Sequential decisions under
uncertainty



Lecture 5

* Q-learning
— A deterministic example
— Proof of convergence

 MDP with average reward criterion
— Finite Markov chain
— Optimality (lecture 6)



Q-learning



Q-values

 The Q-value: the maximum expected rewards starting from a
given state and selecting a given action

d(s,a) = r(s,0) + A Y p(jls. a)o(s)

J

* Q-values vs. value function: v(s) = max q(s,a)
a s

q(s,a) =r(s,a) + A ZP(J\S, @) max q(j, b
J

e (Q-value iteration:

Qn—l—l(saa) — T(Sa a) + Azj:p(]‘sa a) {)Ieli}an(]v b)



Q-values

 The Q-values: the unique fixed point of F

q(s,a) =1(s,a) + A zj:P(J 5, @) max (j, b)

F:RSXA—)RSXA

F(q)sa = 7(5,a) + AEp(|s,a) [52% q(J, b)]



Q-learning, bandit version

Bandit: in a given state, you shave to select an action and you
may observe the corresponding reward and new state

s > S(s,a) ~ p(-|s, a)

Choose a stationary randomized policy arbitrarily such that:

P™(Y; =alX; =5) >0, Vs,a

In a given state, each action is explored an infinite number of
times



Q-learning, bandit version

« Algorithm: Initialize go € R®*% 5,
qn—l—l(snv CLn) — Qn(snv CLn)

+ G (5m; an) [r<sn, @)+ Amax (S (51 01).D) — (50 00)
Snt1 = S (8n,an)

* Convergence: Vs, a,
Zan(s,a) = o0, Zozi(s,a) < 00
n mn

The algorithm approximates ODE: ¢ = F'(q) — q



Q-learning
A deterministic example



Deterministic Q-learning

e Deterministic model:
Current state Action Next state

S - s'(s,a)

* Q-value: fixed point

—_ /
a(s,a) =r(s,a) + Amaxq (s'(s,a),b)



Deterministic Q-learning

e Algorithm:
Qn—|—1(3na an) — QR(Sna an)

- Oén(Sn, an) T(Sna an) - )\ml?x Qn(sl(sna an), b) - Qn(sna an)

Randomized stationary policy:

w.p. 1l —¢, a, € arg max qn(Sn,a) (exploitation)

w.p. €, a, random (exploration)



A robot learning to walk

 Example by Frank Vanden Berghen
http://www.applied-mathematics.net/qlearning/

e A one-arm robot:

- Actions: move the arm or
the forearm up or down

\ - States: angles of the arm
forearm and forearm

- Goal: maximize the
discounted distance
(going to the right)

arm




Convergence proof’s ingredients



Doob convergence results

Theorem If sup E||| X, ||] < oo,

then X, = lim X,,, almost surely, and X is finite.
n—oo

Theorem If E[||X,]|?] < oo, Vn,
and if ZE[HXn — Xp—1])?] < o0,

then X, = lim X,,, almost surely.

n—oo



Gronwall lemmas

Lemma (Continuous) u,v positive continuous functions
¢
u(t) < C+ K [ u(s)v(s)ds, Vte|0,T]
0
¢

—  u(t) < Cexp(K | wv(s)ds), Vte|0,T]

Lemma (Continuous) z,,,a, positive sequences

Ln+1 < C‘I‘L Z AmLm

m=0

—>  Tpi1 S CeXP(L Z am)

m=0



Stochastic Approximation

« Algorithm: x,.1 =x, +a, X (h(z,) +&nr1), Yn.

* Assumptions: FE[&,+1]|Fn] =0, a.s.,Vn

h L-Lipschitz

2
E Gy = OO, E a, < 00,
mn

n

Ell[gns1lIP1Fn) < KA A [[20]?),  a.s.,¥n

sup ||, || < o0, a.s.
n



ODE method

n—1
+ Time: 1(0) =0, t(n)=>» ap¥n>1
k=0

nh_%ot(n) = 00

* Continuous piece-wise linear interpolation: Z(t)

(0) = 0

Sl

t —t(n)
n+1)—t(n)’

Sl

(t) =xpn + (Tpa1 — Tn) X m

Vt e [t(n),t(n+1))



ODE method

* Approximate ODE: x (s) :Y:(s)

* The interpolated algorithm trajectory is well approximated by
the ODE:
Theorem Forany 1" > 0,

lim sup ||z(t) —2°(¢)|| =0, a.s.
$7700 tels,s+T



ODE method

Corollary If h has a unique globally asymptotically stable point x*

then lim z,, = z~.
n—oo



MDP with average reward criterion



Finite Markov chain

* Probability space: (2, F, P)

* Definition:
- Finite state space: S
- Asequence of rv. (X, n € N) with values in Sis a Markov chain iff

Vn>0,s €S, P(Xn_|_1 :S‘Xo,...,Xn) :P(Xn_|_1 :S|Xn)
* Transition matrix for homogenous Markov chain

P =(p(i,]))ijes
p(i,7) = P(Xpy1 = j| X, =4)



Kolmogorov equations

e Distribution at time n: row vector u,
Mn+1 = P,Un

* m steps transitions: ty1m = P 1y,
P™ = (pm(ivj)i,jES
p"(1,7) = P(Xpgm = j| X0 = 1)
* Accessibility, communication:
i — j <= 3dm:p"(i,5) >0

L] = (1 —=74,] —1)



Communication classes, Irreducibility

e By definition: each state communicates with itself

 Communication is an equivalence class

* Two communicating states are said to belong to the same
communication class

* A finite Markov chain is irreducible iff there is a unique
communication class



Transition graph

Do 1 —m
N
G 0.,
P1 P2



State classification
Timetoreachi: 7, =inf(n >1:X,, =1)

Recurrent state: P;(1; < o0) =1

Positive recurrent state: F;(7;) < oo

Transient state: P;(1; < 00) < 1

Recurrence is a class property:

1 <+ J = 1,) are both recurrent or both transient
Number of visits: N; = Z Ix, —;
n>1



Irreducibility and recurrence

* Inanirreducible finite Markov chain, all states are positive

recurrent



Periodicity

The period of state i is the largest integer d satisfying:

(p"(i,i) > 0 = n € dN)

A state is aperiodic if its period is equal to 1
In an irreducible Markov, all states have the same period

An irreducible Markov chain with period d has a cyclic
structure

450, ..., Sq—1 :US =S5, Sqg= 50

Vi€ Sk, »  pli,j) =1

JESk+1



Periodicity

* Anirreducible Markov chain with period d has a cyclic
structure




Stationary probability

* Adistribution is stationary if: m = 7P
* Global balance equations:

Vi, m(i) = Zw(j)p(j, i)

* Afinite irreducible Markov chain has a stationary distribution

Eold_n>1 1x,=iln<r]
Ey|T0]

Vi, (1) =




Ergodic theorem

 For afinite irreducible Markov chain:

Vi: 5§ =R
S If @) < oo

Tim 3" f(X0) = Y (), as

€S
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