most and
is a real, para-hermitian matrix-valued pseudo-poly-

nomial; i.e., . Then the coefficients
in the corresponding ARMAmodel (I.6) can be obtained by de-
termining the minimum-phase spectral factors and
from

(I.11a)

(I.11b)

To deal with this problem we shall use the convex optimization
approach to moment problems developed in various forms in
[10]–[12], [16], [17], which we shall review in Section III to-
gether with the basic ideas on graphical models. At the same
time we obtain an alternative motivation for the optimization
procedure in [4], [6]. In Section IV we incorporate the sparsity
constraint (I.3) in this optimization approach to yield one of our
main theoretical results.
However, in applied problems, we are just given a string of

measured data

(I.12)

from the ARMA model (I.6), and we want to estimate the pa-
rameters without prior knowledge
of the topology of the graph. Hence we also need to estimate
a suitable graphical structure from the data. In fact, in many
applications, determining the topology of the graph is the main
task. This is the topic of Section V. Finally, in Section VI, we
present some simulations and in Section VII our conclusions.
This is a extension of our previous conference paper [24].

II. MOTIVATING EXAMPLES

We begin by presenting a selection of practical problems
where the application of graphical models shows promise.

1A polynomial in positive and negative powers of .
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Fig. 2. Estimated graphical model for air pollution data.

For each of these applications, the interaction graphs, taken
from the literature, have been determined by nonparametric
methods. Using an ARMA approach as in this paper would also
produce a dynamical model which can be used for prediction. It
would also produce a more economical description for coding
purposes.

A. Environmental Chemistry

In the environment the dynamics of chemical species concen-
trations are determined by a large number of highly interdepen-
dent reactions. Specifically, each compound may be involved
in several reactions in the role of either a reactant or a product,
hence resulting in a concentration decrease or increase respec-
tively.
Graphical models constitute a very powerful tool in analyzing

such complex systems. In fact, if the concentration dynamics of
two chemical species are conditionally independent, it may be
assumed that no significant direct reaction takes place between
them. Hence, by estimating the interaction graph of a set of com-
pounds one can gain insight about the reactions that govern the
system dynamics.
Dahlhaus in [4] applied these concepts to a set of air pollu-

tants. The data collected consisted of concentrations of CO and
NO, which are produced by human activities (transportation,
heating and industry), and , which are byproducts of
atmospheric reactions, and the global radiation intesity ( ),
which directly affects these reactions. The underlying graph-
ical model was estimated by statistical testing on the inverse
smoothed periodogram, and the resulting graph is depicted in
Fig. 2.

B. Financial Markets Interdependence

In the design of investment portfolios it is crucial to have in-
formation about the levels of correlation between different asset
prices in order to accurately estimate risk. On the other hand,
during times of financial crisis, the correlation between different
markets tends to increase. In order to be able to accurately as-
sess risk in such situations, it is useful to consider conditional
correlations instead. In fact, by enforcing certain conditional
independence relations, one can eliminate the influence of the
overall market dynamics.
In [26] Adelwahab et al. analyzed various stock markets

utilizing graphical models. The data considered was the time
series of day-to-day stock markets returns at closing time of
the world’s biggest financial markets. Here, the return for each
market is computed as

(II.1)

where is the corresponding closing price on day . The
countries considered were United States (S&P 500 index),
United Kingdom (FTSE 100 index), Japan (Nikkei index), Ger-
many (German Akien index), Canada (TSE 300 index), Hong

Fig. 3. Interaction graph for the international stock returns. The solid and
dashed edges indicates strong and weak partial correlation respectively.

Kong (Hang Seng index), France (CAC 40 index), Switzerland
(SI index), Australia (AOAI) and Italy (MIBTel index). The
period from January 2000 till December 2005 was considered
and the interaction graph depicted in Fig. 3 was estimated by
applying the nonparametric identification procedure proposed
in [4].
The authors of [26] observed that the markets are interacting

by geographical proximity leading to three highly interacting
subgraphs: one each for Europe, Asia and North America.
Among these the European group is noteworthy by the strength
of the partial correlation between its markets. This fact was at-
tributed to the existence of the Economic and Monetary Union
(EMU) since 1999. Another contributing factor is the small
difference in time zones and the recent efforts in synchronizing
the trading within Europe. Of particular interest is the role
of Germany. In fact it appears from this model that Germany
acts as a gateway of information between the European and
American markets.

C. Physiological Monitoring

In intensive care, a high number – in the order of hundreds –
of physiological parameters are recorded in order to monitor the
condition of a patient. Such an high dimensional time series is
then processed by an automated alarm system to ensure timely
warnings whenever the patient enters into a critical condition.
In [25] Gather et al. explored the use of graphical models as

a tool to build more robust intensive care monitoring systems.
In fact, they have shown that different physiological conditions
correspond to different interaction graphs of the monitored
parameters. Therefore critical conditions can be detected by
graphical model estimation. To validate this potential ap-
proach they considered a set of parameters concerning the
haemodynamic system, namely: heart rate (HR), arterial mean
pressure (APM), pulmonary arterial mean pressure (PAPM),
central venous pressure (CVP), blood temperature (Temp) and
pulsoximetry (SpO2). Such a choice of parameters was made
because the interactions between them are well understood, and
hence the estimation process can be validated against experts
knowledge. The data about the above vital signs was collected
every minute from a number of patients with pulmonary artery
catheters. For each patient the data was divided in batches
each corresponding to the different physiological condition
occurring at that time. Then an estimated graphical models for
each condition is obtained by averaging over the differerent
patients as shown in Fig. 4. It was noted that such average
graphs agreed with experts knowledge and thus could be used
to potentially identify the patients conditions.
In order to apply this approach to online alarm systems we

need to develop procedures for estimating the interaction graph
that are robust even when the number of data points is low. In
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Fig. 4. Partial correlation graphs corresponding to different clinical states.
Solid, dashed and dotted lines stands for different levels of partial correlation
from high to low.

fact, the occurrence of a critical state must be detected imme-
diately, and the longer data strings used for the estimation the
longer is the delay in the eventual alarm.

III. PRELIMINARIES

For any real, rational function taking values in

with is the Hermitian generalization of the
real part in the scalar case. Moreover, for two -valued
functions in , where is the unit circle, define the
inner product

where denotes the trace.
Given the autocovariances in , define

the matrix pseudo-polynomial

(III.1)

We also define the family of matrix pseudo-
polynomials

(III.2)

where . Then a straight-forward cal-
culation shows that

(III.3)

for any , but, in view of (I.5) and (I.11), we also
have

(III.4)

where with , ,
being the coefficients of the spectral factor of as
defined in (I.11), and

...
...

. . .
...

(III.5)

is the block Toeplitz matrix corresponding to .
Proposition 1: Given the autocovariances ,

there exists a satisfying the moment equations (I.10) if
and only if for all , or, equivalently,

; i.e., the block Toeplitz matrix is positive def-
inite.

Proof: Since (III.4) should hold for all such that
, for all if and only if
. Now, given (I.10)

for any and , which shows that the
positivity condition is necessary. Sufficiency will follow from
Theorem 2.

A. A Convex-Optimization Solution of the Moment Problem

We begin by reviewing the convex optimization approach to
moment problems developed in [10]–[12], [16], [17]. The fol-
lowing result can be found in [17].
Theorem 2: Suppose that , and let .

Then the optimization problem

(III.6)

has a unique solution , and it is rational of the form

(III.7)

Here is the unique solution of the dual optimization problem

(III.8)

where the dual functional

(III.9)

is strictly convex.
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For the benefit of the reader we provide a brief derivation
of the dual functional (III.9). To this end, we note that the La-
grangian is given by

where are matrices of Lagrange multi-
pliers. This in turn can be written in the more compact form

(III.10)

In the dual problem , we need con-

sider only , as the supremum is infinite for
. Since the Gateux differential of

is , is a
stationary point, which inserted into (III.10) yield the dual
functional (III.9). For the rest of the proof we refer the reader
to [17].
Theorem 2 provides a complete parameterization in terms of

of all models (I.6) of the form (I.7) such that (I.9)
satisfies the moment conditions (I.10). In particular, choosing

we obtain the maximum entropy solution which corre-
sponds to the AR model (I.4) and the solution of which is linear
problem where can be obtained from the normal equations.

B. Graphical Models of Stochastic Processes

The cross-spectrum

of two zero-mean, stationary Gaussian stochastic vector pro-
cesses and plays an important role in the
theory of graphical models. In particular, if and are scalar,
the coherence

of with is useful in studying possible linear dynamic rela-
tions between with , as it measures the extent to which
may be predicted from by an optimal linear least squares
estimate.
Now, consider an -dimensional, zero-mean, Gaussian, sta-

tionary stochastic vector process . In order to build a
graphical model, conditional independence needs to be charac-
terized in way suitable for analysis. For a given ,

, let be a permutation matrix such that

(III.11)

where

and is formed by the remaining components ordered by their
indices. The spectral density of can be evaluated from the one
of and partitioned in the following way:

We are now interested in determining the part of that is or-
thogonal to by solving the following minimization
problem:

the optimal solution of which can be obtained as the output of
an acasual filter with the input and the transfer function

[3], thus leading to the spectral density

the entries of which are the spectra and cross-spectra of the
chosen components after removing the effects of all the other.
In particular, we have

Clearly, if is Gaussian, then so is , and hence and are
conditional independent if and only if for all
. The conditional coherence of with can be defined as

and, as proved by Dahlhaus in [4], satisfies

(III.12)

whenever is full rank for all . From this it follows that:

(III.13)

is a necessary and sufficient condition for and to be con-
ditionally independent. This is a dynamic version of a very im-
portant result first established by Dempster [14] and recently
elaborated upon in [13], [15]
Using this characterization of conditional independence we

can define subsets of with a common graphical structure.
To this end, let be the set of all spectral densities
such that (III.13) holds for all .

IV. COVARIANCE EXTENSION FOR GRAPHICAL MODELS

We now turn to the basic problem of this paper, namely to
find a model (I.6) that satisfies (I.2) and the sparsity condition
(III.13). Now, by Theorem 2, all such solutions must have a
spectral density of the form (I.9), and therefore the sparsity con-
dition (III.13) can be reformulated as

(IV.1)

Indeed, the main reason for choosing the numerator in
to be scalar is to insure that the sparsity pattern of
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will be inheritied by . Now, unlike , the set is un-
fortunately not convex, so modifying the primal problem (III.6)
by maximizing over is not a good idea. Instead, we
modify the dual problem (III.8) by adding the constraint (IV.1).
This gives us the convex optimization problem

(IV.2)

This optimization problem was used in the special maximum-
entropy case in [6] to derive an ARmodel, but no theoret-
ical justification was provided. In our setting, the dual problem
(III.8) is just a device to solve the the primal problem (III.6),
and a priori it is not clear how the added constraint (IV.1) affects
the original problem.We need to formulate a problem for which
(IV.2) is the dual. To this end, let denote the set of all ,
expressed in the pseudo-polynomial form (III.1), with the prop-
erty that there is an such that and
for all and for .
Proposition 3: Suppose that . Then, for each

, (IV.2) is the dual of the optimization problem

(IV.3)

Moreover, strong duality holds for (IV.3) and (IV.2).
Proof: The Lagrangian of (IV.3) is given by

where, for , are Lagrange multipliers for
and for . Then the dual

problem becomes

However, whenever fails to be positive semi-definite on the
unit circle, the supremum takes the value . Moreover, as we
shall see in the proof of Theorem 4, the dual functional will not
have a minimum on the boundary of . Hence we need
only minimize over . The Gateux differential of
the Lagrangian with respect to is

and therefore is a stationary point of .
Then by substituting the stationary point into the Lagrangian we
obtain the objective function of (IV.2).
To prove the last statement note that that (IV.3) is a relaxation

of (III.6) with used in place of the moment conditions.
Since (III.6) is feasible and hence so is also (IV.3).
As the feasibility region of (IV.3) is the intersection between an
open convex set and an affine set, any feasible point belongs to
its relative interior so that Slater’s condition holds.

It remains to show that the dual optimization problems
and have unique solutions.
Theorem 4: Suppose that , and let .

Then the optimization problem (IV.3) has a unique solution ,
which satisfies the sparsity condition (I.3), and this solution is
rational of the form

(IV.4)

Here is the unique solution of the convex optimization
problem (IV.2); i.e.

(IV.5)

where the strictly convex functional is given by (III.9) and
is the subset of all such that

for .
The proof of Theorem 4 is deferred to the Appendix. In the

special case when the primal problem (IV.3) reduces to
maximizing the entropy gain

(IV.6)

subject to all covariance conditions corresponding to edges in
the graph; i.e., subject to

(IV.7)

This is the maximum entropy solution corresponding to the
graph . The corresponding dual problem amounts to mini-
mizing

(IV.8)

subject to for all . Here we have used
the fact that for any positive definite
matrix. Moreover, we have removed a constant term in dual cost
criterion.
It turns out that (IV.8) is precisely equivalent to the problem

considered in [6], as the following corollary states.
Corollary 5: Given the covariance sequence

, let be its block Toeplitz matrix
(III.5). Then the maximum entropy solution corresponding to
the graph is

(IV.9)

where

(IV.10)

is the unique optimal solution of the problem to minimize

(IV.11)
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over all symmetric, positive semi-definite
matrices such that, for

(IV.12a)

(IV.12b)

Proof: We want to rewrite (IV.8) in the form (IV.11). To
this end, we first observe that (III.4) yields

from which (IV.12a) readily follows. Next, from (I.11) we have

and hence

However, the real, rational function is outer in the
unit disc . Therefore, by Jensen’s formula [27, p. 184]

Now, since , we have

and hence (IV.8) is equivalent to (IV.11), as claimed. Finally,
(IV.12b) is equivalent to .
In a more recent paper [28], Songsiri and Vandenberghe add

an regularization term in to the cost function (IV.11), thus
replacing the sparsity constraint (IV.12). Since the norm fa-
vors sparsity, this has the advantage of being a device for simul-
taneously estimating the graph topology, rather than estimating
separately. Following this lead, we might consider replacing

(IV.2) in our ARMA setting by the problem to minimize

(IV.13)

for some suitable norm. However, in this paper we have
chosen a different route, which we shall describe in the next
section.

V. ARMA IDENTIFICATION OF GRAPHICAL MODELS FROM
STATISTICAL DATA

Given a string of measured data

(V.1)

from the ARMAmodel (I.6), wewant to estimate the parameters
and a suitable graphical structure .

To this end, we form the standard (biased) sample autocovari-
ances

(V.2)

Such estimates are guaranteed to satisfy the condition
. Moreover, we will consider a non-parametric Hermitian esti-

mate of the spectrum , such as the (damped or smoothed)
periodogram.
Our identification approach now proceeds in the following

steps.
(a) Compile a list of the most likely sparsity patterns (graph-

ical structures) as described in detail below.
(b) For each , estimate the numerator pseudo-polynomial

.
(c) Determine by solving the convex optimization problem

(IV.2) with and given by (V.2) and (b) respecively. In
this way we can estimate a spectral density

for each in the list compiled under point (a).
(d) Compare the estimates thus obtained by some fitness

function.
(e) Determine the parameters and

from (I.11) by spectral factorization.
It remains to provide procedures for the steps in points (a), (b)
and (d), a task to which we turn next.

A. Compiling a List of Candidate Graphical Structures

We base our approach on a method to test the null hypothesis

( )

To this end, we form a nonparametric estimate of the conditional
coherence (III.12) as

(V.3)

where is defined as in (III.11) and is the (smoothed)
nonparametric spectral estimate introduced above. It
can be shown [5] that the real and imaginary parts of

are asymptotically normally
distributed with mean zero as and that the limit
variance depends only on the smoothing procedure used
to determine . Moreover, as also shown in [5], we
can select frequencies so that

for all such
that .
Under the the null hypothesis the real and imaginary

parts of , , are asymptotically in-
dependent and normally distributed with mean zero and vari-
ance . Hence the probability that the absolute values of these
random variables are all less than or equal to is

which asymptotically equals

where is the cumulative distribution function of a Gaussian
variable with mean zero and variance . Now, following
Dahlhaus in [4], let be such that .
Then we reject the null hypothesis at the significance
level if any of the random variables ,
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Fig. 5. Partial coherences of a stochastic process with an interaction graph as in Fig. 1. The estimated counterparts computed via a smoothed periodogram from
data points are plotted in dashed lines.

Fig. 6. Some of the graph candidates generated by the estimated partial coherence of Fig. 5.

, , has absolute value greater
than .
In this paper, instead of considering a fixed , we now vary
from 0 to 1, and let be the set of such

that the null hypothesis is rejected by this test at the significance
level . If is rejected at the significance level , it will also
be rejected for all ; i.e., . Therefore the
family of graphical structure will consist
of a finite number of distinct graphical structures

ordered by significance levels. In particular,
requires , and hence , to be diagonal, whereas

does not enforce any conditional in-
dependence. Note that the number of different graphical
structures considered above is polynomial in . This is very
advantageous compared to an exahaustive list, as, for example,
considered in [6], which grows exponentially in .
To illustrate the proposed method, let us consider an example.

Fig. 5 depicts the theoretically partial coherences of a spectrum
of the form (I.9) corresponding to a graph as in Fig. 1. The cor-
responding estimates derived as in (V.3) are reproduced with
dashed lines. Now, for each subplot, we need to consider the in-
finity norm of the estimated partial coherence and order edges
accordingly. From Fig. 5 we obtain

(V.4)

ordered from low to high. Finally we build the list of candidate
graphs in the following way. Start with corresponding
to a diagonal spectrum, and then form by suc-
cessively adding edges from the end of the list (V.4) one at
the time. In particular we will have ,

, etc. as depicted in Fig. 6. Note that, with
the given estimates, all edges of the graph in Fig. 1 are ranked
higher than the missing edges and hence the original graph is
present in the compiled list of candidates labeled as .

B. Estimating the Pseudo-Polynomial

Given a graphical structure , consider a matrix version of
the procedure in [20, page 689], which amounts to solving

(V.5)

with , , where the angles
are suitable frequencies, possibly,

but not necessarily, the same as the ones above, and is the
induced norm. It is not hard to see that (V.5) is equivalent
to the following semi-definite programing problem:

(V.6)
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In order to insure that and are positive definite, one may
need to add the constraints and ,

, for some . Note, however, that the posi-
tivity of these quantities on frequencies between the sampling
points is not automatically guaranteed. Hence a more advanced
approach would be to use the Kalman-Yakubovich-Popov equa-
tions to express the positivity constraints in terms of the coeffi-
cients of and . In the solution we are of course only inter-
ested in , as a more accurate will be determined in step (c).
However, the obtained here may be used as a starting point
in an iterative algorithm solving (IV.2).
A more natural, but more complicated, method for deter-

mining could be to solve the quasi-convex optimization
problem

Proceeding in the same way as the step from (V.5) to (V.6) we
obtain the constraints

, which are not linear, or, equivalently

(V.7)

which is linear only if we disallow from being a variable.
Therefore, this problem needs to be solved in steps. First fix
and solve the feasibility problem to find and

satisfying (V.7), after which is decreased in steps
(e.g., by the bisection algorithm) until we obtain the smallest
for which feasibility problem is solvable. Recall that is
the subset of all such that for .
It remains to determine bounds for this method. This could be
done along the lines proposed in [21]–[23].

C. Graphical Model Selection

It remains to grade each of the models obtained with some fit-
ness function that weights both the sparsity of the model and the
adherence to the observed data. For instance in [6] information
theoretic criteria that originate from order selection were con-
sidered. Here we propose a fitness function that naturally stems
from the theory presented so far.
Let and be calculated as in (b) and (c) above with

respect to the edge list . Since, in solving (IV.2), only a subset
of the estimated covariance lags are matched, one can utilize the
remaining ones as data for validation. Specifically, we consider

(V.8)

which is the maximum gap between the estimated covariance
lags and the ones corresponding to , as a criterion to
judge how close the model matches the data.
However, (V.8) alone is not effective as a fitness function.

In fact, by choosing models that minimize we end up

favoring dense models over sparse ones. Hence we need also to
weight in the sparsity pattern, which is the cardinality of , here
denoted as . In particular, we considered the following
fitness function:

(V.9)
to be maximized, where is some small positive constant. By
using a product instead of a sum in (V.9) we obtain robustness to
scaling. In fact, any scaling performed on one of the two terms
becomes just a scaling factor of the fitness function itself and,
thus does not change the optimal solution. Note that both fac-
tors are nonnegative. The has been introduced not to exclude
diagonal spectra, as the fitness function would otherwise
always be zero for them.
Remark 6: By replacing the dual problem (IV.2) by its
-regularized counterpart (IV.13), we could potentially com-

bine steps (a), (c) and (d). We have not investigated whether
such a procedure would be more efficient at identifying the
graphical structure than the one presented above – this will be
a matter of future study.
In any case, it appears that a fixed value of in (IV.13) is

not likely to be optimal for all data records. Hence, as proposed
in [28] in the context of AR models, the regularized problem
would need to be solved for different values of and the re-
sulting models compared. The computational complexity of the
two approaches would then largely depend on the number of
candidate models to be evaluated.

VI. SIMULATIONS

In order to validate our approach we present some results
from simulations. In particular, we focus on the ability of the
proposed method to estimate the underlying graphical structure
correctly. To this end, we generated data sequences of various
length by feeding white noise through two different systems
(I.6) with . Here, the two models considered have the
same simple graphical structure, a connected chain. For each
data length, the procedure described in Section V was executed
with data from 100 different realizations. In this paper we have
used the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method,
which approximates Newton’s method, to solve (IV.2).
The first system considered is an AR filter with whose

pole positions are depicted in Fig. 7(a). The estimation proce-
dure was performed using ARMA models with . To de-
termine the effect of the zero estimation, we executed the pro-
cedure also with fixed, thus limiting the model class
considered to AR models. In this case, the true value of
the order was used instead.
In Fig. 7(b) the percentage of runs that completed success-

fully estimating the correct graphical structure are reported, for
each data length. Note that for or higher we obtained
a similar performance using our ARMA procedure as we did
when restricting the model class to AR models. Still, with short
data records, the extra estimation of zeros clearly has an effect
on the success rate.
The second set of simulations was run with data generated

by an ARMA system with . In Fig. 8(a), the positions
of the zeros and poles are depicted. Our ARMA procedure was
executed with the same order and compared to the AR
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Fig. 7. Simulation results obtained with data generated by an AR filter. (a)
Poles of the AR model. (b) Success rate of the proposed procedure using
(dark grey) and an estimated (grey), respectively.

procedure using the higher order to allow for a compa-
rable number of parameters. To gain further insight, a third exe-
cution of the procedure was performed for each data set with
set equal to that of the original system. The results are reported
in Fig. 8(b).
In this case, the AR estimation performs poorly without

showing a clear improvement as the data length increases. This
is most probably due to the difficulty of a low order AR model
to describe accurately pairs of a pole and a zero close to each
other. Clearly, a higher order AR model class can be considered
instead, although this will lead to models of much higher
dimensions. On the other hand, it is interesting to compare the
difference in performance between using an estimated and the
true . In the same way as for the first simulation, an estimated
yields a worse success rate with shorter data sequences while

becoming comparable as the data length increases.
These results suggest that the proposed identification proce-

dure is promising. Nonetheless, for short data records, the esti-
mation of the MA part has a negative effect on the performance
of the graphical structure identification. This problem may be
overcome with alternative zeros estimation techniques.

VII. CONCLUSION

In this paper we have extended the results in [4], [6] to
graphical models of ARMA process. This has been done by
posing the problem in the moment-problem framework of [11],
[12], [16]–[18]. In particular we have shown that, given the MA
part, a minimum-phase ARMA model with graphical structure

Fig. 8. Simulation results obtained with data generated by an ARMA system.
(a) Poles and zeros of the ARMA model. (b) Success rate of the proposed pro-
cedure using (dark grey), an estimated (grey), and the true (light
grey), respectively.

is uniquely determined, up to a scalar factor, by a particular
subset of covariance values and that the corresponding set of
interpolation conditions is the largest such set that guarantees
the desired graphical structure. Except for allowing for tuning
the solution within the same ARMA model class, our approach
extends and spreads further light on previous approaches and
results. Finally, we apply this parameterization to the problem
of system identification with sparsity constraints. We provide
a step-by-step procedure to estimate the graphical structure
and the corresponding ARMA model respecting the sparsity
pattern. Some of these results are preliminary in nature, and
further work is needed to test numerical algorithms and statis-
tical procedures. For short data records, as in Application C in
Section II, one may consider using a THREE-type approach
[12], for which there now are efficient algorithms in the mul-
tivariable case [29]–[31].

APPENDIX

Proof of Theorem 4: For any symmetric matrix ,
let be the matrix formed from by replacing all ele-
ments corresponding to by zero. Then is a pro-
jection, and, since the diagonal elements of are unaffected
by , we have . Moreover, since sym-
metric

(A1)
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where is an matrix in which element is one and
all other elements are zero. Therefore, since

(A2)

For the proof of Theorem 4 we need four lemmas.
Lemma 7: Let be the subset of all

such that for . Then and
are convex sets of the same dimension.

Proof: Clearly the space of all such that has
the same dimension as , and consequently
and have the same dimension. Convexity is immediate.

Next, define the map defined
as in (III.1) by

(A3a)

where, for

(A3b)

Lemma 8: The map is in-
jective.

Proof: Since the dual functional , defined by (III.9), is
strictly convex (Theorem 2), then so is its restriction to .
Hence it has at most one stationary point, which would then be
the solution of for some . In fact,
in view of (III.3), can be written

which has the Gateaux derivative

Hence, any stationary point has to satisfy (I.10), which after
projection yields .

Lemma 9: The inverse image is bounded for any
compact .

Proof: First note that, in view of (A2), (A3) and the fact
that

(A4)

for each , where is a constant. Next, for each
, we choose an such that and
for all and for . Since the

assignment of , , is arbitrary, we select so
that the smallest eigenvalue of is maximized. Then, since
is compact, these eigenvalues are bounded away from zero,

and, in particular, there is an such that for

all . Moreover, since and , (A2)
yields . Therefore, by (III.4)

(A5)

If is nonempty, by Lemma 8, it is a singleton , and
. Hence it follows from (A4) and (A5)

that . Thus , and hence , is bounded for all
.

Lemma 10: The moment map
is proper; i.e., the inverse image is

compact for any compact .
Proof: We first note that, in view of (III.3), the fact that

, and Cramer’s rule

(A6)
where denotes the adjugate matrix of . Next, let
be a sequence in converging to . If the inverse image
of this sequence is empty or finite, it is trivially compact, so
we assume it is infinite. Since is bounded (Lemma 9),
there is a convergent subsequence in the inverse image
of the sequence converging to some limit . (To simplify
notations we use as an index also for these subsequences.) We
want to show that . The only way this can fail

is that belongs to the the boundary of , that is,
has a zero on the unit circle. We need to rule this out. From (A6)
we have

which is the same as

(A7)

Suppose belongs to the the boundary of ;
i.e., there is a a such that . Then,
if are the eigenvalues of , we have

. Therefore, if is a

simple zero, , and there is an
such that the Lipschitz condition holds for

. Therefore, in view of (A7)

which is a contradiction. If is a multiple zero of order , then
holds for . Then zeros can

be canceled, reducing the problem to the one already treated.
Hence , establishing that is proper.
We are now in a position to prove Theorem 4. By Lemma 7,

and are Euclidean spaces of the same di-
mension; i.e., they are diffeomorphic to for the appropriate
. Moreover, the map is in-

jective (Lemma 8) and proper (Lemma 10). Consequently, by
Theorem 2.1 (or, in a simpler form, Corollary 2.3) in [19], is
a homeomorphism. In particular, the dual optimization problem
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(IV.5) has a unique solution. The rest follows from strong du-
ality (Proposition 3).
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