Sequential decisions under
uncertainty



Lecture 3

* Finite-horizon Markov Decision Processes
— Two deterministic examples

— Optimal monotone policies

e Infinite-horizon MDPs with discount



Finite-horizon Markov Decision
Processes



States, actions, time horizon

Action
Present state Next state @ | =-=----

Reward

Set of states: S
Set of actions available instates: A;,, A = U,cg5A,

These sets are finite, countably infinite, or compacts subsets
of a Euclidian space (finite dimension)

Time horizon N: t € {1,..., N}



Rewards and transitions

Action
Present state Next state @ | =-=----

Reward

Reward when selecting at time t action g in state s: (s, a)
It could also depend on the next state: 7:(s,a,s’)
Reward at time N: rx(s)

Probability to move from state s to s” when selecting at time t
action a: p;(s'|s, a)



Algorithm: Optimal MD policy

1. For t=N, un(s)=ryn(s),Vse S
2. Until t =1

t—1—=1%

Vs, € 5 :

Ut(St):aIg%i "“(St, +z€;pt ’3157 )Ut+1(J)
J

*
A t_argcf?f{x St, +E pt \St, Ut+1()
JES




Ex1: routing

Find the max-weight path from source 1 to destination 8



DP formulation

States (positions): 1, 2, 3,4,5,6, 7, 8
Actions: from a state, the possible next states
Rewards: edge weights

Transitions: deterministic

Max total reward from state s: u™(s)
Bellman’s equations lead to:
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Ex2: optimization

Objective: min g¢i(x1)+ ...+ gn(TN)
st. xr1+...+xy=208

Time horizon N
State: remaining “budget”
Reward at time i: g;(x;)

Example: g;(u) = u”
wh (b) = b
w1 (b) = min(a® + (b — 2)%) = b7/2

ut(b) = b*/N



Optimality of monotone policies

* Do optimal policies have specific structures?

e Example: are they monotone?

S=N
A:R+

(s <s = as<ag)?



Super-additive functions

e f: X xY — R issuper-additive iff
X, Y CR"

faty) + fla™,y7) > fla™,y7)+ flz™,y")

when z* > T, y+ >y



Montone and optimal policy

S — N A — R_|_
qt(k|s, a) Zpt jls,a)
1>k
Theorem |If

1. r¢(s,a) is nondecreasingis , and super-additive
2. qi(k|s,a) is nondecreasing is , and super-additive

Then there exists an optimal nondecreasing policy



Example

Optimal adaptive pricing
States: monthly sales
Actions: setting the price for the upcoming month

Rewards: sales

month t month t+1

State:
sales in
month t



Example

* Rewards: 7:(s, a) expected sales in month t if the previous
month’s sales was s, and the price is a

* Assumptions:
ri(s,a) increasingins

super-additive?

q:(k|s,a) increasingins
super-additive?



Infinite-horizon Markov Decision
Processes with discount



Model

* Policies: m = (m1,72,...) € HR
Tt - Ht — P(A)

* Assumptions:
— Stationary rewards and transitions: 7(s,a), p(jl|s,a)
— Bounded rewards
— Finite or countable state space

* Discounted reward:
N

Vre HR, wvi(s)= lim EW[Z AN (X, V)

N — o0



Objective

 Value function:

Bi(s) = sup o (s
T



Optimality of MR policies

Theorem let w = (m,m2,...) € HR
Forall s € S, there exists @ = (7], 7s,...) € MR : Vt,Va

P™ (X, =3jY,=alX, =5 = P"[X; =4,Y; = a| X, = 5]

/

Corollary Vr € HR, dn' € MR: v{(s) =% (s)



Bellman’s equations

* The value function should satisfy:

Vs e S, wv(s)= sup{r(s,a +>\ZP |s,a)v(j)}

acAg jes

* (Non-linear) operator:

Vs €S, Lv(s) =max{r(s,a +)\Zp s, a)v

acAg
JjeES

Vs e S, Lu(s)= sup{r(s,a +>\ZP |s,a)v(j)}

acAg jes

* Bellman’s equations: Lv = v



Solution to Bellman’s equations

* Bellman’s equations have a unique solution

* A consequence of fixed point theorem and of the following
result

Theorem [, and L are contraction mappings.



Notation

 For d: S — P(A)

= Z Gas)(@)r (s, a)

acA

(Pav)( Z Qd(s) (@ ZP(J”S» a)v(j)

a€A jES

e Ford: S — A

rq(s) =r(s,d(s))
(Pav)( ZP |s,d(s



Stationary policies

 For m = (my,7m2,...) €E MR

vy =Tpy + AP Tr, + .o+ A”_le...Pﬂn_ Tr ...

1

/
=15, + AP vy

where 7’ = (mg, 73, ...)

* Stationary policy: 7 = (7, 71, ...)

vy = Twy, + APr, UX

The value function of a stationary policy is the unique fixed point
of the linear operator L, = rg, + APy,



Stationary policies

* Stationary policy: m = (my, 71, ...)

VX = Tr, + APr, vy

Id — APy, invertible, and v} = (Id — )\Pm)_lr7T

1



Optimality of Bellman’s equations

* Bellman’s equations provide a characterization of the value
function

Theorem v* = v}



Ssummary  vi(s) = sup vi(s)

TeHR

« v)(s) is the unique solution of Bellman’s equations

Vs €S, w(s)= sup{r(s,a) +)\ZP (J]s, a)v(j)}

acAg jes

« Optimal stationary policies: © = (7, 71,...) € M D
Vs € S, Wl()EargrrézilX{’rsa —I—)\Zp s, a)vy(4)}
jeSs
* g-optimal stationary policies: m = (7r1,7r1, ..)EMD
Vs e S, r(s,m(s —I—)\Zp s, m1(s))vx(7)

JeSs

> sup {r(s,a) —l—)\Zp |s,a)vy(j)} — €

acA, jes



Solving Bellman’s equations

e Value iteration

* Policy iteration

* Q-learning



Value iteration

* Algorithm
1. FixvgeV (V={v:5—R}). Fixe > 0.
2. Do until ||v,11 — vnl|| < (1 = X)/2X: vya1 = Loy,

Un+1(5) — Sup (T(S, CL) T Zp(j‘S, a))\vn(]))
acAg jes

* Convergence: it does (contraction mapping)
 When it stops, we have an g-optimal stationary policy: e.g.

d(s) € argmax(r(s,a) + » p(jls,a)Avn(j))

acA,
J€S



Policy iteration

* Algorithm

1. Fixdyg: S — A. Set n = 0.
2. Compute the value function v,, of m, = (d,,dy, ...):

vp = (Id — APy )" 'ry .

3. Do until d,,+1 = d,: update the policy as follows:

Vs,dpi1(8) € arg C{Jré%(?“(& a) + Zp(j\sa a) vy (7))
J

n—n-+ 1.



