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Abstract—In 802.11 systems, Rate Adaptation (RA) is
a fundamental mechanism allowing transmitters to adapt
the coding and modulation scheme as well as the MIMO
transmission mode to the radio channel conditions, and in
turn, to learn and track the (mode, rate) pair providing the
highest throughput. So far, the design of RA mechanisms
has been mainly driven by heuristics. In contrast, in this
paper, we rigorously formulate such design as an online
stochastic optimisation problem. We solve this problem and
present ORS (Optimal Rate Sampling), a family of (mode,
rate) pair adaptation algorithms that provably learn as fast
as it is possible the best pair for transmission. We study the
performance of ORS algorithms in both stationary radio
environments where the successful packet transmission
probabilities at the various (mode, rate) pairs do not vary
over time, and in non-stationary environments where these
probabilities evolve. We show that under ORS algorithms,
the throughput loss due to the need to explore sub-optimal
(mode, rate) pairs does not depend on the number of
available pairs, which is a crucial advantage as evolving
802.11 standards offer an increasingly large number of
(mode, rate) pairs. We illustrate the efficiency of ORS
algorithms (compared to the state-of-the-art algorithms)
using simulations and traces extracted from 802.11 test-
beds.

I. INTRODUCTION

In 802.11 systems, transmitters select, for each packet
transmission, a modulation and coding scheme as well
as a MIMO mode (a diversity-oriented single-stream
mode or a spatial multiplexing-oriented multiple-stream
mode). Transmitters adapt the (mode, rate) pair to the
channel conditions, with the objective to identify as
fast as possible the pair maximising throughput, i.e.,
maximizing the product of the rate and of the successful
packet transmission probability. The challenge in the de-
sign of (mode, rate) adaption scheme, or rate adaptation
(RA) scheme for short, stems from the facts that these
probabilities are unknown a priori, and that they may
evolve over time.

Traditionally, RA mechanisms are based on rate sam-
pling approaches (e.g. ARF [12], SampleRate [2]): the
rate (or (mode, rate) pair) selection solely depends on the
past observed packet transmission successes and failures
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at the various rates. As standards evolve, the number of
available decisions (mode and rate pairs) gets very large,
making the use of sampling approaches questionable.
An alternative to sampling approaches consists in using
channel measurements to predict the packet error rate
(PER) under the various possible decisions. However,
predicting PER accurately is difficult, and costly as
measurement feedback incurs extra overhead, see e.g.
[1], [51, [9], [17], [19]. As of now, it is difficult to predict
whether measurement-based RA schemes will be widely
adopted in the future or whether sampling approaches
will continue to prevail.

In this paper, we investigate the fundamental perfor-
mance limits of sampling approaches, and rigorously
design the best sampling-based RA algorithms, i.e., max-
imising the expected number of packets successfully sent
over a finite time horizon. These algorithms optimally
explore sub-optimal decisions, and learn as fast as it is
possible the best (mode, rate) pair for transmission. This
contrasts with all existing RA mechansims whose design
was mainly based on heuristics. Our contributions are as
follows.

(i) We formulate the optimal design of RA algorithms
as an online stochastic optimisation problem, referred to
as a graphically unimodal Multi-Armed Bandit (MAB)
problem (Section II).

(ii) For stationary radio environments, where the suc-
cessful packet transmission probabilities using the vari-
ous (mode, rate) pairs do not evolve, we derive an upper
performance bound satisfied by any sampling-based RA
algorithm. We present G-ORS, a RA algorithm appli-
cable to 802.11 systems with single or multiple MIMO
modes, and whose performance matches the upper boudn
derived previously, i.e., G-ORS is optimal. As it turns
out, G-ORS performance does not depend on the size
of the decision space (the number of available (mode,
rate) pairs), which is quite remarkable, and suggests
that sampling-based RA mechanisms perform well even
when the decision space is large (Section III).

(iii) For non-stationary radio environments where the
successful packet transmissions do vary over time, we
propose SW-G-ORS algorithm, a version of G-ORS
with sliding window, and provide guarantees on its
performance (Section IV).

(iv) Finally we illustrate the efficiency of our algo-



rithms using numerical experiments using both artifi-
cially generated traces, and traces extracted from test-
beds (Section V).

Related work. A large array of sampling algorithms for
802.11 a/b/g systems has been proposed in the past, see
e.g. [2], [12], [14]. Other sampling algorithms have been
specifically developed for 802.11n MIMO systems [16],
[17]. These algorithms are based on heuristics, which
contrasts with the proposed schemes, developed using
stochastic optimisation methods. In parallel, there has
been an increasing interest for measurement-based RA
algorithm, in 802.11a/b/g and n systems [6], [10], [11],
[20]. Predicting PER however remain a difficult and
costly task, and it is today unclear whether measurement-
based schemes will be widely adopted in the future.
For a comprehensive state-of-the-art on RA mechanisms,
please refer to [4].

In this paper, the design of sampling-based RA al-
gorithms is mapped into what is called a graphically
unimodal MAB problem. There is an extensive literature
on MAB problems, see [3] for a survey. The originality
of our MAB problem lies in its structure: the average
rewards achieved under the various available decisions
are related. This structure is an advantage as it may be
exploited to learn the best decision faster, but also brings
additional theoretical challenges. Structured MAB have
received little attention so far, see e.g. [3], [22]. In this
paper, we provide a complete analysis of our MAB prob-
lem: we derive performance upper bound, and provide
optimal sequential decision selection schemes. We also
study the problem in non-stationary environments. Such
environments are rarely addresed in the MAB literature,
see [8], [13], [21]. As far as we know, we provide the first
analysis of non-stationary and structured MAB problems.

II. PRELIMINARIES
A. Models

We consider a single link (a transmitter-receiver pair).
At time O, the link becomes active and the transmitter
has packets to send to the receiver. For each packet,
the transmitter has to select a rate (for 802.11 a/b/g/
systems), or a MIMO mode and a rate (for 802.11n
MIMO systems). The set of such possible decisions is
denoted by D, and is of cardinality D. The set of MIMO
modes is M (for 802.11 a/b/g systems, there is a single
available mode) and in mode m, the rate is selected from
set R,,. We write d = (m, k) when the mode m is
selected along with the k-th lowest rate in R,,. Let r4 the
rate selected under decision d. After a packet is sent, the
transmitter is informed on whether the transmission has
been successful. Based on the observed past transmission

successes and failures, the transmitter has to make a
decision for the next packet transmission. We denote by
II the set of all possible sequential (mode, rate) pair
selection schemes. Packets are assumed to be of equal
size, and without loss of generality the duration of a
packet transmission at rate r is 1/7.

1) Channel models: For the i-th packet transmission
using (mode, rate) pair d, a binary random variable X ;(¢)
represents the success (X4(7) = 1) or failure (X4(i) = 0)
of the transmission.

Stationary radio environments. In such environments,
the success transmission probabilities using the different
(mode, rate) pairs do not evolve over time. This arises
when the system considered is static (in particular, the
transmitter and receiver do not move). Formally, X(7),
1=1,2,..., are independent and identically distributed,
and we denote by 6, the success transmission probability
under decision d, 0; = E[X4(i)]. Let pg = rqbq.
We denote by d* the optimal (mode, rate) pair, d* €
argmaxgep Md-

Non-stationary radio environments. In practice, chan-
nel conditions may be non-stationary, i.e., the success
probabilities could evolve over time. In many situations,
the evolution over time is rather slow, see e.g. [18].
These slow variations allow us to devise sequential
decision selection schemes that efficiently track the best
(mode, rate) pair for transmission. In the case of non-
stationary environment, we denote by 0;(t) the success
transmission probability under decision d at time ¢, and
by d*(t) the optimal (mode, rate) pair at time ¢.

Unless otherwise specified, we consider stationary
radio environments. Non-stationary environments are
treated in Section IV.

2) Structural properties: Our problem is to identify
as fast as possible the (mode, rate) pair maximising
throughput. To this aim, we leverage two crucial struc-
tural properties of the problem: (i) The successes and
failures of transmissions at various (mode, rate) pairs
are correlated, and (ii) in practice, we observe that
the throughput vs. (mode, rate) pair function has some
structure, referred to as graphical unimodality.

Correlations. If a transmission is successful at a high
rate, it has to be successful at a lower rate, and similarly,
if a low-rate transmission fails, then a transmitting at a
higher rate would also fail. Formally this means that for
any m € M, O(, 1y > Oy if k <, or equivalently
that @ = (04,d € D) € T, where T = {n € [0,1]? :
Nim,k) > n(m’l),Vm e M,Vk < l}.

Graphical unimodality. Graphical unimodality is de-
fined through an undirected graph G = (D, E), whose
vertices correspond to the available decisions ((mode,



rate) pairs). When (d,d’) € E, we say that the two
decisions d and d’ are neighbours, and we let N'(d) =
{d € D : (d,d) € E} be the set of neighbours of
d. Graphical unimodality expresses the fact that when
the optimal decision is d*, then for any d € D, there
exists a path in G from d to d* along which the expected
throughput is increased. In other words there is no local
maximum in terms of expected throughput except at d*.
Formally, 6 € Ug, where Ug is the set of parameters
6 € [0,1]P such that, if d* = argmaxgpg, for any
d € D, there exists a path (dy = d,dy,...,d, = d¥)
in G such that for any ¢ = 1,...,p, g, > pa,_,-

In case of 802.11 systems with a single mode, the
throughput is an unimodal function of the rates, which
is well known, see e.g. [17], and hence graphical uni-
modality holds. The corresponding graph G is a line
as illustrated in Fig. 1. In 802.11n MIMO systems, we
can find a graph G such that the throughput obtained
at various (mode, rate) pairs is graphically unimodal
with respect to GG. Such a graph is presented in Fig. 1,
for systems using two MIMO modes, a single-stream
(SS) mode, and a double-stream (DS) mode. It has
been constructed exploiting various observations and
empirical results from [6], [17]. First, for a given mode
(SS or DS), the throughput is unimodal in the rate. Then,
when the SNR is relatively low, it has been observed that
using SS mode is always better than using DS mode; this
explains why for example, the (mode, rate) pair (SS,13.5)
has no neighbour in the DS mode. Similarly, when the
SNR is very high, then it is always optimal to use DS
mode. Finally when the SNR is neither low nor high,
there is no clear better mode, which explains why we
need links between the two modes in the graph.
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Fig. 1. Graphs G providing unimodality in 802.11g systems (above)
and MIMO 802.11n systems (below). Rates are in Mbit/s. In 802.11n,
two MIMO modes are considered, single-stream (SS) and double-
stream (DS) modes.

B. Objectives

We now formulate the design of the best (mode,
rate) pair selection algorithm as an online stochastic
optimisation problem. An optimal algorithm maximises

the expected number packets successfully sent over a
given time horizon T'. The choice of T is not really
important as long as during time interval 7', a large
number of packets can be sent — so that inferring the
success transmission probabilities efficiently is possible.

Under a given RA algorithm 7 € II, the number
of packets ¥™(7") successfully sent up to time 7' is:
Y(T) = >4 Zfi(lT) Xq(i), where s7(T) is the num-
ber of transmission attempts at (rate, mode) d before
time T. The sq(7")’s are random variables (since the
rates selected under m depend on the past random
successes and failures), and satisfy the following con-
straint: ), s%(T) x % < T. Wald’s lemma implies
that E[v™(T)] = > ,E[s}(T)]04. Thus, our objective
is to design an online algorithm solving the following
stochastic optimisation problem:

max d E[s5(T)]0g4, (1)
st s3(T)eNVdeDand 3 s5(T) x — <T.
d Td

C. Graphically Unimodal Multi-Armed Bandit

We now show that problem (1) is asymptotically (for
large T') equivalent to a graphically unimodal MAB
problem. Consider an alternative system where the du-
ration of a packet transmission at any rate is one slot,
and where decisions are taken at the beginning of each
slot. When rate 7 is selected, and the transmission is
successful, the reward is incremented by an amount of r
bits. In this alternative system, the objective is to design
7 € II solving the following optimisation problem.

max > B[tg(T)]raba,

2)

st ty(T) eNVd €D, and » 3(T) < T,
d

where t7(T") denotes the number of times decision d
has been taken up to slot 7. Note that if the same
algorithm 7 is applied both in the original and alternative
systems, we simply have: t7 (1) = s7(1T")/rq, assuming
without loss of generality that 1/r, is an integer number
of slots. The optimisation problem (2) corresponds to a
MAB problem (see below for a formal definition). To
assess the performance of m € II, it is usual in MAB
literature to use the notion of regret. The regret up to
slot T' compares the performance of 7 to that achieved
by an Oracle algorithm always selecting the best (mode,
rate) pair. The regrets R7(T") and R™(T") of algorithm 7
up to time slot 7" in the original and alternative systems



are then:
RU(T) = 0. |raT) = > _ 04E[s7(T)],
d

R™(T) = Ogrq:T =Y _ 0qrqB[t}(T)].
d

In the next section, we show that for any w € II,
an asymptotic lower bound of the regret R™(T') is of
the form c¢(0)log(T) where c(f) is a strictly positive
and explicit constant. It will be also shown that there
exists an algorithm 7 € II that actually achieves this
lower bound in the alternative system, in the sense that
limsupp_,.o R™(T)/log(T') < ¢(f). In such a case,
we say that 7 is asymptotically optimal. The following
lemma states that actually, the same lower bound holds in
the original system, and that any asymptotically optimal
algorithm in the alternative system is also asymptotically
optimal in the original system. All proofs are presented
in Appendix.

Lemma 2.1: Let w € II. For any ¢ > 0, we have:

> im i i >
> c> o (llmTlggo log(T) = c) ,
§c>.

<lim sup R < c> == <lim sup ﬂ

T—o0 log(T) N T—o00 IOg(T)

In view of the above lemma, instead of trying to
solve (1), we can rather focus on analysing the MAB
problem (2). We know that optimal algorithms for (2)
will also be optimal for the original problem. Our MAB
problem, whose specificity lies in its structure, i.e.,
in the correlations and graphical unimodality of the

throughputs obtained using different (mode, rate) pairs,
is summarised below.

(Pg) Graphically Unimodal MAB. We have a set D of
possible decisions. If decision d is taken for the -th time,
we received a reward r4X4(7). (Xg(i),i = 1,2,...) are
i.i.d. with Bernoulli distribution with mean 6. The struc-
ture of rewards across decisions are expressed through
0 € T NUq for some graph G. The objective is to design
an algorithm 7 minimising the regret R™(7") over all
possible algorithms 7 € II.

ITI. STATIONARY RADIO ENVIRONMENTS

We consider here stationary radio environments, and
first derive a lower bound on regret satisfied by any
(mode, rate) selection algorithm. Then, we propose G-
ORS (Graphical-Optimal Rate Sampling), an algorithm
whose asymptotic regret matches the derived lower
bound.

A. Regret lower bound

To derive a lower bound on regret for MAB problem
(Pg), we first introduce the notion of uniformly good
algorithms [15]. An algorithm 7 is uniformly good,
if for all parameters 6, for any o > 0, we have':
E[t7(T)] = o(T%),Vd # d*, where t7(T) is the number
of times decision d has been chosen up to time slot
T, and d* denotes the optimal decision (d* depends
on 6). Uniformly good algorithms exist as we shall see
later on. We further define the following sets: for any
de D, N(d) ={d € N(d) : pug < rq}. Finally, recall
that the Kullback-Leibler (KL) divergence between two
Bernoulli distributions with respective means p and q is:

I(p,q) = plog 2 + (1 — p) log 1=2.
Theorem 3.1: Let m € 11 be a uniformly good sequen-

tial decision algorithm for the MAB problem (Pg). We
have:

. R™(T)
lim s > 0),
U og(r) = @)
where
T *9 « — T 0
Cg(e) _ d*Yd avd

axOax \
deN(d*) I(edv - Ta )

The number of terms in the sum cg(6) is at most
equal to the degree of the graph G. In particular, in case
of 802.11 systems with a single mode, G is a line, and
cc(0) has at most two terms. In MIMO 802.11n systems,
cc(0) has at most 4 terms if G is the graph presented
in Fig. 1. More generally, the regret lower bound does
not depend on the number of available decisions, which
is an important property as this number can be quite
large. Note that to obtain this lower bound, the graphical
unimodality of the throughput plays an important role.
Indeed, without structure, i.e., assuming that § € 7 only,
the lower bound on regret would scale linearly with the
number of available decisions, see [4] for a more detailed
discussion.

B. Optimal Rate Sampling algorithm

Next we propose G-ORS, a (rate, mode) selection
algorithm whose regret matches the lower bound derived
in Theorem 3.1, i.e., under G-ORS, the way suboptimal
(rate, mode) pairs are explored to identify the optimal
pair d* is optimal.

We denote by t4(n) the number of times decision d
has been selected under G-ORS up to slot n. fig(n) =
td%n) Zid:(?) rqXq(i) is the empirical average reward
using decision d up to slot n. By convention, fiz(n) =0
if t4(n) = 0. The leader L(n) at slot n is the decision
with maximum empirical average reward (ties are broken

'F(T) = o(g(T)) means that limr_, f(T)/g(T) = 0.



arbitrarily). Further define [4(n), the number of times
decision d has been the leader up to slot n, and introduce,
for any 4 > 0 and d € D, the sets N(d,u) = {d €
N() : p < r(d)}, and M(d,p) = N(d,p) U {d}.
Finally, let v be the maximum degree of a vertex in
(. G-ORS algorithm assigns an index to each decision
d. The index bg(n) of decision d in slot n is given by:
fia(n) q

ba(n) :maX{q € [0, 7] itd(nﬂ(Td’ ra

< 10g(I1(n) + clog(log(lz ()}, (3)
where c is a positive constant. For the n-th slot, G-

ORS selects the decision in M (L(n), fi,n)(n)) with
maximum index. Ties are broken arbitrarily.

Algorithm 1 G-ORS algorithm

For n =1,..., D, select (mode, rate) pair d.

For n > D + 1, let d(n) €
arg MaXqe v (L(n), s (n)) 0a(n); select (mode, rate)
pair d(n:

d(n) = {

The next theorem states that the regret achieved under
G-ORS algorithm matches the lower bound derived in
Theorem 3.1.

Theorem 3.2: Fix 0 € T NUg. For all € > 0, under
algorithm m = G-ORS, the regret at time 7" is bounded
by:

L(n) if (Ipm)(n) —1)/7 €N,
d(n) otherwise .

R™(T) < (14 €)ea(0)log(T) + O(log(log(T))).

As a consequence:

o BT
L, Tog(m) = )

It is worth noting again that the regret of G-ORS does
not depend on the size of the decision space, which
constitutes a crucial property as the decision space gets
larger as new standards appear.

IV. NON-STATIONARY RADIO ENVIRONMENTS

In this section, we consider non-stationary radio en-
vironments where the transmission success probabilities
6(t) at various (mode, rate) pairs evolve over time. Based
on G-ORS algorithm, we design SW-G-ORS (SW stand
for Sliding Window) algorithm that efficiently tracks the
best mode and rate for transmission in non-stationary
environments, provided that the speed at which 6(¢)
evolves remains controlled. To simplify the presentation,

we present the algorithm in the alternative system (see
Section II), where time is slotted, and at the beginning
of each slot, a (mode, rate) pair is selected, i.e., we study
non-stationary versions of MAB problem (Fg).

We denote by X;(¢) the binary r.v. indicating the suc-
cess or failure of a transmission using (mode, rate) pair
d at the t-th slot. (Xg4(t),t = 1,2,...) are independent
with evolving mean 6,(t) = E[X4(¢)]. The objective is
to design a sequential decision scheme minimising the
regret R™(T) over all possible algorithms 7 € II, where

T
R™(T) = Z (Md*(t) (t) — Hedr (t) (t)) )

t=1
and d*(t) (resp. d™(t)) denotes the best decision (resp.
the decision selected under 7) at time t. d*(t) =
arg maxg fiq(;)(t). The above definition of regret is not
standard: the regret is exactly equal to O only if the algo-
rithm would be aware of the best transmission decision
at any time. This notion of regret really quantifies the
ability of the algorithm 7 to track the best decision. In
particular, as shown in [7], under some mild assumptions
on the way 6(t) varies, we cannot expect to obtain a
regret that scales sublinearly with time horizon 7. The
regret is linear, and what we really wish to minimise is
the regret per unit time R(T')/T.

A. SW-G-ORS algorithm

A natural and efficient way of tracking the changes of
6(t) over time is to select a decision at time ¢ based on
observations made over a fixed time window preceding ¢,
i.e., to account for transmissions that occurred between
time ¢t — 7 and ¢, see e.g. [7]. The time window T
is chosen empirically: it must be large enough (to be
able to learn), but small enough so that the channel
conditions do not vary significantly during a period
of duration 7. In SW-G-ORS algorithm, we apply this
idea. Let d(t) denote the index of the (mode, rate) pair
selected at time ¢. The empirical average reward under
decision d at time n over a window of size 7 + 1
is: i7(n) = %ZLH raXq(t)1{d(t) = d}, where
t5(n) = Y, 1{d(t) = d}.

Based on /17;(n), we can redefine as previously L7 (n),
the leader at time n, I7(n) = > ;" 1{L7(t) = d}, the
number of times d has been the leader over the window
7 preceding n, and b} (n), the index of decision d at time
n (see definition (3) where all quantities are considered
over sliding time windows). We give the pseudo-code of
SW-G-ORS below:

Algorithm 2 SW-G-ORS with window size 7+ 1




Forn =1,..., D, select the rate with index d(n) = n.
Forn = D+1,..., select decision d(n) where: d(n) =
L7 (n) if (lzf(n) (n)—1)/y €N, and
d(n) = arg MAXde M (L™ (1)1} » o (n) b} (n) otherwise.

B. Regret analysis

To analyse the performance of SW-G-ORS, we make
the following assumptions. 6(t) varies over time in a
smooth way, i.e., for any d, 6,4(t) is o-lipschitz: |04(t') —
04(t)] < o|t’ — t|. We further assume that graphical
unimodality holds at all time, in the sense that for any
t, 0(t) € T NUg, where Ug is the smallest closed
set containing Ug (taking the closure of Ug is needed:
the optimal decision changes, and hence at some times,
two decisions my have the same average throughput).
Finally, we assume that the proportion of time where
two decisions are not well separated (they have similar
throughput) is controlled in the following sense: there
exists Ag and C' > 0 such that for any A < Ay, for any
d and d' € N(d),

T
1
7 2 Lnbu(m) - i i<a} < C X A+ o(T). (4)
n=1

This assumption is natural, and typically hold in practice:
C upper-bounds the proportion of time when throughputs
under d and d’ cross each other (in MAB, it is in general
problematic to have decisions with very similar average
rewards).

Theorem 4.1: Under the above assumptions, the re-
gret under m =SW-G-ORS satisfies:
R™(T)
T

lim sup < cho?Plog(1/0),

T—00
where c(6) depends on C, and the graph G.

Note that 6%/%1log(1/c) tends to 0 as ¢ — 0, which
indicates that the regret per unit time vanishes when we
slow down the evolution of 6(¢), i.e., SW-G-ORS tracks
the best decision if 6(t) evolves slowly. Also observe
again that the regret upper bound does not depend on
the size of decision space.

V. NUMERICAL EXPERIMENTS

In this section, we illustrate the efficiency of our algo-
rithms using traces that are either artificially generated
or extracted from test-beds. Artificial traces allow us to
build a performance benchmark including various kinds
of radio channel scenarios as those used in [2].
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Fig. 2. Regret vs. time in stationary environments under SampleRate,
G-ORS, and SW-G-ORS.

A. Artificial traces

1) 802.11g: We first consider 802.11 systems with
a single MIMO mode: we use 802.11g standard with 8
available rates from 6 to 54 Mbit/s. Algorithms are tested
in three different scenarios as in [2]: steep, gradual,
and lossy. In steep scenario, the successful transmis-
sion probability is either very high or very low. In
gradual scenario, the best rate is the highest rate with
success probability higher than 0.5. Finally in lossy
scenario, the best rate has a low success probability,
i.e., less than 0.5. In stationary environments, the suc-
cess transmission probabilities at the various rates are
(steep) 6 = (.99,.98,.96,.93,0.9,.1,.06,.04), (gradual)
0 = (.95,.9,.8,.65,.45,.25,.15,.1), and (lossy) 6 =
(.9,.8,.7,.55,.45,.35,.2,.1). Observe that in all cases,
0 € T N Ug (unimodality holds). We compare G-
ORS and SW-G-ORS to SampleRate, where the size
of sliding window is taken equal to 10s. SampleRate
explores new rates every ten packet transmissions, and
hence has a regret linearly increasing with time. G-ORS
and SW-G-ORS explore rates in an optimal manner, and
significantly outperform SampleRate — see Fig. 2.

For non-stationary environments, we artificially gener-
ate varying success probabilities 6(t) as depicted Fig. ??.
At the beginning, the value of # corresponds to a steep
scenario. It then evolves to a gradual and finally lossy
scenario. Fig. ?? compares the performance of SW-G-
ORS to that of SampleRate and of an oracle algorithm
(that always knows the best rate for transmission). SW-
G-ORS again outperforms SampleRate, and is not far
from the Oracle algorithm.

2) MIMO 802.11n:
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3. Artificially generated non-stationary environment: (left)

throughput at different rates; (right) throughput (averaged over .5s)
under SW-G-ORS, SampleRate, and the Oracle algorithm.

B. Test-bed traces

The traces used here come from indoor 802.11g test-

bed,

and from the 802.11n test-bed used [6].
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Fig. 4. 802.11g test-bed traces. Throughput evolution at different
rates (left), and throughput under SW-G-ORS, SampleRate, and

the Orcale algorithm (right) in stationary (top) and non-stationary
(bottom) environment.

1) 802.11g:
2) MIMO 802.11n:
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APPENDIX
PROOF OF LEMMA 2.1

Let T" > 0. By time 7', we know that there have been
at least |7'r1| transmissions, but no more than [7Trg].
Also observe that both regrets R™ and RT are increasing
functions of time. We deduce that:

RY(|Tr]) < R{(T) < R*([Trk1)-

Now
ORI R(Tn)
hmTlgfc;o log(T) — hmTlgfc;o log(T)
R™([Tr])

= lim inf

75t Tog(|Tr]) = ©

The second statement can be derived similarly.



