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Abstract

We consider stochastic multi-armed bandits

where the expected reward is a unimodal func-

tion over partially ordered arms. This impor-

tant class of problems has been recently inves-

tigated in (Cope, 2009; Yu & Mannor, 2011).

The set of arms is either discrete, in which case

arms correspond to the vertices of a finite graph

whose structure represents similarity in rewards,

or continuous, in which case arms belong to a

bounded interval. For discrete unimodal ban-

dits, we derive asymptotic lower bounds for the

regret achieved under any algorithm, and pro-

pose OSUB, an algorithm whose regret matches

this lower bound. Our algorithm optimally ex-

ploits the unimodal structure of the problem, and

surprisingly, its asymptotic regret does not de-

pend on the number of arms. We also pro-

vide a regret upper bound for OSUB in non-

stationary environments where the expected re-

wards smoothly evolve over time. The analytical

results are supported by numerical experiments

showing that OSUB performs significantly bet-

ter than the state-of-the-art algorithms. For con-

tinuous sets of arms, we provide a brief discus-

sion. We show that combining an appropriate

discretization of the set of arms with the UCB

algorithm yields an order-optimal regret, and

in practice, outperforms recently proposed algo-

rithms designed to exploit the unimodal struc-

ture.
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1. Introduction

Stochastic Multi-Armed Bandits (MAB) (Robbins, 1952;

Gittins, 1989) constitute the most fundamental sequen-

tial decision problems with an exploration vs. exploita-

tion trade-off. In such problems, the decision maker se-

lects an arm in each round, and observes a realization of

the corresponding unknown reward distribution. Each de-

cision is based on past decisions and observed rewards.

The objective is to maximize the expected cumulative re-

ward over some time horizon by balancing exploitation

(arms with higher observed rewards should be selected

often) and exploration (all arms should be explored to

learn their average rewards). Equivalently, the perfor-

mance of a decision rule or algorithm can be measured

through its expected regret, defined as the gap between

the expected reward achieved by the algorithm and that

achieved by an oracle algorithm always selecting the best

arm. MAB problems have found many fields of appli-

cation, including sequential clinical trials, communication

systems, economics, see e.g. (Cesa-Bianchi & Lugosi,

2006; Bubeck & Cesa-Bianchi, 2012).

In their seminal paper (Lai & Robbins, 1985), Lai and Rob-

bins solve MAB problems where the successive rewards of

a given arm are i.i.d., and where the expected rewards of

the various arms are not related. They derive an asymp-

totic (when the time horizon grows large) lower bound of

the regret satisfied by any algorithm, and present an algo-

rithm whose regret matches this lower bound. This ini-

tial algorithm was quite involved, and many researchers

have tried to devise simpler and yet efficient algorithms.

The most popular of these algorithms are UCB (Auer et al.,

2002) and its extensions, e.g. KL-UCB (Garivier & Cappé,

2011; Cappé et al., 2013) (note that KL-UCB algorithm

was initially proposed in (Lai, 1987), see (2.6)). When

the expected rewards of the various arms are not related

(Lai & Robbins, 1985), the regret of the best algorithm is

essentially of the order O(K log(T )) where K denotes

the number of arms, and T is the time horizon. When
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K is very large or even infinite, MAB problems become

more challenging. Fortunately, in such scenarios, the ex-

pected rewards often exhibit some structural properties that

the decision maker can exploit to design efficient algo-

rithms. Various structures have been investigated in the

literature, e.g., Lipschitz (Agrawal, 1995; Kleinberg et al.,

2008; Bubeck et al., 2008), linear (Dani et al., 2008), con-

vex (Flaxman et al., 2005).

We consider bandit problems where the expected reward

is a unimodal function over partially ordered arms as in

(Yu & Mannor, 2011). The set of arms is either discrete, in

which case arms correspond to the vertices of a finite graph

whose structure represents similarity in rewards, or contin-

uous, in which case arms belong to a bounded interval. This

unimodal structure occurs naturally in many practical deci-

sion problems, such as sequential pricing (Yu & Mannor,

2011) and bidding in online sponsored search auctions (B.,

2005).

Our contributions. We mainly investigate unimodal ban-

dits with finite sets of arms, and are primarily interested

in cases where the time horizon T is much larger than the

number of arms K .

(a) For these problems, we derive an asymptotic regret

lower bound satisfied by any algorithm. This lower bound

does not depend on the structure of the graph, nor on its

size: it actually corresponds to the regret lower bound in a

classical bandit problem (Lai & Robbins, 1985), where the

set of arms is just a neighborhood of the best arm in the

graph.

(b) We propose OSUB (Optimal Sampling for Unimodal

Bandits), a simple algorithm whose regret matches our

lower bound, i.e., it optimally exploits the unimodal struc-

ture. The asymptotic regret of OSUB does not depend on

the number of arms. This contrasts with LSE (Line Search

Elimination), the algorithm proposed in (Yu & Mannor,

2011) whose regret scales as O(γD log(T )) where γ is the

maximum degree of vertices in the graph and D is its diam-

eter. We present a finite-time analysis of OSUB, and derive

a regret upper bound that scales as O(γ log(T )+K). Hence

OSUB offers better performance guarantees than LSE as

soon as the time horizon satisfies T ≥ exp(K/γD). Al-

though this is not explicitly mentioned in (Yu & Mannor,

2011), we believe that LSE was meant to address bandits

where the number of arms is not negligible compared to

the time horizon.

(c) We further investigate OSUB performance in non-

stationary environments where the expected rewards

smoothly evolve over time but keep their unimodal struc-

ture.

(d) We conduct numerical experiments and show that

OSUB significantly outperforms LSE and other classi-

cal bandit algorithms when the number of arms is much

smaller than the time horizon.

(e) Finally, we briefly discuss systems with a continuous set

of arms. We show that using a simple discretization of the

set of arms, UCB-like algorithms are order-optimal, and ac-

tually outperform more advanced algorithms such as those

proposed in (Yu & Mannor, 2011). This result suggests that

in discrete unimodal bandits with a very large number of

arms, it is wise to first prune the set of arms, so as to reduce

its size to a number of the order of
√
T/ log(T ).

2. Related work

Unimodal bandits have received relatively little attention

in the literature. They are specific instances of bandits

in metric spaces (Kleinberg, 2004; Kleinberg et al., 2008;

Bubeck et al., 2008). In this paper, we add unimodality and

show how this structure can be optimally exploited. Uni-

modal bandits have been specifically addressed in (Cope,

2009; Yu & Mannor, 2011). In (Cope, 2009), bandits

with a continuous set of arms are studied, and the author

shows that the Kiefer-Wolfowitz stochastic approximation

algorithm achieves a regret of the order of O(
√
T ) under

some strong regularity assumptions on the reward func-

tion. In (Yu & Mannor, 2011), for the same problem, the

authors present LSE, an algorithm whose regret scales as

O(
√
T log(T )) without the need for a strong regularity as-

sumption. The LSE algorithm is based on Kiefer’s golden

section search algorithm. It iteratively eliminates subsets of

arms based on PAC-bounds derived after appropriate sam-

pling. By design, under LSE, the sequence of parameters

used for the PAC bounds is pre-defined, and in particular

does not depend of the observed rewards. As a conse-

quence, LSE may explore too much sub-optimal parts of

the set of arms. For bandits with a continuum set of arms,

we actually show that combining an appropriate discretiza-

tion of the decision space (i.e., reducing the number of arms

to
√
T/ log(T ) arms) and the UCB algorithm can outper-

form LSE in practice (this is due to the adaptive nature of

UCB). Note that the parameters used in LSE to get a regret

of the order O(
√
T log(T )) depend on the time horizon T .

In (Yu & Mannor, 2011), the authors also present an exten-

sion of the LSE algorithm to problems with discrete sets

of arms, and provide regret upper bounds of this algorithm.

These bounds depends on the structure of the graph defin-

ing unimodal structure, and on the number of arms as men-

tioned previously. LSE performs better than classical ban-

dit algorithms only when the number of arms is very large,

and actually becomes comparable to the time horizon. Here

we are interested in bandits with relatively small number of

arms.

Non-stationary bandits have been studied in
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(Hartland et al., 2007; Garivier & Moulines, 2008;

Slivkins & Upfal, 2008; Yu & Mannor, 2011). Except

for (Slivkins & Upfal, 2008), these papers deal with

environments where the expected rewards and the best

arm change abruptly. This ensures that arms are always

well separated, and in turn, simplifies the analysis. In

(Slivkins & Upfal, 2008), the expected rewards evolve ac-

cording to independent brownian motions. We consider a

different, but more general class of dynamic environments:

here the rewards smoothly evolve over time. The challenge

for such environments stems from the fact that, at some

time instants, arms can have expected rewards arbitrarily

close to each other.

Finally, we should mention that bandit problems with struc-

tural properties such as those we address here can often

be seen as specific instances of problems in the control of

Markov chains, see (Graves & Lai, 1997). We leverage this

observation to derive regret lower bounds. However, algo-

rithms developed for the control of generic Markov chains

are often too complex to implement in practice. Our algo-

rithm, OSUB, is optimal and straightforward to implement.

3. Model and Objectives

We consider a stochastic multi-armed bandit problem with

K ≥ 2 arms. We discuss problems where the set of arms is

continuous in Section 6. Time proceeds in rounds indexed

by n = 1, 2, . . .. Let Xk(n) be the reward obtained at time

n if arm k is selected. For any k, the sequence of rewards

(Xk(n))n≥1 is i.i.d. with distribution and expectation de-

noted by νk and µk respectively. Rewards are independent

across arms. Let µ = (µ1, . . . , µK) represent the expected

rewards of the various arms. At each round, a decision rule

or algorithm selects an arm depending on the arms chosen

in earlier rounds and their observed rewards. We denote

by kπ(n) the arm selected under π in round n. The set Π
of all possible decision rules consists of policies π satis-

fying: for any n ≥ 1, if Fπ
n is the σ-algebra generated by

(kπ(t), Xkπ(t)(t))1≤t≤n, then kπ(n+1) is Fπ
n -measurable.

3.1. Unimodal Structure

The expected rewards exhibit a unimodal structure, simi-

lar to that considered in (Yu & Mannor, 2011). More pre-

cisely, there exists an undirected graph G = (V,E) whose

vertices correspond to arms, i.e., V = {1, . . . ,K}, and

whose edges characterize a partial order (initially unknown

to the decision maker) among expected rewards. We as-

sume that there exists a unique arm k⋆ with maximum

expected reward µ⋆, and that from any sub-optimal arm

k 6= k⋆, there exists a path p = (k1 = k, . . . , km = k⋆) of

length m (depending on k) such that for all i = 1, . . . ,m−
1, (ki, ki+1) ∈ E and µki

< µki+1 . We denote by UG the

set of vectors µ satisfying this unimodal structure.

This notion of unimodality is quite general, and includes,

as a special case, classical unimodality (where G is just a

line). Note that we assume that the decision maker knows

the graph G, but ignores the best arm, and hence the partial

order induced by the edges of G.

3.2. Stationary and non-stationary environments

The model presented above concerns stationary environ-

ments, where the expected rewards for the various arms

do not evolve over time. In this paper, we also consider

non-stationary environments where these expected rewards

could evolve over time according to some deterministic dy-

namics. In such scenarios, we denote by µk(n) the ex-

pected reward of arm k at time n, i.e., E[Xk(n)] = µk(n),
and (Xk(n))n≥1 constitutes a sequence of independent

random variables with evolving mean. In non-stationary

environments, the sequences of rewards are still assumed

to be independent across arms. Moreover, at any time n,

µ(n) = (µ1(n), . . . µK(n)) is unimodal with respect to

some fixed graph G, i.e., µ(n) ∈ UG (note however that the

partial order satisfied by the expected rewards may evolve

over time).

3.3. Regrets

The performance of an algorithm π ∈ Π is characterized

by its regret up to time T (where T is typically large). The

way regret is defined differs depending on the type of envi-

ronment.

Stationary Environments. In such environments, the re-

gret Rπ(T ) of algorithm π ∈ Π is simply defined through

the number of times tπk (T ) =
∑

1≤n≤T 1{kπ(n) = k}
that arm k has been selected up to time T : Rπ(T ) =
∑K

k=1(µ
⋆−µk)E[t

π
k (T )]. Our objectives are (1) to identify

an asymptotic (when T → ∞) regret lower bound satisfied

by any algorithm in Π, and (2) to devise an algorithm that

achieves this lower bound.

Non-stationary Environments. In such environments, the

regret of an algorithm π ∈ Π quantifies how well π
tracks the best arm over time. Let k⋆(n) denote the op-

timal arm with expected reward µ⋆(n) at time n. The

regret of π up to time T is hence defined as: Rπ(T ) =
∑T

n=1

(

µ⋆(n)− E[µkπ(n)(n)]
)

.

4. Stationary environments

In this section, we consider unimodal bandit problems in

stationary environments. We derive an asymptotic lower

bound of regret when the reward distributions belong to a

parametrized family of distributions, and propose OSUB,

an algorithm whose regret matches this lower bound.
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4.1. Lower bound on regret

To simplify the presentation, we assume here that the

reward distributions belong to a parametrized family of

distributions. More precisely, we define a set of dis-

tributions V = {ν(θ)}θ∈[0,1] parametrized by θ ∈
[0, 1]. The expectation of ν(θ) is denoted by µ(θ)
for any θ ∈ [0, 1]. ν(θ) is absolutely continuous

with respect to some positive measure m on R, and

we denote by p(x, θ) its density. The Kullback-Leibler

(KL) divergence number between ν(θ) and ν(θ′) is:

KL(θ, θ′) =
∫

R
log(p(x, θ)/p(x, θ′))p(x, θ)m(dx). We

denote by θ⋆ a parameter (it might not be unique) such

that µ(θ⋆) = µ⋆, and we define the minimal diver-

gence number between ν(θ) and ν(θ⋆) as: Imin(θ, θ
⋆) =

infθ∈[0,1]:µ(θ′)≥µ⋆ KL(θ, θ′).

Finally, we say that arm k has parameter θk if νk =
ν(θk), and we denote by ΘG the set of all parameters

θ = (θ1, . . . , θK) ∈ [0, 1]K such that the correspond-

ing expected rewards are unimodal with respect to graph

G: µ = (µ1, . . . , µK) ∈ UG. Of particular interest is

the family of Bernoulli distributions: the support of m
is {0, 1}, µ(θ) = θ, and Imin(θ, θ

⋆) = I(θ, θ⋆) where

I(θ, θ⋆) = θ log( θ
θ⋆ ) + (1 − θ) log( 1−θ

1−θ⋆ ) is KL diver-

gence number between Bernoulli distributions of respective

means θ and θ⋆.

We are now ready to derive an asymptotic regret lower

in parametrized unimodal bandit problems as defined

above. Without loss of generality, we restrict our atten-

tion to so-called uniformly good algorithms, as defined in

(Lai & Robbins, 1985) (uniformly good algorithms exist as

shown later on). We say that π ∈ Π is uniformly good if

for all θ ∈ ΘG, we have that Rπ(T ) = o(T a) for all a > 0.

Theorem 4.1 Let π ∈ Π be a uniformly good algorithm,

and assume that νk = ν(θk) ∈ V for all k. Then for any

θ ∈ ΘG,

lim inf
T→+∞

Rπ(T )

log(T )
≥ c(θ) =

∑

(k,k∗)∈E

µ⋆ − µk

Imin(θk, θ⋆)
. (1)

The above theorem is a consequence of results in optimal

control of Markov chains (Graves & Lai, 1997). All proofs

are presented in (Combes & Proutiere, 2014). As in classi-

cal discrete bandit problems, the regret scales at least log-

arithmically with time (the regret lower bound derived in

(Lai & Robbins, 1985) is obtained from Theorem 4.1 as-

suming that G is the complete graph). We also observe that

the unimodal structure, if optimally exploited, can bring

significant performance improvements: the regret lower

bound does not depend on the size K of the decision space.

Indeed c(θ) includes only terms corresponding to arms that

are neighbors in G of the optimal arm (as if one could learn

without regret that all other arms are sub-optimal).

In the case of Bernoulli rewards, the lower regret bound

becomes log(T )
∑

(k,k∗)∈E
µ⋆−µk

I(θk,θ⋆) . Note that LSE and

GLSE, the algorithms proposed in (Yu & Mannor, 2011),

have performance guarantees that do not match our lower

bound: when G is a line, LSE achieves a regret bounded

by 41/∆2 log(T ), whereas in the general case, GLSE in-

curs a regret of the order of O(γD log(T )) where γ is the

maximal degree of vertices in G, and D is its diameter.

The performance of LSE critically depends on the graph

structure, and the number of arms. Hence there is an im-

portant gap between the performance of existing algorithms

and the lower bound derived in Theorem 4.1. In the next

section, we close this gap and propose an asymptotically

optimal algorithm.

4.2. The OSUB Algorithm

We now describe OSUB, a simple algorithm whose re-

gret matches the lower bound derived in Theorem of 4.1

for Bernoulli rewards, i.e., OSUB is asymptotically opti-

mal. The algorithm is based on KL-UCB proposed in (Lai,

1987; Cappé et al., 2013), and uses KL-divergence upper

confidence bounds to define an index for each arm. OSUB

can be readily extended to systems where reward distri-

butions are within one-parameter exponential families by

simply modifying the definition of arm indices as done in

(Cappé et al., 2013). In OSUB, each arm is attached an

index that resembles the KL-UCB index, but the arm se-

lected at a given time is the arm with maximal index within

the neighborhood in G of the arm that yielded the highest

empirical reward. Note that since the sequential choices

of arms are restricted to some neighborhoods in the graph,

OSUB is not an index policy. To formally describe OSUB,

we need the following notation. For p ∈ [0, 1], s ∈ N, and

n ∈ N, we define:

F (p, s, n) = sup{q ≥ p :

sI(p, q) ≤ log(n) + c log(log(n))}, (2)

with the convention that F (p, 0, n) = 1, and F (1, s, n) =
1, and where c > 0 is a constant. Let k(n) be the arm

selected under OSUB at time n, and let tk(n) denote the

number of times arm k has been selected up to time n.

The empirical reward of arm k at time n is µ̂k(n) =
1

tk(n)

∑n
t=1 1{k(t) = k}Xk(t), if tk(n) > 0 and µ̂k(n) =

0 otherwise. We denote by L(n) = argmax1≤k≤K µ̂k(n)
the index of the arm with the highest empirical reward (ties

are broken arbitrarily). Arm L(n) is referred to as the

leader at time n. Further define lk(n) =
∑n

t=1 1{L(t) =
k} the number of times arm k has been the leader up to

time n. Now the index of arm k at time n is defined as:

bk(n) = F (µ̂k(n), tk(n), lk(L(n))).

Finally for any k, let N(k) = {k′ : (k′, k) ∈ E} ∪ {k} be

the neighborhood of k in G. The pseudo-code of OSUB is
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presented below.

Algorithm OSUB

Input: graph G = (V,E)
For n ≥ 1, select the arm k(n) where:

k(n) =







L(n) if
lL(n)(n)−1

γ+1 ∈ N,

arg max
k∈N(L(n))

bk(n) otherwise,

where γ is the maximal degree of nodes in G and ties are

broken arbitrarily.

Note that OSUB forces us to select the current leader often:

L(n) is chosen when lL(n)(n) − 1 is a multiple of γ + 1.

This ensures that the number of times an arm has been se-

lected is at least proportional to the number of times this

arm has been the leader. This property significantly simpli-

fies the regret analysis, but it could be removed.

4.3. Finite-time analysis of OSUB

Next we provide a finite time analysis of the regret

achieved under OSUB. Let ∆ denote the minimal sepa-

ration between an arm and its best adjacent arm: ∆ =
min1≤k≤K maxk′:(k,k′)∈E µk′ − µk. Note that ∆ is not

known a priori.

Theorem 4.2 Assume that the rewards lie in [0,1] (i.e.,

the support of νk is included in [0, 1], for all k), and that

(µ1, . . . , µK) ∈ UG. The number of times suboptimal arm

k is selected under OSUB satisfies: for all ǫ > 0 and all

T ≥ 3,

E[tk(T )] ≤











(1 + ǫ) log(T )+c log(log(T ))
I(µk,µ∗) if (k, k⋆) ∈ E,

+C1 log log(T ) +
C2

Tβ(ǫ)

C3

∆2 otherwise,

where β(ǫ) > 0, and 0 < C1 < 7, C2 > 0, C3 > 0 are

constants.

To prove this upper bound, we analyze the regret accu-

mulated (i) when the best arm k⋆ is the leader, and (ii)

when the leader is arm k 6= k⋆. (i) When k⋆ is the leader,

the algorithm behaves like KL-UCB restricted to the arms

around k⋆, and the regret at these rounds can be analyzed as

in (Cappé et al., 2013). (ii) Bounding the number of rounds

where k 6= k⋆ is not the leader is more involved. To do this,

we decompose this set of rounds into further subsets (such

as the time instants where k is the leader and its mean is not

well estimated), and control their expected cardinalities us-

ing concentration inequalities. Along the way, we establish

Lemma 4.3, a new concentration inequality of independent

interest.

Lemma 4.3 Let {Zt}t∈Z be a sequence of independent

random variables with values in [0, B]. Define Fn the

σ-algebra generated by {Zt}t≤n and the filtration F =
(Fn)n∈Z. Consider s ∈ N, n0 ∈ Z and T ≥ n0. We

define Sn =
∑n

t=n0
Bt(Zt − E[Zt]), where Bt ∈ {0, 1}

is a Ft−1-measurable random variable. Further define

tn =
∑n

t=n0
Bt. Define φ ∈ {n0, . . . , T+1} a F -stopping

time such that either tφ ≥ s or φ = T + 1.

Then we have that: P[Sφ ≥ tφδ , φ ≤ T ] ≤
exp(−2sδ2B−2). As a consequence: P[|Sφ| ≥ tφδ , φ ≤
T ] ≤ 2 exp(−2sδ2B−2).

Lemma 4.3 concerns the sum of products of i.i.d. ran-

dom variables and of a previsible sequence, evaluated at

a stopping time (for the natural filtration). We believe

that concentration results for such sums can be instrumen-

tal in bandit problems, where typically, we need infor-

mation about the empirical rewards at some specific ran-

dom time epochs (that often are stopping times). Refer

to (Combes & Proutiere, 2014) for a proof. A direct con-

sequence of Theorem 4.2 is the asymptotic optimality of

OSUB in the case of Bernoulli rewards:

Corollary 4.4 Assume that rewards distributions are

Bernoulli (i.e for any k, νk ∼ Bernoulli(θk)), and that

θ ∈ ΘG. Then the regret achieved under π=OSUB sat-

isfies: lim supT→+∞ Rπ(T )/ log(T ) ≤ c(θ).

5. Non-stationary environments

We now consider time-varying environments. We assume

that the expected reward of each arm varies smoothly over

time, i.e., it is Lipschitz continuous: for all n, n′ ≥ 1 and

1 ≤ k ≤ K: |µk(n)− µk(n
′)| ≤ σ|n− n′|.

We further assume that the unimodal structure is preserved

(with respect to the same graph G): for all n ≥ 1,

µ(n) ∈ UG. Considering smoothly varying rewards is

more challenging than scenarios where the environment is

abruptly changing. The difficulty stems from the fact that

the rewards of two or more arms may become arbitrarily

close to each other (this happens each time the optimal arm

changes), and in such situations, regret is difficult to con-

trol. To get a chance to design an algorithm that efficiently

tracks the best arm, we need to make some assumption to

limit the proportion of time when the separation of arms

becomes too small. Define for T ∈ N, and ∆ > 0:

H(∆, T ) =

T
∑

n=1

∑

(k,k′)∈E

1{|µk(n)− µk′(n)| < ∆}.

Assumption 1 There exists a function Φ and ∆0 such that

for all ∆ < ∆0: lim supT→+∞ H(∆, T )/T ≤ Φ(K)∆.
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5.1. OSUB with a Sliding Window

To cope with the changing environment, we modify the

OSUB algorithm, so that decisions are based on past

choices and observations over a time-window of fixed du-

ration equal to τ + 1 rounds. The idea of adding a sliding

window to algorithms initially designed for stationary en-

vironments is not novel (Garivier & Moulines, 2008); but

here, the unimodal structure and the smooth evolution of

rewards make the regret analysis more challenging.

Define: tτk(n) =
∑n

t=n−τ 1{k(t) = k}; µ̂τ
k(n) =

(1/tτk(n))
∑n

t=n−τ 1{k(t) = k}Xk(t) if tτk(n) > 0 and

µ̂τ
k(n) = 0 otherwise; Lτ (n) = argmax1≤k≤K µ̂τ

k(n);
lτk(n) =

∑n
t=n−τ 1{Lτ(t) = k}. The in-

dex of arm k at time n then becomes: bτk(n) =
F (µ̂τ

k(n), t
τ
k(n), l

τ
k(L

τ (n))). The pseudo-code of SW-

OSUB is presented below.

Algorithm SW-OSUB

Input: graph G = (V,E), window size τ + 1
For n ≥ 1, select the arm k(n) where:

k(n) =







Lτ (n) if
lτLτ (n)(n)−1

γ+1 ∈ N,

arg max
k∈N(Lτ (n))

bτk(n) otherwise.

5.2. Regret Analysis

In non-stationary environments, achieving sublinear regrets

is often not possible. In (Garivier & Moulines, 2008), the

environment is subject to abrupt changes or breakpoints. It

is shown that if the density of breakpoints is strictly pos-

itive, which typically holds in practice, then the regret of

any algorithm has to scale linearly with time. We are inter-

ested in similar scenarios, and consider smoothly varying

environments where the number of times the optimal arm

changes has a positive density. The next theorem provides

an upper bound of the regret per unit of time achieved un-

der SW-OSUB. This bound holds for any non-stationary

environment with σ-Lipschitz rewards.

Theorem 5.1 Let ∆: 2τσ < ∆ < ∆0. Assume that for

any n ≥ 1, µ(n) ∈ UG and µ⋆(n) ∈ [a, 1 − a] for some

a > 0. Further suppose that µk(·) is σ-Lipschitz for any

k. The regret per unit time under π =SW-OSUB with a

sliding window of size τ + 1 satisfies: if a > στ , then for

any T ≥ 1,

Rπ(T )

T
≤ H(∆, T )

T
(1 + ∆) +

C1K log(τ)

τ(∆− 4τσ)2

+ γ
(

1 + g
−1/2
0

) log(τ) + c log(log(τ)) + C2

2τ(∆− 2τσ)2
,

where C1, C2 are positive constants and g0 = (a−στ)(1−
a+ στ)/2.

Corollary 5.2 Assume that for any n ≥ 1, µ(n) ∈ UG and

µ⋆(n) ∈ [a, 1 − a] for some a > 0, and that µk(·) is σ-

Lipschitz for any k. Set τ = σ−3/4 log(1/σ)/8. The regret

per unit of time of π =SW-OSUB with window size τ + 1
satisfies:

lim sup
T→∞

Rπ(T )

T
≤ CΦ(K)σ

1
4 log

(

1

σ

)

(1 +Kj(σ)),

for some constant C > 0, and some function j such that

limσ→0+ j(σ) = 0.

These results state that the regret per unit of time achieved

under SW-OSUB decreases and actually vanishes when the

speed at which expected rewards evolve decreases to 0.

Also observe that the dependence of this regret bound in

the number of arms is typically mild (in many practical sce-

narios, Φ(K) may actually not depend on K).

The proof of Theorem 5.1 relies on the same types of ar-

guments as those used in stationary environments. To es-

tablish the regret upper bound, we need to evaluate the per-

formance of the KL-UCB algorithm in non-stationary en-

vironments (the result and the corresponding analysis are

presented in (Combes & Proutiere, 2014)).

6. Continuous Set of Arms

In this section, we briefly discuss the case where the de-

cision space is continuous. The set of arms is [0, 1], and

the expected reward function µ : [0, 1] → R is assumed

to be Lipschitz continuous, and unimodal: there exists

x⋆ ∈ [0, 1] such that µ(x′) ≥ µ(x) if x′ ∈ [x, x⋆] or

x′ ∈ [x⋆, x]. Let µ⋆ = µ(x⋆) denote the highest expected

reward. A decision rule selects at any round n ≥ 1 an arm

x and observes the corresponding reward X(x, n). For any

x ∈ [0, 1], (X(x, n))n≥1 is an i.i.d. sequence. We make

the following additional assumption on function µ.

Assumption 2 There exists δ0 > 0 such that (i) for all x, y
in [x⋆, x⋆+ δ0] (or in [x⋆− δ0, x

⋆]), C1|x− y|α ≤ |µ(x)−
µ(y)|; (ii) for δ ≤ δ0, if |x−x∗| ≤ δ, then |µ(x∗)−µ(x)| ≤
C2δ

α.

This assumption is more general than that used in

(Yu & Mannor, 2011). In particular it holds for functions

with a plateau and a peak: µ(x) = max(1−|x−x⋆|/ǫ, 0).
Now as for the case of a discrete set of arms, we de-

note by Π the set of possible decision rules, and the re-

gret achieved under rule π ∈ Π up to time T is: Rπ(T ) =

Tµ⋆−
∑T

n=1 E[µ(x
π(n))], where xπ(n) is the arm selected

under π at time n.

There is no known precise asymptotic lower bound for con-

tinuous bandits. However, we know that for our problem,

the regret must be at least of the order of O(
√
T ) up to
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logarithmic factor. In (Yu & Mannor, 2011), the authors

show that the LSE algorithm achieves a regret scaling as

O(
√
T log(T )), under more restrictive assumptions. We

show that combining discretization and the UCB algorithm

as initially proposed in (Kleinberg, 2004) yields lower re-

grets than LSE in practice (see Section 7), and is order-

optimal, i.e., the regret grows as O(
√
T log(T )).

For δ > 0, we define a discrete bandit problem with

K = ⌈1/δ⌉ arms, and where the rewards of k-th arm are

distributed as X((k− 1)/δ, n). The expected reward of the

k-th arm is µk = µ((k− 1)/δ). Let π be an algorithm run-

ning on this discrete bandit problem. The regret of π for

the initial continuous bandit problem is at time T :

Rπ(T ) = Tµ⋆ − ∑⌈1/δ⌉
k=1 µkE[t

π
k (T )]. We denote by

UCB(δ) the UCB algorithm (Auer et al., 2002) applied to

the discretized bandit. In the following proposition, we

show that when δ = (log(T )/
√
T )1/α, UCB(δ) is order-

optimal. In practice, one may not know the time horizon T
in advance. In this case, using the “doubling trick” (see e.g.

(Cesa-Bianchi & Lugosi, 2006)) would incur an additional

logarithmic multiplicative factor in the regret.

Proposition 1 Consider a unimodal bandit on [0, 1] with

rewards in [0, 1] and satisfying Assumption 2. Set δ =
(log(T )/

√
T )1/α. The regret under UCB(δ) satisfies:

lim sup
T→∞

Rπ(T )√
T log(T )

≤ C23
α + 16/C1.

7. Numerical experiments

7.1. Discrete bandits

We compare the performance of our algorithm to that of

KL-UCB (Cappé et al., 2013), LSE (Yu & Mannor, 2011),

UCB (Auer et al., 2002), and UCB-U. The latter algorithm

is obtained by applying UCB restricted to the arms which

are adjacent to the current leader as in OSUB. We add the

prefix ”SW” to refer to Sliding Window versions of these

algorithms.

Stationary environments. In our first experiment, we con-

sider K = 17 arms with Bernoulli rewards of respec-

tive averages µ = (0.1, 0.2, ...., 0.9, 0.8, . . . , 0.1). The re-

wards are unimodal (the graph G is simply a line). The

regret achieved under the various algorithms is presented

in Figure 1 and Table 1. The parameters in LSE algorithm

are chosen as suggested in Proposition 4.5 (Yu & Mannor,

2011). Regrets are calculated averaging over 50 indepen-

dent runs. OSUB significantly outperforms all other algo-

rithms. The regret achieved under LSE is not presented in

Figure 1, because it is typically much larger than that of

other algorithms. This poor performance can be explained

by the non-adaptive nature of LSE, as already discussed

earlier. LSE can beat UCB when the number of arms is

T 1000 10000 100000

UCB 30.1 35.1 39

KL-UCB 18.8 21.4 23

UCB-U 8.5 11.7 13.9

OSUB 5.8 5.9 6

LSE 36.3 271.5 999.1

Table 1. Rπ(T )/ log(T ) for different algorithms – 17 arms.
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Figure 1. Regret vs. time in stationary environments – K = 17
arms.

not negligible compared to the time horizon (e.g. in Fig-

ure 4 in (Yu & Mannor, 2011), K = 250.000 and the time

horizon is less than 3K): in such scenarios, UCB-like algo-

rithms perform poorly because of their initialization phase

(all arms have to be tested once).

In Figure 2, the number of arms is 129, and the expected re-

wards form a triangular shape as in the previous example,

with minimum and maximum equal to 0.1 and 0.9, respec-

tively. Similar observations as in the case of 17 arms can be

made. We deliberately restrict the plot to small time hori-

zons: this corresponds to scenarios where LSE can perform

well.

Non-stationary environments. We now investigate the per-
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Figure 2. Regret vs. time in stationary environments – K = 129
arms.



Unimodal bandits

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

1200

1400

1600

1800

time T

re
g
re

t 
R

π
(T

)

 

 

SW−UCB

SW−KL−UCB

SW−UCB−U

SW−OSUB

Figure 3. Regret vs. time in a slowly varying environment – K =
10 arms, σ = 10−3.

0 0.002 0.004 0.006 0.008 0.01
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

speed σ

re
g
re

t 
p
e
r 

u
n
it
 o

f 
ti
m

e
 R

π
(T

)/
 T

 

 

SW−UCB
SW−KL−UCB
SW−UCB−U
SW−OSUB

Figure 4. Regret per unit of time Rπ(T )/T vs. speed σ – K = 10
arms.

formance of SW-OSUB in a slowly varying environment.

There are K = 10 arms whose expected rewards form a

moving triangle: for k = 1, . . . ,K , µk(n) = (K−1)/K−
|w(n)−k|/K , where w(n) = 1+(K−1)(1+sin(nσ))/2.

Figure 3 presents the regret as a function of time under var-

ious algorithms when the speed at which the environment

evolves is σ = 10−3. The window size are set as follows

for the various algorithms: τ = σ−4/5 for SW-UCB and

SW-KL-UCB (the rationale for this choice is explained in

(Combes & Proutiere, 2014)), τ = σ−3/4 log(1/σ)/8 for

SW-UCB-U and OSUB. In Figure 4, we show how the

speed σ impacts the regret per time unit. SW-OSUB pro-

vides the most efficient way of tracking the optimal arm.

7.2. Continuous bandits

In Figure 5, we compare the performance of the LSE and

UCB(δ) algorithms when the set of arms is continuous. The

expected rewards form a triangle: µ(x) = 1/2− |x− 1/2|
so that µ⋆ = 1/2 and x⋆ = 1/2. The parameters used

in LSE are those given in (Yu & Mannor, 2011), whereas

the discretization parameter δ in UCB(δ) is set to δ =
log(T )/

√
T . UCB(δ) significantly outperforms LSE at any

time: an appropriate discretization of continuous bandit

problems might actually be more efficient than other meth-
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Figure 5. Regret vs. time for a continuous set of arms.
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Figure 6. Normalized regret vs. K/T , T = 5.104 for a continu-

ous set of arms.

ods based on ideas taken from classical optimization the-

ory.

Figure 6 compares the regret of the discrete version of LSE

(with optimized parameters), and of OSUB as the number

of arms K grows large, T = 50, 000. The average rewards

of arms are extracted from the triangle used in the contin-

uous bandit, and we also provide the regret achieved under

UCB(δ). OSUB outperforms UCB(δ) even if the number

of arms gets as large as 7500! OSUB also beats LSE unless

the number of arms gets bigger than 0.6× T .

8. Conclusion

In this paper, we address stochastic bandit problems with

a unimodal structure, and a finite set of arms. We provide

asymptotic regret lower bounds for these problems and de-

sign an algorithm that asymptotically achieves the lowest

regret possible. Hence our algorithm optimally exploits the

unimodal structure of the problem. Our preliminary anal-

ysis of the continuous version of this bandit problem sug-

gests that when the number of arms become very large and

comparable to the time horizon, it might be wiser to prune

the set of arms before actually running any algorithm.
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Supplementary File

To avoid ambiguity, when referring to theorems and lem-

mas from the main article, we add suffix ”(a)”. For instance

the theorem stating the regret lower bound for stationary

unimodal bandits is referred to as Theorem 4.1(a).

This document is organized as follows. In Section 1, we

prove Theorem 4.1(a). In Section 2, we state and prove sev-

eral concentration inequalities which are the cornerstone

of our regret analysis of the OSUB algorithm for both sta-

tionary and non-stationary environments. In Section 3 we

prove Theorem 4.2(a). In Section 4, we prove Theorem

5.1(a). Finally, Section 5 is devoted to the proof of Propo-

sition 6.1(a).

1. Proof of Theorem 4.1(a)

We derive here a regret lower bound for the unimodal ban-

dit problem. To this aim, we apply the techniques used

by Graves and Lai (Graves & Lai, 1997) to investigate effi-

cient adaptive decision rules in controlled Markov chains.

We recall here their general framework. Consider a con-

trolled Markov chain (Xt)t≥0 on a finite state space S with

a control set U . The transition probabilities given control

u ∈ U are parametrized by θ taking values in a com-

pact metric space Θ: the probability to move from state

x to state y given the control u and the parameter θ is

p(x, y;u, θ). The parameter θ is not known. The deci-

sion maker is provided with a finite set of stationary con-

trol laws G = {g1, . . . , gK} where each control law gj
is a mapping from S to U : when control law gj is ap-

plied in state x, the applied control is u = gj(x). It is

assumed that if the decision maker always selects the same

control law g the Markov chain is then irreducible with

stationary distribution πg
θ . Now the expected reward ob-

tained when applying control u in state x is denoted by

r(x, u), so that the expected reward achieved under con-

trol law g is: µθ(g) =
∑

x r(x, g(x))π
g
θ (x). There is an

optimal control law given θ whose expected reward is de-

noted µ⋆
θ ∈ argmaxg∈G µθ(g). Now the objective of the

decision maker is to sequentially select control laws so as

to maximize the expected reward up to a given time hori-

zon T . As for MAB problems, the performance of a deci-

sion scheme can be quantified through the notion of regret

which compares the expected reward to that obtained by

always applying the optimal control law.

We now apply the above framework to our unimodal bandit

problem, and we consider θ ∈ ΘG. The Markov chain

has values in S = R. The set of control laws is G =
{1, . . . ,K}. These laws are constant, in the sense that the

control applied by control law k does not depend on the

state of the Markov chain, and corresponds to selecting arm

k. The transition probabilities are: p(x, y; k, θ) = p(y, θk).
Finally, the reward r(x, k) does not depend on the state

and is equal to µ(θk), which is also the expected reward

obtained by always using control law k.

We now fix θ ∈ ΘG. Define KLk(θ, λ) = KL(θk, λk) for

any k. Further define the set B(θ) consisting of all bad pa-

rameters λ ∈ ΘG such that k⋆ is not optimal under param-

eter λ, but which are statistically indistinguishable from θ:

B(θ) = {λ ∈ ΘG : λk⋆ = θk⋆ and max
k

µ(λk) > µ(λk⋆)},

B(θ) can be written as the union of sets Bk(θ), (k, k
⋆) ∈ E

defined as:

Bk(θ) = {λ ∈ B(θ) : µ(λk) > µ(λk⋆)}.
We have that B(θ) = ∪(k,k⋆)∈EBk(θ), because if

µ(λk⋆) < maxk µ(λk), then there must exist k such that

(k, k∗) ∈ E, and µ(λk) > µ(λk⋆ ). By applying Theorem

1 in (Graves & Lai, 1997), we know that c(θ) is the mini-

mal value of the following LP:

min
∑

k ck(µ(θk⋆)− µ(θk)) (1)

s.t. infλ∈Bk(θ)

∑

l 6=k⋆ clKLl(θ, λ) ≥ 1, (k, k⋆) ∈ E(2)

ck ≥ 0, ∀k. (3)

Next we show that the constraints (2) on the ck’s are equiv-

alent to:

min
(k,k⋆)∈E

ckImin(θk, µ(θk⋆)) ≥ 1. (4)

Consider k fixed with (k, k⋆) ∈ E. We prove that:

inf
λ∈Bk(θ)

∑

l 6=k⋆

clKLl(θ, λ) = ckImin(θk, µ(θk⋆)). (5)

This is simply due to the following two observations:
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• Since µ(λk) > µ(θk⋆) and the KL divergence is posi-

tive:
∑

l 6=k⋆

clKLl(θ, λ) ≥ ckKLk(θ, λ)

≥ ckImin(θk, µ(θk⋆)).

• For ǫ > 0, define λǫ as follows: µ(λk) > µ(θk⋆) and

KL(θk, λk) ≤ Imin(θk, µ(θk⋆)) + ǫ and λl = θl for

l 6= k. By construction, λǫ ∈ Bk(θ), and

lim
ǫ→0

∑

l 6=k⋆

clKLl(θ, λǫ) = ckImin(θk, µ(θk⋆)).

From (5), we deduce that constraints (2) are equivalent

to (4) (indeed, for (k, k⋆) ∈ E, (2) is equivalent to

ckImin(θk, µ(θk⋆)) ≥ 1). With the constraints (4), the op-

timization problem becomes straightforward to solve, and

its solution yields:

c(θ) =
∑

(k,k⋆)∈E

µ(θk⋆)− µ(θk)

Imin(θk, µ(θk⋆))
.

�

2. Concentration inequalities and

Preliminaries

We state and prove Lemma 2.1, a new concentration in-

equality which extends Hoeffding’s inequality, and is used

for the regret analysis in subsequent sections. We believe

that Lemma 2.1 could be useful in a variety of bandit prob-

lems, where an upper bound on the deviation of the empiri-

cal mean sampled at a stopping time is needed. An example

would be the probability that the empirical reward of the k-

th arm deviates from its expectation, when it is sampled for

the s-th time.

Lemma 2.1 Let {Zt}t∈Z be a sequence of independent

random variables with values in [0, B]. Define Fn the

σ-algebra generated by {Zt}t≤n and the filtration F =
(Fn)n∈Z. Consider s ∈ N, n0 ∈ Z and T ≥ n0. We

define Sn =
∑n

t=n0
Bt(Zt − E[Zt]), where Bt ∈ {0, 1}

is a Ft−1-measurable random variable. Further define

tn =
∑n

t=n0
Bt. Define φ ∈ {n0, . . . , T+1} a F -stopping

time such that either tφ ≥ s or φ = T + 1.

Then we have that:

P[Sφ ≥ tφδ , φ ≤ T ] ≤ exp

(

−2sδ2

B2

)

.

As a consequence:

P[|Sφ| ≥ tφδ , φ ≤ T ] ≤ 2 exp

(

−2sδ2

B2

)

.

Proof. Let λ > 0, and define Gn = exp(λ(Sn −
δtn))1{n ≤ T }. We have that:

P[Sφ ≥ tφδ , φ ≤ T ]

= P[exp(λ(Sφ − δtφ))1{φ ≤ T } ≥ 1]

= P[Gφ ≥ 1] ≤ E[Gφ].

Next we provide an upper bound for E[Gφ]. We define the

following quantities:

Yt = Bt[λ(Zt − E[Zt])− λ2B2/8]

G̃n = exp

(

n
∑

t=n0

Yt

)

1{n ≤ T }.

So that G can be written:

Gn = G̃n exp(−tn(λδ − λ2B2/8)).

Setting λ = 4δ/B2:

Gn = G̃n exp(−2tnδ
2/B2).

Using the fact that tφ ≥ s if φ ≤ T , we can upper bound

Gφ by:

Gφ = G̃φ exp(−2tφδ
2/B2) ≤ G̃φ exp(−2sδ2/B2).

It is noted that the above inequality holds even when φ =
T + 1, since GT+1 = G̃T+1 = 0. Hence:

E[Gφ] ≤ E[G̃φ] exp(−2sδ2/B2).

We prove that (G̃n)n is a super-martingale. We have that

E[G̃T+1|FT ] = 0 ≤ G̃T . For n ≤ T − 1, since Bn+1 is

Fn measurable:

E[G̃n+1|Fn] = G̃n((1−Bn+1) +Bn+1E[exp(Yn+1)]).

As proven by Hoeffding (Hoeffding, 1963)[eq. 4.16] since

Zn+1 ∈ [0, B]:

E[exp(λ(Zn+1 − E[Zn+1]))] ≤ exp(λ2B2/8),

so E[exp(Yn+1)] ≤ 1 and (G̃n)n is indeed a supermartin-

gale: E[G̃n+1|Fn] ≤ G̃n. Since φ ≤ T + 1 almost surely,

and (G̃n)n is a supermartingale, Doob’s optional stopping

theorem yields: E[G̃φ] ≤ E[G̃n0−1] = 1, and so

P[Sφ ≥ tφδ, φ ≤ T ] ≤ E[Gφ]

≤ E[G̃φ] exp(−2sδ2/B2) ≤ exp(−2sδ2/B2).

which concludes the proof. The second inequality is ob-

tained by symmetry.

�

Lemma 2.2 states that if a set of instants Λ can be decom-

posed into a family of subsets (Λ(s))s≥1 of instants (each

subset has at most one instant) where k is tried sufficiently

many times (tk(n) ≥ ǫs, for n ∈ Λ(s)), then the expected

number of instants in Λ at which the average reward of k is

badly estimated is finite.
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Lemma 2.2 Let k ∈ {1, . . . ,K}, and ǫ > 0. Define Fn

the σ-algebra generated by (Xk(t))1≤t≤n,1≤k≤K . Let Λ ⊂
N be a (random) set of instants. Assume that there exists

a sequence of (random) sets (Λ(s))s≥1 such that (i) Λ ⊂
∪s≥1Λ(s), (ii) for all s ≥ 1 and all n ∈ Λ(s), tk(n) ≥
ǫs, (iii) |Λ(s)| ≤ 1, and (iv) the event n ∈ Λ(s) is Fn-

measurable. Then for all δ > 0:

E[
∑

n≥1

1{n ∈ Λ, |µ̂k(n)− E[µ̂k(n)]| > δ}] ≤ 1

ǫδ2
. (6)

Proof. Let T ≥ 1. For all s ≥ 1, since Λ(s) has at most

one element, define φs = T + 1 if Λ(s) ∩ {1, . . . , T } is

empty and {φs} = Λ(s) otherwise. Since Λ ⊂ ∪s≥1Λ(s),
we have:

T
∑

n=1

1{n ∈ Λ, |µ̂k(n)− E[µ̂k(n)]| > δ}

≤
∑

s≥1

1{|µ̂k(φs)− E[µ̂k(φs)]| > δ, φs ≤ T }.

Taking expectations:

E[
T
∑

n=1

1{n ∈ Λ, |µ̂k(n)− E[µ̂k(n)]| > δ}]

≤
∑

s≥1

P[|µ̂k(φs)− E[µ̂k(φs)]| > δ, φs ≤ T ].

Since φs is a stopping time upper bounded by T + 1, and

that tk(φs) ≥ ǫs we can apply Lemma 2.1 to obtain:

E[

T
∑

n=1

1{n ∈ Λ, |µ̂k(n)− E[µ̂k(n)]| > δ}]

≤
∑

s≥1

2 exp
(

−2sǫδ2
)

≤ 1

ǫδ2
.

We have used the inequality:
∑

s≥1 e
−sw ≤

∫ +∞

0 e−uwdu = 1/w. Since the above reasoning is

valid for all T , we obtain the claim (6). �

A useful corollary of Lemma 2.2 is obtained by choosing

δ = ∆k,k′/2, when arms k and k′ are separated by at least

∆k,k′ .

Lemma 2.3 Let k, k′ ∈ {1, . . . ,K} with k 6= k′

and ǫ > 0. Define Fn the σ-algebra generated by

(Xk(t))1≤t≤n,1≤k≤K . Let Λ ⊂ N be a (random) set of

instants. Assume that there exists a sequence of (random)

sets (Λ(s))s≥1 such that (i) Λ ⊂ ∪s≥1Λ(s), (ii) for all

s ≥ 1 and all n ∈ Λ(s), tk(n) ≥ ǫs and tk′(n) ≥ ǫs,

(iii) for all s we have |Λ(s)| ≤ 1 almost surely and (iv) for

all n ∈ Λ, we have E[µ̂k(n)] ≤ E[µ̂k′(n)] −∆k,k′ (v) the

event n ∈ Λ(s) is Fn-measurable. Then:

E[
∑

n≥1

1{n ∈ Λ, µ̂k(n) > µ̂k′ (n)}] ≤ 8

ǫ∆2
k,k′

. (7)

Lemma 2.4 is straightforward from (Garivier & Cappé,

2011)[Theorem 10]. It should be observed that this result

is not a direct application of Sanov’s theorem; Lemma 2.4

provides sharper bounds in certain cases, and it is also valid

for non-Bernoulli distributed random variables.

Lemma 2.4 For 1 ≤ tk(n) ≤ τ and δ > 0, if

{Xk(i)}1≤i≤τ are independent random variables with

mean µk, we have that:

P



tk(n)I





1

tk(n)

tk(n)
∑

i=1

Xk(i), µk



 ≥ δ





≤ 2e⌈δ log(τ)⌉ exp(−δ).

We present results related to the KL divergence that

will be instrumental when manipulating indexes bk(n).
Lemma 2.5 gives an upper and a lower bound for the KL

divergence. The lower bound is Pinsker’s inequality. The

upper bound is due to the fact that I(p, q) is convex in its

second argument.

Lemma 2.5 For all p, q ∈ [0, 1]2, p ≤ q:

2(p− q)2 ≤ I(p, q) ≤ (p− q)2

q(1− q)
. (8)

and

I(p, q) ∼ (p− q)2

q(1− q)
, q → p+ (9)

Proof. The lower bound is Pinsker’s inequality. For the

upper bound, we have:

∂I

∂q
(p, q) =

q − p

q(1 − q)
.

Since q 7→ ∂I
∂q (p, q) is increasing, the fundamental theorem

of calculus gives the announced result:

I(p, q) ≤
∫ q

p

∂I

∂u
(p, u) du ≤ (p− q)2

q(1− q)
.

The equivalence comes from a Taylor development of q →
I(p, q) at p, since:

∂I

∂q
(p, q)|q=p = 0,

∂2I

∂q2
(p, q)|q=p =

1

q(1− q)
.

�

We prove a deviation bound similar to that of Lemma 2.2

for non-stationary environments.
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Lemma 2.6 Let k ∈ {1, . . . ,K}, n0 ∈ N and ǫ > 0.

Let Λ ⊂ N be a (random) set of instants. Assume that

there exists a sequence of (random) sets (Λ(s))s≥1 such

that (i) Λ ⊂ ∪s≥1Λ(s), (ii) for all s ≥ 1 and all n ∈ Λ(s),
tk(n) ≥ ǫs, and (iii) for all s ≥ 1 |Λ(s)∩[n0, n0+τ ]| ≤ 1.

Then for all δ > 0:

E[

n0+τ
∑

n=n0

1{n ∈ Λ, |µ̂k(n)−E[µ̂k(n)]| > δ}] ≤ log(τ)

2ǫδ2
+2.

Proof. Fix s0 ≥ 1. We use the following decomposition,

depending on the value of s with respect to s0:

{n ∈ Λ, |µ̂k(n)− E[µ̂k(n)]| > δ} ⊂ A ∪B,

where

A = {n0, . . . , n0 + τ} ∩ (∪1≤s≤s0Λ(s)),

B = {n0, . . . , n0 + τ}
∩ {n ∈ ∪s≥s0Λ(s) : |µ̂k(n)− E[µ̂k(n)]| > δ}.

Since for all s, |Λ(s) ∩ {n0, . . . , n0 + τ}| ≤ 1, we have

|A| ≤ s0. The expected size of B is upper bounded by:

E[|B|] ≤
n0+τ
∑

n=n0

P[n ∈ ∪s≥s0Λ(s), |µ̂k(n)− E[µ̂k(n)]| > δ]

≤
n0+τ
∑

n=n0

P[|µ̂k(n)− E[µ̂k(n)]| > δ, tk(n) ≥ ǫs0].

For a given n, we apply Lemma 2.1 with n− τ in place of

n0, and φ = n if tk(n) ≥ ǫs0 and φ = T + 1 otherwise. It

is noted that φ is indeed a stopping time. We get:

P[|µ̂k(n)− E[µ̂k(n)]| > δ, tk(n) ≥ ǫs0]

≤ 2 exp
(

−2s0ǫδ
2
)

.

Therefore, setting s0 = log(τ)/(2ǫδ2),

E[|B|] ≤ 2τ exp
(

−2s0ǫδ
2
)

= 2.

Finally we obtain the announced result:

E[

n0+τ
∑

n=n0

1{n ∈ Λ, |µ̂k(n)−E[µ̂k(n)]| > δ}] ≤ log(τ)

2ǫδ2
+2.

�

Lemma 2.7 Consider k, k′ ∈ {1, . . . ,K}, n0 ∈ N and

ǫ > 0. Let Λ ⊂ N be a (random) set of instants. Assume

that there exists a sequence of (random) sets (Λ(s))s≥1

such that (i) Λ ⊂ ∪s≥1Λ(s), and (ii) for all s ≥ 1 and

all n ∈ Λ(s), tk(n) ≥ ǫs, tk′(n) ≥ ǫs and (iii) for all

s ≥ 1 |Λ(s) ∩ [n0, n0 + τ ]| ≤ 1 and (iv) for all n ∈ Λ, we

have E[µ̂k(n)] ≤ E[µ̂k′ (n)]−∆k,k′ .

Then for all δ > 0:

E[

n0+τ
∑

n=n0

1{n ∈ Λ, µ̂k(n) > µ̂k′ (n)}] ≤ 4 log(τ)

ǫ∆2
k,k′

+ 4.

3. Proofs for stationary environments

3.1. Proof of Theorem 4.2(a)

Notations. Throughout the proof, by a slight abuse of no-

tation, we omit the floor/ceiling functions when it does not

create ambiguity. Consider a suboptimal arm k 6= k⋆. De-

fine the difference between the average reward of k and k′

: ∆k,k′ = |µk′ − µk| > 0. We use the notation:

tk,k′ (n) =

n
∑

t=1

1{L(t) = k, k(t) = k′}.

tk,k′ (n) is the number of times up time n that k′ has been

selected given that k was the leader.

Proof. Let T > 0. The regret ROSUB(T ) of OSUB algo-

rithm up to time T is:

ROSUB(T ) =
∑

k 6=k⋆

(µk⋆ − µk)E[

T
∑

n=1

1{k(n) = k}].

We use the following decomposition:

1{k(n) = k} = 1{L(n) = k⋆, k(n) = k}
+1{L(n) 6= k⋆, k(n) = k}.

Now

∑

k 6=k⋆

(µk⋆ − µk)E[

T
∑

n=1

1{L(n) 6= k⋆, k(n) = k}]

≤
∑

k 6=k⋆

E[

T
∑

n=1

1{L(n) 6= k⋆, k(n) = k}]

≤
∑

k 6=k⋆

E[lk(T )].

Observing that when L(n) = k⋆, the algorithm selects a

decision (k, k⋆) ∈ E, we deduce that:

ROSUB(T ) ≤
∑

k 6=k⋆

E[lk(T )]

+
∑

(k,k⋆)∈E

(µk⋆ − µk)E[

T
∑

n=1

1{L(n) = k⋆, k(n) = k}]

Then we analyze the two terms in the r.h.s. in the above

inequality. The first term corresponds to the average num-

ber of times where k⋆ is not the leader, while the second

term represents the accumulated regret when the leader

is k⋆. The following result states that the first term is

O(log(log(T ))):

Theorem 3.1 For k 6= k⋆, E[lk(T )] = O(log(log(T ))).
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From the above theorem, we conclude that the leader is

k⋆ except for a negligible number of instants (in expecta-

tion). When k⋆ is the leader, OSUB behaves as KL-UCB

restricted to the set N(k⋆) of possible decisions. Follow-

ing the same analysis as in (Garivier & Cappé, 2011) (the

analysis of KL-UCB), we can show that for all ǫ > 0 there

are constants C1 ≤ 7 , C2(ǫ) and β(ǫ) > 0 such that:

E[

T
∑

n=1

1{L(n) = k⋆, k(n) = k}]

≤ E[

T
∑

n=1

1{bk(n) ≥ bk⋆(n)}]

≤ (1 + ǫ)
log(T )

I(µk, µk⋆)
+ C1 log(log(T )) +

C2(ǫ)

T β(ǫ)
.

(10)

Combining the above bound with Theorem 3.1, we get:

ROSUB(T ) ≤ (1 + ǫ)c(θ) log(T ) +O(log(log(T ))),
(11)

which concludes the proof of Theorem 4.2(a) . �

It remains to show that Theorem 3.1 holds, which is done

in the next section. The proof of Theorem 3.1 is techni-

cal, and requires the concentration inequalities presented

in section 2. The theorem itself is proved in 3.2.

3.2. Proof of Theorem 3.1

Let k be the index of a suboptimal arm. Let δ > 0, ǫ > 0
small enough (we provide a more precise definition later

on). We define k2 = argmaxk′:(k,k′)∈E µk′ the best neigh-

bor of k. To derive an upper bound of E[lk(T )], we decom-

pose the set of times where k is the leader into the following

sets:

{n ≤ T : L(n) = k} ⊂ Aǫ ∪BT
ǫ ,

where

Aǫ = {n : L(n) = k, tk2
(n) ≥ ǫlk(n)}

BT
ǫ = {n ≤ T : L(n) = k, tk2

(n) ≤ ǫlk(n)}.
Hence we have:

E[lk(T )] ≤ E
[

|Aǫ|+ |BT
ǫ |
]

,

Next we provide upper bounds of E[|Aǫ|] and E[|BT
ǫ |].

Bound on E|Aǫ|. Let n ∈ Aǫ and assume that lk(n) = s.

By design of the algorithm, tk(n) ≥ s/(γ + 1). Also

tk2
(n) ≥ ǫlk(n) = ǫs. We apply Lemma 2.3 with Λ(s) =

{n ∈ Aǫ, lk(n) = s}, Λ = ∪s≥1Λ(s). Of course, for any

s, |Λ(s)| ≤ 1. We have: Aǫ = {n ∈ Λ : µ̂k(n) ≥ µ̂k2
(n)},

since when n ∈ Aǫ, k is the leader. Lemma 2.3 can be ap-

plied with k′ = k2. We get: E|Aǫ| < ∞.

Bound on E|BT
ǫ |. We introduce the following sets:

• Cδ is the set of instants at which the average reward

of the leader k is badly estimated:

Cδ = {n : L(n) = k, |µ̂k(n)− µk| > δ}.

• Dδ = ∪k′∈N(k)\{k2}Dδ,k′ where Dδ,k′ = {n :
L(n) = k, k(n) = k′, |µ̂k′ (n) − µk′ | > δ} is the

set of instants at which k is the leader, k′ is selected

and the average reward of k′ is badly estimated.

• ET = {n ≤ T : L(n) = k, bk2
(n) ≤ µk2

}, is the

set of instants at which k is the leader, and the upper

confidence index bk2
(n) underestimates the average

reward µk2
.

We first prove that |BT
ǫ | ≤ 2γ(1+γ)(|Cδ|+|Dδ|+|ET |)+

O(1) as T grows large, and then provide upper bounds on

E|Cδ|, E|Dδ|, and E|ET |. Let n ∈ BT
ǫ . When k is the

leader, the selected decision is in N(k):

lk(n) = tk,k2
(n) +

∑

k′∈N(k)\{k2}

tk,k′ (n).

We recall that tk,k′ (n) denotes the number of times up to

time n when k is the leader and k′ is selected. Since n ∈
BT

ǫ , tk,k2
(n) ≤ ǫlk(n), from which we deduce that:

(1− ǫ)lk(n) ≤
∑

k′∈N(k)\{k2}

tk,k′ (n).

Choose ǫ < 1/(2(γ + 1)). With this choice, from the pre-

vious inequality, we must have that either (a) there exists

k1 ∈ N(k) \ {k, k2}, tk,k1
(n) ≥ lk(n)/(γ + 1) or (b)

tk,k(n) ≥ (3/2)lk(n)/(γ + 1) + 1.

(a) Assume that tk,k1
(n) ≥ lk(n)/(γ + 1). Since tk,k1

(n)
is only incremented when k1 is selected and k is the leader,

and since n 7→ lk(n) is increasing, there exists a unique

φ(n) < n such that L(φ(n)) = k, k(φ(n)) = k1,

tk,k1
(φ(n)) = ⌊lk(n)/(2(γ + 1))⌋. φ(n) is indeed unique

because tk,k1
(φ(n)) is incremented at time φ(n).

Next we prove by contradiction that for lk(n) ≥ l0 large

enough and δ small enough, we must have φ(n) ∈ Cδ ∪
Dδ ∪ ET . Assume that φ(n) /∈ Cδ ∪ Dδ ∪ ET . Then

bk2
(φ(n)) ≥ µk2

, µ̂k1
(φ(n)) ≤ µk1

+ δ. Using Pinsker’s

inequality and the fact that tk1
(φ(n)) ≥ tk,k1

(φ(n)):

bk1
(φ(n)) ≤ µ̂k1

(φ(n))

+

√

log(lk(φ(n))) + c log(log(lk(φ(n))))

2tk1
(φ(n))

≤ µk1
+ δ +

√

log(lk(n)) + c log(log(lk(n)))

2⌊lk(n)/(2(γ + 1))⌋ .
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Now select δ < (µk2
− µk)/2 and l0 such that

√

(log(l0) + c log(log(l0)))/2⌊l0/(2(γ + 1))⌋ ≤ δ. If

lk(n) ≥ l0:

bk1
(φ(n)) ≤ µk1

+ 2δ < µk2
≤ bk2

(φ(n)),

which implies that k1 cannot be selected at time φ(n) (be-

cause bk1
(φ(n)) < bk2

(φ(n))), a contradiction.

(b) Assume that tk,k(n) ≥ (3/2)lk(n)/(γ + 1) + 1 =
lk(n)/(γ + 1) + lk(n)/(2(γ + 1)) + 1. There are at least

lk(n)/(2(γ + 1)) + 1 instants ñ such that lk(ñ) − 1 is not

a multiple of 1/(γ + 1), L(ñ) = k and k(ñ) = k. By the

same reasoning as in (a) there exists a unique φ(n) < n
such that L(φ(n)) = k, k(φ(n)) = k , tk,k(φ(n)) =
⌊lk(n)/(2(γ + 1))⌋ and (lk(φ(n)) − 1) is not a multiple

of 1/(γ + 1). So bk(φ(n)) ≥ bk2
(φ(n)). The same rea-

soning as that applied in (a) (replacing k1 by k) yields

φ(n) ∈ Cδ ∪Dδ ∪ ET .

We define BT
ǫ,l0

= {n : n ∈ BT
ǫ , lk(n) ≥ l0}, and we have

that |BT
ǫ | ≤ l0 + |BT

ǫ,l0
|. We have defined a mapping φ

from BT
ǫ,l0

to Cδ ∪ Dδ ∪ ET . To bound the size of BT
ǫ,l0

,

we use the following decomposition:

{n : n ∈ BT
ǫ,l0 , lk(n) ≥ l0}

⊂ ∪n′∈Cδ∪Dδ∪ET {n : n ∈ BT
ǫ,l0 , φ(n) = n′}.

Let us fix n′. If n ∈ BT
ǫ,l0

and φ(n) = n′, then

⌊lk(n)/(2(γ + 1))⌋ ∈ ∪k′∈N(k)\{k2}{tk,k′(n′)} and lk(n)
is incremented at time n because L(n) = k. Therefore:

|{n : n ∈ BT
ǫ,l0 , φ(n) = n′}| ≤ 2γ(γ + 1).

Using union bound, we obtain the desired result:

|BT
ǫ | ≤ l0+|BT

ǫ,l0 | ≤ O(1)+2γ(γ+1)(|Cδ |+|Dδ|+|ET |).

Bound on E|Cδ|. We apply Lemma 2.2 with Λ(s) = {n :
L(n) = k, lk(n) = s}, and Λ = ∪s≥1Λ(s). Then

of course, |Λ(s)| ≤ 1 for all s. Moreover by design,

tk(n) ≥ s/(γ + 1) when n ∈ Λ(s), so we can choose

any ǫ < 1/(γ + 1) in Lemma 2.2. Now Cδ = {n ∈ Λ :
|µ̂k(n)− µk| > δ}. From (6), we get E|Cδ| < ∞.

Bound on E|Dδ|. Let k′ ∈ N(k) \ {k2}. Define for any

s, Λ(s) = {n : L(n) = k, k(n) = k′, tk′(n) = s}, and

Λ = ∪s≥1Λ(s). We have |Λ(s)| ≤ 1, and for any n ∈
Λ(s), tk′(n) = s ≥ ǫs for any ǫ < 1. We can now apply

Lemma 2.2 (where k is replaced by k′). Note that Dδ,k′ =
{n ∈ Λ : |µ̂k′ (n) − µk′ | > δ}, and hence (6) leads to

E|Dδ,k′ | < ∞, and thus E|Dδ| < ∞.

Bound on E|ET |. We can show as in (Garivier & Cappé,

2011) (the analysis of KL-UCB) that E|ET | =

O(log(log(T ))) (more precisely, this result is a simple ap-

plication of Theorem 10 in (Garivier & Cappé, 2011)).

We have shown that E|BT
ǫ | = O(log(log(T ))), and hence

E[lk(T )] = O(log(log(T ))), which concludes the proof of

Theorem 3.1. �

4. Proofs for non-stationary environments

To simplify the notation, we remove the superscript τ

throughout the proofs, e.g tτk(n) and lτk(n) are denoted by

tk(n) and lk(n).

4.1. A lemma for sums over a sliding window

We will use Lemma 4.1 repeatedly to bound the number of

times some events occur over a sliding window of size τ .

Lemma 4.1 Let A ⊂ N, and τ ∈ N fixed. Define a(n) =
∑n−1

t=n−τ 1{t ∈ A}. Then for all T ∈ N and s ∈ N we

have the inequality:

T
∑

n=1

1{n ∈ A, a(n) ≤ s} ≤ s⌈T/τ⌉. (12)

As a consequence, for all k ∈ {1, . . . ,K}, we have:

T
∑

n=1

1{k(n) = k, tk(n) ≤ s} ≤ s⌈T/τ⌉, (13)

T
∑

n=1

1{L(n) = k, lk(n) ≤ s} ≤ s⌈T/τ⌉.

These inequalities are obtained by choosing A = {n :
k(n) = k} and A = {n : L(n) = k} in (12).

Proof. We decompose {1, . . . , T } into intervals of size τ :

{1, . . . , τ} , {τ + 1, . . . , 2τ} etc. We have:

T
∑

n=1

1{n ∈ A, a(n) ≤ s}

≤
⌈T/τ⌉−1
∑

i=0

τ
∑

n=1

1{n+ iτ ∈ A, a(n+ iτ) ≤ s}. (14)

Fix i and assume that
∑τ

n=1 1{n + iτ ∈ A, a(n + iτ) ≤
s} > s. Then there must exist n′ < τ such that n′ ∈ A

and
∑n′

n=1 1{n + iτ ∈ A, a(n + iτ) ≤ s} = s. Since

a(n′+iτ) ≥∑n′

n=1 1{n+iτ ∈ A, a(n+iτ) ≤ s}, we have

a(n′ + iτ) ≥ s. As n′ ∈ A, we must have a(n′′ + iτ) ≥
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(s+ 1) for all n′′ > n′ such that n′′ ∈ A. So

τ
∑

n=1

1{n+ iτ ∈ A, a(n+ iτ) ≤ s}

=

n′

∑

n=1

1{n+ iτ ∈ A, a(n+ iτ) ≤ s} = s,

which is a contradiction. Hence, for all i:

τ
∑

n=1

1{n+ iτ ∈ A, a(n+ iτ) ≤ s} ≤ s,

and substituting in (14) gives the desired result:

T
∑

n=1

1{n ∈ A, a(n) ≤ s} ≤
⌈T/τ⌉−1
∑

i=0

s = s⌈T/τ⌉.

�

4.2. Regret of SW-KL-UCB

In order to analyze the regret of SW-OSUB , we first have

to analyze the regret SW-KL-UCB on which SW-OSUB is

based.

Theorem 4.2 Let ∆: 2τσ < ∆ < ∆0. Assume that for

any n ≥ 1, µ⋆(n) ∈ [a, 1 − a] for some a > 0. Further

suppose that µk(·) is σ-Lipschitz for any k. The regret per

unit time under π =SW-KL-UCB with a sliding window of

size τ satisfies: if a > στ , then for any T ≥ 1,

Rπ(T )

T
≤ H(∆, T )

T
∆

+K
(

1 + g
−1/2
0

) log(τ) + c log(log(τ)) + C1

2τ(∆− 2τσ)2
,

where C1 is a positive constant and g0 = (a−στ)(1−a+
στ)/2.

Recall that due to the changing environment and the use of

a sliding window, the empirical reward is a biased estimator

of the average reward, and that its bias is upper bounded by

στ .

To ease the regret analysis, we first provide bounds on the

empirical reward. Unlike in the stationary case, the empir-

ical reward µ̂k(n) is not a sum of tk(n) i.i.d. variables. We

define Xk(n
′, n) = Xk(n

′)+(µk(n)+σ|n′−n|−µk(n
′))

, Xk(n
′, n) = Xk(n

′)+(µk(n)−σ|n′−n|−µk(n
′)) and:

µ̂
k
(n) =

1

tk(n)

n
∑

n′=n−τ

Xk(n
′, n)1{k(n′) = k},

µ̂k(n) =
1

tk(n)

n
∑

n′=n−τ

Xk(n
′, n)1{k(n′) = k}.

Then of course, µ̂
k
(n) ≤ µ̂k(n) ≤ µ̂k(n).

Now the regret under π=SW-OSUB is given by:

Rπ(T ) =

T
∑

n=1

K
∑

k=1

(µk⋆(n)− µk(n))P[k(n) = k].

We define Imin = 2(∆ − 2τσ)2. Let ǫ > 0 and Kτ =

(1 + ǫ) log(τ)+c log(log(τ))
Imin

. We introduce the following sets

of events:

(i) A = ∪K
k=1Ak, where

Ak = {1 ≤ n ≤ T : k(n) = k, |µk(n)− µk⋆(n)| < ∆},
Ak is the set of times at which k is chosen, and k is ”close”

to the optimal decision. Note that, by definition, |A| ≤
H(∆, T ).

(ii) B = {1 ≤ n ≤ T : bk⋆(n) ≤ µk⋆(n) − τσ}. B is

the set of times at which the index bk⋆(n) underestimates

the average reward of the optimal decision (with an error

greater than the bias τσ).

(iii) C = ∪K
k=1Ck , Ck = {1 ≤ n ≤ T : k(n) =

k, tk(n) ≤ Kτ}. Ck is the set of times at which k is se-

lected and it has been tried less than Kτ times.

(iv) D = ∪K
k=1Dk, Dk = {1 ≤ n ≤ T : k(n) = k, n /∈

(A∪B ∪C)}. Dk is the set of times where (a) k is chosen,

(b) k has been tried more than Kτ times, (c) k is not close

to the optimal decision, and (d) the average reward of the

optimal decision is not underestimated.

We will show that:
∑

n∈A

(µ∗(n)− µk(n)(n)) ≤ ∆H(∆, T ). (15)

and the following inequalities

E[|B|] ≤ O(T/τ), E[|Ck|] ≤ Kτ ⌈T/τ⌉,

E[|Dk]] ≤
T

(τ log(τ)c)g0ǫ2
.

We deduce that:

Rπ(T ) ≤ ∆H(∆, T ) +O(T/τ)

+KKτ ⌊T/τ⌋+ KT

(τ log(τ)c)g0ǫ2
,

which proves Theorem 4.2.

Proof of (15). Let n ∈ Ak. If n ∈ Ak, by definition we

have |µk⋆(n) − µk(n)| < ∆. Then if k(n) = k, we have

that µ∗(n)− µk(n)(n) ≤ ∆ so that:

∑

n∈A

(µ∗(n)− µk(n)(n)) ≤ ∆|A| ≤ ∆H(∆, T ),
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which completes the proof of (15).

Bound on E[|B|]. Let n ∈ B. Note that µ̂
k⋆
(n) ≤

µ̂k⋆(n) ≤ bk⋆(n). Since bk⋆(n) ≤ µk⋆(n)−στ , we deduce

that: µ̂
k⋆
(n) ≤ µk⋆(n)− στ . Now we have:

P[n ∈ B] = P[bk⋆(n) ≤ µk⋆(n)− στ ]

= P[tk⋆(n)I (µ̂k⋆(n), µk⋆(n)− στ)

≥ log(τ) + c log(log(τ))]

(a)

≤ P[tk⋆(n)I
(

µ̂
k⋆
(n), µk⋆(n)− στ

)

≥ log(τ) + c log(log(τ))]

(b)

≤ 2e

τ(log(τ))c−2
,

where (a) is due to the fact that µ̂
k⋆
(n) ≤ µ̂k⋆(n), and (b) is

obtained applying Lemma 2.4. Hence: E[|B|] ≤ O(T/τ).

Bound on E[|Ck|]. Using Lemma 4.1, we get |Ck| ≤
Kτ ⌈T/τ⌉, and hence |C| ≤ KKτ ⌊T/τ⌋.

Bound on E[|Dk|]. We will prove that n ∈ Dk im-

plies that µ̂k(n) deviates from its expectation by at least

f(ǫ, Imin) > 0 so that:

P[n ∈ Dk] ≤ P
[

µ̂k(n)− E[µ̂k(n)] > f(ǫ, Imin)
]

.

Let n ∈ Dk. Since k(n) = k and bk⋆(n) ≥ µk⋆(n) − στ ,

we have bk(n) ≥ µk⋆(n) − στ . We decompose Dk as

follows:

Dk = Dk,1 ∪Dk,2

Dk,1 = {n ∈ Dk : µ̂k(n) ≥ µk⋆(n)− στ}
Dk,2 = {n ∈ Dk : µ̂k(n) ≤ µk⋆(n)− στ}

If n ∈ Dk,1, µ̂k(n)−E[µ̂k(n)] ≥ µk⋆(n)−µk(n)−2στ >
0 so that µ̂k(n) indeed deviates from its expectation. Now

let n ∈ Dk,2. We have:

P[n ∈ Dk,2]

≤ P[bk(n) ≥ µk⋆(n)− στ, n ∈ Dk,2]

= P[tk(n)I (µ̂k(n), µk⋆(n)− στ)

≤ log(τ) + c log(log(τ)), n ∈ Dk,2]

(a)

≤ P[KτI
(

µ̂k(n), µk⋆(n)− στ
)

≤ log(τ) + c log(log(τ)), tk(n) ≥ Kτ ]

= P

[

I
(

µ̂k(n), µk⋆(n)− στ
)

≤ Imin

1 + ǫ
, tk(n) ≥ Kτ

]

,

where in (a), we used the facts that: µ̂k(n) ≤ µk⋆(n)−στ ,

µ̂k(n) ≥ µ̂k(n), and tk(n) ≥ Kτ (n /∈ C). It is noted

that since n /∈ Ak, by Pinkser’s inequality we have that:

I(µk(n) + τσ, µk⋆ (n) − τσ) ≥ 2(µk⋆(n) − µk(n) −
2τσ)2 ≥ 2(∆ − 2τσ)2 = Imin. By continuity and mono-

tonicity of the KL divergence, there exists a unique positive

function f such that:

I (µk(n) + στ + f(ǫ, Imin), µk⋆(n)− στ) =
Imin

1 + ǫ
,

µk(n) + στ + f(ǫ, Imin) ≤ µk⋆(n)− στ.

We are interested in the asymptotic behavior of f when ǫ ,

Imin both tend to 0 . Define µ′ , µ′′ and µ0 such that

µk(n) + στ ≤ µ′ ≤ µ′′ ≤ µ0 = µk⋆(n)− στ.

and

I(µ′, µ0) = Imin , I(µ′′, µ0) =
Imin

1 + ǫ
.

Using the equivalent (9) given in Lemma 2.5, there exists a

function a such that:

(µ0 − µ′)2

µ0(1− µ0)
(1 + a(µ0 − µ′)) = Imin,

(µ0 − µ′′)2

µ0(1 − µ0)
(1 + a(µ0 − µ′′)) =

Imin

1 + ǫ
.

with a(δ) → 0 when δ → 0+. It is noted that 0 ≤ µ0 −
µ′′ ≤ µ0 − µ′ = o(1) when Imin → 0+ by continuity of

the KL divergence. Hence:

µ′′ − µ′ =
( ǫ

2
+ o(1)

)

√

µ0(1− µ0)Imin.

Using the inequality

f(ǫ, Imin) = µ′′ − (µk(n) + στ)

≥ µ′′ − µ′ =
ǫ

2

√

µ0(1 − µ0)Imin,

we have proved that:

2f(ǫ, Imin)
2 ≥ ǫ2g0Imin + o(ǫ2)

with

g0 = (a− στ)(1 − a+ στ)/2.

Therefore, since E[µ̂k(n)] ≤ µk(n) + στ , as claimed, we

have

P[n ∈ Dk]

≤ P
[

µ̂k(n)− E[µ̂k(n)] ≥ f(ǫ, Imin) , tk(n) ≥ Kτ
]

.

We now apply Lemma 2.1 with n − τ in place of n0, Kτ

in place of s and φ = n if tk(n) ≥ Kτ and φ = T + 1
otherwise. We obtain, for all n:

P[n ∈ Dk]

≤ P
[

µ̂k(n)− E[µ̂k(n)] ≥ f(ǫ, Imin), tk(n) ≥ Kτ
]

≤ exp
(

−2Kτf(ǫ, Imin)
2
)

≤ 1

(τ log(τ)c)g0ǫ2
,
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and we get the desired bound by summing over n:

E[|Dk|] =
T
∑

n=1

P[n ∈ Dk] ≤
T

(τ log(τ)c)g0ǫ2
.

4.3. Proof of Theorem 5.1(a)

We first introduce some notations. For any set A of instants,

we use the notation: A[n0, n] = A∩{n0, . . . , n0+ τ}. Let

n0 ≤ n. We define tk(n0, n) the number of times k has

been chosen during interval {n0, . . . , n0 + τ}, lk(n0, n)
the number of times k has been the leader, and tk,k′ (n0, n)
the number of times k′ has been chosen while k was the

leader:

tk(n0, n) =

n
∑

n′=n0

1{k(n′) = k},

lk(n0, n) =

n
∑

n′=n0

1{L(n′) = k},

tk,k′ (n0, n) =

n
∑

n′=n0

1{L(n′) = k, k(n′) = k′}.

Note that lk(n − τ, n) = lk(n), tk(n − τ, n) = tk(n) and

tk,k′ (n − τ, n) = tk,k′ (n). Given ∆ > 0, we define the

set of instants at which the average reward of k is separated

from the average reward of its neighbours by at least ∆:

Nk(∆) = ∩(k′,k)∈E{n : |µk(n)− µk′(n)| > ∆}.

We further define the amount of time that k is suboptimal,

k is the leader, and it is well separated from its neighbors:

Lk(∆) = {n : L(n) = k 6= k⋆(n), n ∈ Nk(∆)}.

By definition of the regret under π =SW-OSUB :

Rπ(T ) =

T
∑

n=1

∑

k 6=k⋆(n)

(µk⋆(n)− µk(n))P[k(n) = k].

To bound the regret, as in the stationary case, we split the

regret into two components: the regret accumulated when

the leader is the optimal arm, and the regret generated when

the leader is not the optimal arm. The regret when the

leader is suboptimal satisfies:

T
∑

n=1

∑

k 6=k⋆(n)

(µk⋆(n)− µk)1{k(n) = k, L(n) 6= k⋆(n)}

≤
T
∑

n=1

1{L(n) 6= k⋆(n)}

≤
T
∑

n=1

∑

k 6=k⋆(n)

1{L(n) = k 6= k⋆(n)}

≤
T
∑

n=1

∑

k 6=k⋆(n)

1{n ∈ Lk(∆)}

+ 1{∃k′ : (k, k⋆) ∈ E : |µk(n)− µk′(n)| ≤ ∆}

≤
(

K
∑

k=1

|Lk(∆)[0, T ]|+H(∆, T )

)

.

Therefore the regret satisfies:

Rπ(T ) ≤
(

H(∆, T ) +

K
∑

k=1

E[|Lk(∆)[0, T ]|]
)

+

T
∑

n=1

∑

(k,k⋆(n))∈E

(µk⋆(n)− µk(n))P[k(n) = k].

(16)

The second term of the r.h.s in (16) is the regret of SW-

OSUB when k⋆(n) is the leader. This term can be analyzed

using the same techniques as those used for the analysis of

SW-KL-UCB and is upper bounded by the regret of SW-

KL-UCB. It remains to bound the first term of the r.h.s in

(16).

Theorem 4.3 Consider ∆ > 4τσ. Then for all k:

E[|Lk(∆)[0, T ]|] ≤ C1 ×
T log(τ)

τ(∆ − 4τσ)2
, (17)

where C1 > 0 does not depend on T , τ , σ and ∆.

Substituting (17) in (16), we obtain the announced result.

�

4.4. Proof of Theorem 4.3

It remains to prove Theorem 4.3. Define δ = (∆−4τσ)/2.

We can decompose {1, . . . , T } into at most ⌈T/τ⌉ intervals

of size τ . Therefore, to prove the theorem, it is sufficient to

prove that for all n0 ∈ Lk(∆) we have:

E[|Lk(∆)[n0, n0 + τ ]|] ≤ O

(

log(τ)

δ2

)

.
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In the remaining of the proof, we consider an interval

{n0, . . . , n0 + τ}, with n0 ∈ Lk(∆) fixed. It is noted

that the best neighbour of k changes with time. We define

k2(n) the best neighbor of k at time n. From the Lipschitz

assumption and the fact that ∆ > 4τσ, we have that for

all n ∈ {n0, . . . , n0 + τ}, k2(n) = k2(n0). Indeed for all

n ∈ {n0, . . . , n0 + τ}:

µk2(n0)(n)− µk(n)

≥ µk2(n0)(n0)− µk(n0)− 2(n− n0)σ

≥ ∆− 2τσ ≥ 2τσ > 0.

We write k2 = k2(n0) = k2(n) when this does not cre-

ate ambiguity. We will use the fact that, for all n ∈
{n0, . . . , n0 + τ}:

E[µ̂k2
(n)]− E[µ̂k(n)] ≥ µk2

(n)− µk(n)− 2τσ,

≥ µk2
(n0)− µk(n0)− 4τσ,

≥ ∆− 4τσ = 2δ > 0.

We decompose Lk(∆)[n0, n0 + τ ] = An0

ǫ ∪Bn0

ǫ , with:

An0

ǫ = {n ∈ Lk(∆)[n0, n0 + τ ], tk2
(n) ≥

ǫlk(n0, n)} the set of times where k is the leader,

k is not the optimal arm, and its best neighbor k2
has been tried sufficiently many times during interval

{n0, . . . , n0 + τ},

Bn0

ǫ = {n ∈ Lk(∆)[n0, n0 + τ ], tk2
(n) ≤

ǫlk(n0, n)} the set of times where k is the leader, k
is not the optimal arm, and its best neighbor k2 has

been little tried during interval {n0, . . . , n0 + τ}.

Bound on E[An0

ǫ ]. Let n ∈ An0

ǫ . We recall that

E[µ̂k2
(n)] − E[µ̂k(n)] ≥ 2δ, so that the reward of k or

k2 must be badly estimated at time n:

P[n ∈ An0

ǫ ]

≤ P[|µ̂k(n)− E[µ̂k(n)]| > δ]

+ P[|µ̂k2
(n)− E[µ̂k2

(n)]| > δ].

We apply Lemma 2.7, with k′ = k2, ∆k,k′ = 2δ, Λ(s) =
{n ∈ An0

ǫ , lk(n0, n) = s}, tk2
(n) ≥ ǫlk(n0, n) = ǫs.

By design of SW-OSUB : tk(n) ≥ lk(n0, n)/(γ + 1) =
s/(γ+1). Using the fact that |Λ(s)| ≤ 1 for all s, we have

that:

E[An0

ǫ ] ≤ O

(

log(τ)

ǫδ2

)

.

Bound on E[Bn0

ǫ ]. Define l0 such that

√

log(l0) + c log(log(l0))

2⌊l0/(2(γ + 1))⌋ ≤ δ.

In particular we can choose l0 = 2(γ + 1)(log(1/δ)/δ2).
Indeed, with such a choice we have that

√

log(l0) + c log(log(l0))

2⌊l0/(2(γ + 1))⌋ ∼ δ/2 , δ → 0+.

Let ǫ < 1/(2(γ + 1)), and define the following sets:

Cn0

δ is the set of instants at which the average reward

of the leader k is badly estimated:

Cn0

δ = {n ∈ {n0, . . . , n0 + τ}
: L(n) = k 6= k⋆(n), |µ̂k(n)− E[µ̂k(n)]| > δ};

Dn0

δ = ∪k′∈N(k)\{k2}D
n0

δ,k′ where Dn0

δ,k′ = {n :
L(n) = k 6= k⋆(n), k(n) = k′, |µ̂k′ (n) −
E[µ̂k′ (n)]| > δ}. Dn0

δ is the set of instants at which k
is the leader, k′ is selected and the average reward of

k′ is badly estimated.

En0 = {n ≤ T : L(n) = k 6= k⋆(n), bk2
(n) ≤

E[µ̂k2
(n)]} is the set of instants at which k is the

leader, and the upper confidence index bk2
(n) under-

estimates the average reward E[µ̂k2
(n)].

Let n ∈ Bn0

ǫ . Write s = lk(n0, n), and we assume that

s ≥ l0. Since tk2
(n0, n) ≤ ǫlk(n0, n) and the fact that

lk(n0, n) = tk2
(n0, n) +

∑

k′∈N(k)\{k2}
tk′(n0, n), we

must have (a) there exists k1 ∈ N(k) \ {k, k2} such that

tk1
(n0, n) ≥ s/(γ + 1) or (b) tk1

(n0, n) ≥ (3/2)s/(γ +
1) + 1. Since tk,k(n) and tk,k2

(n) are incremented only

at times when k(n) = k and k(n) = k2 respectively,

there must exist a unique index φ(n) ∈ {n0, . . . , n0 + τ}
such that either: (a) tk,k1

(φ(n)) = ⌊s/(2(γ + 1))⌋ and

k(φ(n)) = k1; or (b) tk,k2
(φ(n)) = ⌊(3/2)s/(γ + 1)⌋

and k(n) = k and lk(φ(n)) is not a multiple of 3. In both

cases, as in the proof of theorem 3.1, we must have that

φ(n) ∈ Cn0

δ ∪Dn0

δ ∪En0 .

We now upper bound the number of instants n which

are associated to the same φ(n). Let n, n′ ∈ Bn0

ǫ and

s = lk(n0, n). We see that φ(n′) = φ(n) implies ei-

ther ⌊lk(n0, n
′)/(2(γ + 1))⌋ = ⌊lk(n0, n)/(2(γ + 1))⌋ or

⌊(3/2)lk(n0, n
′)/(γ + 1)⌋ = ⌊(3/2)lk(n0, n)/(γ + 1)⌋.

Furthermore, n′ 7→ lk(n0, n
′) is incremented at time n′.

Hence for all n ∈ Bn0

ǫ :

|n′ ∈ Bn0

ǫ , φ(n′) = φ(n)| ≤ 2γ(γ + 1).

We have established that:

|Bn0

ǫ | ≤ l0 + 2γ(γ + 1)(|Cn0

δ |+ |Dn0

δ |+ |En0 |)
= 2(γ + 1) log(1/δ)/δ2

+ 2γ(γ + 1)(|Cn0

δ |+ |Dn0

δ |+ |En0 |).
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We complete the proof by providing bounds of the expected

sizes of sets Cn0

δ , Dn0

δ and En0 .

Bound of E[Cn0

δ ]: Using Lemma 2.6 with Λ(s) = {n ∈
Cn0

δ , lk(n0, n) = s}, and by design of SW-OSUB :

tk(n) ≥ lk(n0, n)/(γ + 1) = s/(γ + 1). Since |Λ(s)| ≤ 1
for all s, we have that:

E[|Cn0

δ |] ≤ O

(

log(τ)

δ2

)

.

Bound of E[Dn0

δ ]: Using Lemma 2.6 with Λ(s) = {n ∈

Dn0

δ , tk,k′(n0, n) = s}, and |Λ(s)| ≤ 1 for all s, we have

that:

E[|Dn0

δ,k′ |] ≤ O

(

log(τ)

δ2

)

.

Bound of E[En0 ]: By Lemma 2.4 since lk(n) ≤ τ :

P[n ∈ En0 ] ≤ 2e⌈log(τ)(log(τ) + c log(log(τ)))⌉
exp(− log(τ) + c log(log(τ)))

≤ 4e

τ log(τ)c−2
.

Thus

E[|En0 |] ≤ 4e

(log τ)c−2
.

Putting the various bounds all together, we have:

E[|Lk(∆)[n0, n0 + τ ]|] ≤ O

(

log(τ)

δ2

)

,

for all n0 ∈ Lk(∆), uniformly in δ, which concludes the

proof. �

5. Proof of Proposition 6.1(a)

The regret of UCB(δ) is defined as:

Rπ(T ) ≤
⌈1/δ⌉
∑

k=1

E[tk(T )](µ
∗ − µk).

We separate the arms into three different sets.

{1, . . . , ⌈1/δ⌉} = A∪B∪C, with: A = {k∗−1, k∗, k∗+1}
the optimal arm and its neighbors, B = {k : k /∈
A, (k − 1)δ ∈ [x∗ − δ0, x

∗ + δ0]} the arms which are not

neighbors of the optimal arm, but are in [x∗ − δ0, x
∗ + δ0],

and C = {k : (k − 1)δ /∈ [x∗ − δ0, x
∗ + δ0]} the rest of

the arms.

We consider δ < δ0/3, so that A ⊂ [x∗ − δ0, x
∗ + δ0].

By our assumption on the reward function, if k ∈ A, |x∗ −

δ(k − 1)| ≤ 2δ then |µ∗ − µk| ≤ C2(2δ)
α. The regret is

upper bounded by:

Rπ(T ) ≤ TC2(2δ)
α +

∑

k∈B∪C

E[tk(T )](µ
∗ − µk).

Using the fact that µ∗ − µk∗ ≤ C2δ
α and

∑⌈1/δ⌉
k=1 E[tk(T )] ≤ T , the bound becomes:

Rπ(T ) ≤ TC2(3δ)
α +

∑

k∈B∪C

E[tk(T )](µk∗ − µk).

By (Auer et al., 2002) (the analysis of UCB), for all k,

E[tk(T )] ≤ 8 log(T )/(µk∗ − µk)
2. Replacing in the re-

gret upper bound:

Rπ(T ) ≤ TC2(3δ)
α +

∑

k∈B∪C

8 log(T )/(µk∗ − µk).

If k ∈ B, |δ(k∗ − 1) − δ(k − 1)| ≥ δ(|k∗ − k| − 1),
so µk∗ − µk ≥ C1δ

α(|k∗ − k| − 1)α. If k ∈ C , then

|δ(k∗ − 1)− δ(k− 1)| ≥ δ0/2, so µk∗ −µk ≥ C1(δ0/2)
α.

So the regret for arms in B ∪ C reduces to:

Rπ(T ) ≤ TC2(3δ)
α +

8 log(T )⌈1/δ⌉
C1(δ0/2)α

+2

⌈1/δ⌉
∑

k=1

8 log(T )

C1(δk)α
.

Using a sum-integral comparison:
∑⌈1/δ⌉

k=1 k−α ≤
∑⌈1/δ⌉

k=1 k−1 ≤ 1 + log(⌈1/δ⌉), so that:

Rπ(T ) ≤ TC2(3δ)
α

+ 8 log(T )

( ⌈1/δ⌉
C1(δ0/2)α

+
2(1 + log(⌈1/δ⌉))

C1δα

)

.

Setting δ = (log(T )/
√
T )1/α, the regret becomes:

Rπ(T ) ≤ TC2(3
α)(log(T )/

√
T )+

8 log(T )

(

⌈(
√
T/ log(T ))1/α⌉
C1(δ0/2)α

+
2(1 + log(T ))

C1 log(T )/
√
T

)

.

we have used the fact that ⌈1/δ⌉ ≤ T .

Rπ(T ) ≤ C2(3
α) log(T )

√
T

+8

( √
T + 1

C1(δ0/2)α
+

2
√
T (1 + log(T ))

C1

)

Letting T → ∞ gives the result:

lim sup
T

Rπ(T )/(
√
T log(T )) ≤ C23

α + 16/C1.
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