Finite time-horizon MDP Asset Selling Problem

The decision maker has an asset to sell. She sequentially receives N offers w_1, \ldots, w_N i.i.d. with density f(w) (w.r.t. the Lebesgue measure on \mathbb{R}_+). At time *i*, after receiving the offer w_i , the decision maker has to decide whether to accept the offer or to reject it. If the offer is accepted, the reward is $(1 + r)^{N-i}w_i$, where r > 0 denotes the interest rate. Once she accepted an offer, the subsequent offers do not matter. The problem is to define a strategy maximizing the expected reward. We use the formalism of finite time-horizon to identify such strategy.

- Time horizon: N;
- Possible states: 0 if the decision maker has not accepted an offer yet, 1 otherwise;
- Actions: A (accept) or R (reject);
- Reward at time k:
 - If the state is 1, the reward is 0,
 - If the state is 0, the reward is defined as follows:

$$r_k(0, A, w_k) = (1+r)^{N-k} w_k,$$

$$r_k(1, D, w_k) = 0,$$

for D = A or R, for all w_k .

• Transitions: if the selected action is A, the state moves to 1, if it is R, it stays the same.

We denote by $V_k(w_k)$ the expected reward from time k to N, when the offer at time k is w_k . Bellman's equations provide the following recursion:

$$V_k(w_k) = 0$$
, if the state is 1,
 $V_k(w_k) = \max((1+r)^{N-k}w_k, \mathbb{E}[V_{k+1}(w)])$, if the state is 0.

We deduce that the optimal strategy is thershold-based. If the asset has not been sold at time k, the optimal decision is to accept the offer w_k if and only if:

$$w_k \ge \alpha_k = (1+r)^{k-N} \mathbb{E}[V_{k+1}(w)].$$

Now the thresholds α_k can be computed using backward induction. First note that $\alpha_N = 0$ and $V_N(w) = w$. Assume that the threshold α_{k+1} is known. We have:

$$\begin{aligned} \alpha_k &= (1+r)^{k-N} \mathbb{E}[V_{k+1}(w)] \\ &= (1+r)^{-1} \mathbb{E}[\max(w, \alpha_{k+1})]. \end{aligned}$$

Hence:

$$\alpha_k = (1+r)^{-1} \left[\alpha_{k+1} \int_0^{\alpha_{k+1}} f(w) dw + \int_{\alpha_{k+1}}^\infty w f(w) dw \right].$$