Sequential decisions under
uncertainty



Lecture 6

* MDP with average reward criterion
— Finite Markov chain
— Optimality



Finite Markov chain

* Probability space: (2, F, P)

* Definition:
- Finite state space: S
- Asequence of rv. (X, n € N) with values in Sis a Markov chain iff

Vn>0,s €S, P(Xn_|_1 :S‘Xo,...,Xn) :P(Xn_|_1 :S|Xn)
* Transition matrix for homogenous Markov chain

P =(p(i,]))ijes
p(i,7) = P(Xpy1 = j| X, =4)



Kolmogorov equations

e Distribution at time n: row vector u,
Mn+1 = P,Un

* m steps transitions: ty1m = P 1y,
P™ = (pm(ivj)i,jES
p"(1,7) = P(Xpgm = j| X0 = 1)
* Accessibility, communication:
i — j <= 3dm:p"(i,5) >0

L] = (1 —=74,] —1)



Communication classes, Irreducibility

e By definition: each state communicates with itself

 Communication is an equivalence class

* Two communicating states are said to belong to the same
communication class

* A finite Markov chain is irreducible iff there is a unique
communication class



Transition graph

Do 1 —m
N
G 0.,
P1 P2



State classification
Timetoreachi: 7, =inf(n >1:X,, =1)

Recurrent state: P;(1; < o0) =1

Positive recurrent state: F;(7;) < oo

Transient state: P;(1; < 00) < 1

Recurrence is a class property:

1 <+ J = 1,) are both recurrent or both transient
Number of visits: N; = Z Ix, —;
n>1



Irreducibility and recurrence

* Inanirreducible finite Markov chain, all states are positive

recurrent



Periodicity

The period of state i is the largest integer d satisfying:

(p"(i,i) > 0 = n € dN)

A state is aperiodic if its period is equal to 1
In an irreducible Markov, all states have the same period

An irreducible Markov chain with period d has a cyclic
structure

450, ..., Sq—1 :US =S5, Sqg= 50

Vi€ Sk, »  pli,j) =1

JESk+1



Periodicity

* Anirreducible Markov chain with period d has a cyclic
structure




Limiting matrix

N—1
Definition: P* = lim — Z Pk

n— oo

* Properties:
PP* = P*P = P~

N—1n—1
HPZ(I—P—I—P*)_l([—P* _]\;EHQQNZZ
n=0 k=0

Fundamental matrix
N—1
Hp = lim Z (P¥ — P*) for aperiodic chains

N —o0



Stationary probability

* Adistribution is stationary if: m = 7P
* Global balance equations:

Vi, m(i) = Zw(j)p(j, i)

* Afinite irreducible Markov chain has a stationary distribution

Eold_n>1 1x,=iln<r]
Ey|T0]

Vi, (1) =




Ergodic theorem

 For afinite irreducible Markov chain:

Vi: 5§ =R
S If @) < oo

Tim 3" f(X0) = Y (), as

€S
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Average reward MDP: model

e Stationary reward and transitions: (s, a)

p(jls,a)

* Bounded reward:|r(s,a)| < M, Vs,a

* Finite state space: S



Average reward MDP: model

* HR policies: 7 = (71,72, .. .)

m s Hy — P(A)

1
* Value / gain of a policy: ¢g"(s) = Ngnoo NUN_H(S)

Mz

UN_H r(X:, Yy)]

t:1

e Optimal value: g*(s) = sup ¢ (s)

TeHR

e ...thelimit may not exist



Average reward MDP: model

 Example: two states 1 and 2 with respective rewards 1 and 2

time

. | - L | -
hm]\églzo NUN_H(S) > llleg{;O NUN_H(S)



Stationary policies

e Stationary policy: 7 = (d,d, .. .)

1

97 (s) = lim —vky(s) = Pira(s)

* Notation: r4(s) = r(s,d(s))

(Pyv)( Zp |, d(s

jeS



HR vs. MR policies

* Markovian policies are good enough: define forall m € HR

R
g™ (s) = lim ngfoo NUNJrl(S)
T . 1 7T
g_|_(8) — lim sup NUN—i_l(S)
N —00

Foreach m € HR, there exists @ € M R such that

mwo_ 7T
gy =4
7T 7T/



Evaluating stationary policies

Stationary policy: ©# = (d,d, .. .)

1

97 (s) = lim —vky(s) = Pira(s)

Under a stationary policy, the state and action evolves as an
homogenous Markov chain, and the reward starting at a given
state is the steady-state reward (see ergodic theorem)

g™ (+) is constant over communication classes



Evaluating stationary policies

Bias: h™ = Hp,rq € R®
Difference between total reward and stationary reward

Aperiodic chain:

= 3P = Y P
Z 7“d Xt t))]

Periodic chain: expand the expressions to Cesaro-limits



Evaluating stationary policies

* Aperiodic chain:

N

2 : t—1
UN4+1 = Pd Td

t=1

N 00
=S P NG S (P P
t=1 t=N-+1

— vy = Ng" +h™ +o(1)



Evaluation equations

Theorem We have:
(i) (I — f)al>g7T =0
(i) " + (I — Py)h™ =1y



Unichain MDPs

* Unichain MDP: the Markov chain for every stationary policy is
unichain (irreducible)

* Multichain MDPs (See Puterman chapter 9)



Optimality equation

e Unichain MDP (aperiodic case)
* Optimal expected total gain: vy, = (N — 1)g*1 + h + o(1)

Ui 1(s) = max | r(s,a) + ) p(jls, a)v*(j)

* L *
Un41 = MHAx g + Pgv™]

e Hence:

0 =max |r(s,a) =g~ + Zp(j\é‘, a)h(j) — h(s)




Optimality equation

e Unichain MDP (aperiodic case)

a

0= max |r(s.a) — g" + 3 p(jls, a)h(j) — h(s

— — g1 P;—1
0 d{giXA[rd g 1+ (Py )h]




Optimality

Theorem If there exists a scalar g and a vector h satisfying
the optimality equation, then:

gl =g} =g~

Theorem If the action space is finite, then optimality equations
have a solution.



Optimality policies

First method: let the discount factor tendto 1 ...

 Second method: h-improving policies

Td, + Pdhh — max (Td -+ Pdh)

d:S— A

Theorem |If there exists a scalar g and a vector i satisfying
the optimality equation, then, h-improving policies are optimal.



