Sequential decisions under
uncertainty



Lecture 2

* A few words on probability theory
* Finite-horizon Markov Decision Processes



Probability theory



Probability space

The goal is to formally model “random” experiments (e.g. coin
tossing)

Samples: all information you need in understanding an
experiment is contained in a sample randomly selected by
nature

Set of samples: (2
Example 1: throwing a dice, Q = {1,2,3,4,5,6}

Example 2: select a real number uniformly at random
between 0Oand 1, 2 = [0, 1]




o-algebras

A o-algebra is a subset of sets of the sample set such that:
1. Qe F
2. Fe F = FerF
3. It F,, € F for all n € N, then U,,enF), € F

* (o-algebra generated by a set G of subsets is the smallest o-
algebra containing the subsets of G

« Example 1: throwing a dice, a natural o-algebra is the set of all
subsets of the sample space




o-algebras

 Example 2: select a real number uniformly at random
between 0 and 1, the Borel algebra is that generated by the
open sets of [0,1].

Notation: F = B(|0,1])




Probability measures

* Measurable space: (2, F)
A probability measureis P : F — |0,1] such that:

1. P(0) =0, P(Q) = 1
2. f F, € Fforalln €N, and F,,NF,, = 0, for all n, m,

then
nENF Z P
neN

* Example 1: throwing a dice, P(w) =1/6, Yw € Q




Probability measures

 Example 2: select a real number uniformly at random
between 0and 1, F = B(][0, 1])

Lebesgue measure: P([0,x)) =z, Vz € [0,1]

 Terminology:
— (2, F, P) is a probability space
— F € F isanevent



Random variables

Measurable space: (2, F)
A random variable is a measurable function X : 2 — R

VA€ BR), X '(A4) e F

Example 1: throw a dice

Vw € Q, X(w) :{

1, if w is even,
0, otherwise.

Interpretation: we run an experiment, and observe the value
of a random variable. It provides partial information about the
sample selected by nature.



o-algebras generated by random
variables

Family of random variables on (2, F) : (X,,v € G)

The o-algebra generated by (X.,,v € G) is the smallest
algebra G C F suchthatforall v € G, X, is G-measurable

Notation: G =o(X,,v € G)

Interpretation: We run an experiment with (€2, 7, P). Nature
selects a sample w. We observe the values X (w). The
algebra G = o(X,,v € G) consists of those events F for
which for all sample, you are able to decide whether F
occurred or not observing X, (w)

Example 1. (cf. previous slide)

o(X)=1{0,9,{1,3,5},{2,4,6}}



Expectation

Restrict attention to countable sample sets

Probability space: (2, F, P)

Random variable: X : 2 — R

Define A= {X(w),weQ}, F*X=X"1{a)),VacA

Expectation (if it exists):

EX]=) aP(F})=)> aP[X =q]

acA aEA



Conditional expectation

Restrict attention to countable sample sets
Probability space: (2, F, P)
Conditional probability: F,. G € F

P(F|G) = P(FNG)/P(G)

Two random variables X and Z with respective values

(1, ey Tm), (215 -+, 2n)

EX|Z =z = Zazz X =uz;|Z = 2]



Conditional expectation

* Randomvariable Y = F[X|Z]

if Z(w)=2z;, Y(w)=FE[X|Z=z]

Fl F2 Fn

Y is constant over F; <= Y o(Z)—measurable



Conditional expectation

* Interpretation: An experiment has been performed. The
available information is Z(w). Y (w) is the expectation of X
given that information.



Properties

* Foranypairofrv. X, 7, FE[X|=FE[E[X|Z]]
* If Xis 0(Z)—measurable, X = F[X|Z]
* Tower property: two algebras H C G

EEX|G]|H] = EIXTH]
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Finite-horizon Markov Decision
Processes



Model

Action
Present state Next state @ | =-=-=---

Reward



States, actions, time horizon

Action
Present state Next state @ | =-=----

Reward

Set of states: S
Set of actions available instates: A;,, A = U,cg5A,

These sets are finite, countably infinite, or compacts subsets
of a Euclidian space (finite dimension)

Time horizon N: t € {1,..., N}



Rewards and transitions

Action
Present state Next state @ | =-=----

Reward

Reward when selecting at time t action g in state s: (s, a)
It could also depend on the next state: 7:(s,a,s’)
Reward at time N: rx(s)

Probability to move from state s to s” when selecting at time t
action a: p;(s'|s, a)



Decision rules, policies

Action
Present state Next state @ | =-=-=---

Reward

* History up to time t: hy = (s1,a1,...,8t-1,0¢_1, S¢)
* Set of possible histories: (S x A)""! x §

* We distinguish different types of policies:
— History dependent Randomized: HR
— History dependent Deterministic: HD

— Markov Randomized: MR
— Markov Deterministic: MD



Decision rules, policies

* HR: 7T:(7T1,...,7TN_1)

m (S x At xS — P(A,,)

Qs (hy) (a) : probability to select action a

e HD: m :(Sx At xS — A,

m¢(he) : selected action

* MR: m;: 5 — P(As,)

Qr,(s,)(@) 1 probability to select action a



Decision rules, policies

MD: m S — Ag,

m:(s¢) = selected action

Note that: M D C MR C HR
MDcC HD C HR

We will provide conditions under which MD are as good as HR
policies



Induced probability space

Restrict attention to discrete states and actions
Probability space: 2 = (S x A)N_1 X S
Sample path: w = (s1,a1,...,8:-1,0:_1, S¢)
Algebra: all possible subsets of sample paths
Random variables: X;(w) = s, Yi(w)=a:, Zi(w) = hy
A policy induces a probability measure
When startingat s; = s
Formre HR P X;=s]=1
PTYy = alZi = ] = qr,(n,) (a)
P :Xt+1 — S‘Zt = hy, Yy = at] — pt(SISt,at)




Induced probability space

 Sample path probability:

P7(s,a1,82,...,8;] = QWl(s)(al)p1(32‘Sa ai)

qu(hl)(CLQ) e th_l(ht_l)(at—1)pt—1(8t’«9t—1, at—1)

* Conditional probability:

P™|s,a1, ..., SN]
P7|s,aq, ..., S¢]

Pw[atast—Flv"'7SN’870’17"‘7315] —

P” [aftvst—l-lv SRR SN’87 a1, -- -, St] - C_Iﬂ't(ht)(a’t)pt<8t+1’8t7 a’t)

.o QwN_l(hN_l)(aN—1)pN—1(SN!8N—1, CLN—1)



Induced probability space

e Reward from time t:

Ri(s¢,a4,...,5N) = Fu(Sus Gu) + TN (SN)
* Given that the history is Ay :

Ep R =

|
v
(o
/N
Va
~
)
<
\.CID
e
N——"



Value function

Defined as: v (s) = sup vx(s)
TcHR

with N1

Z re(Xe,Ye) +rnv(Xn)]

t=1

Optimal policies may not exist (countably infinite actions), in
which case we look for 7* : v} (s) > v (s) — €



Computing rewards

let T€ HR

Define the reward from time t given history Ay
N-1

u?(ht) = EZ;[Z ru(Xuv YU) T 7QN(‘XVN)]

u=t

Note that v}y (s) = u7 (s)

We compute rewards using a backward induction



Algorithm

1. Fort =N, Vhy,un(hny)=7N(s5N)
2. Until t=1

t—1—1

Vhy :

u?(ht): Z Qﬂ't(ht)(a’) ’rt(staa)+Zp(j’3taa’)u?—l—l(htva’7j)

aCAs, JES




Principle of optimality

* We construct optimal policies using backward induction

* j.e., we compute the optimal reward from time t given
history h;

ug (he) = sup ug (he)

* Optimality equations

UN(hN) = TN(SN)

ut(he) = sup | re(se, a) + Zpt(j‘staa)ut—i—l(htaaaj)
acds, jes




Principle of optimality

Optimality equations

ut(he) = sup |[re(st,a) + Zpt(j‘staa)ut—i—l(htaaaj)
ac s, jes

Case 1: the sup is always reached
Case 2: the sup is not always reached




Principle of optimality

Theorem We have:
(I) ut(ht) :u:(ht), Vt = 1,N—1,\V/ht

(ii) u1(s) =vn(s)

* |n other words, we have identified the value function, i.e., the
optimal reward



Optimal policy in HD

Theorem Let 7 ¢ HD
Assume thatforallt =1,...,N — 1, h; :
re(se, mf (ht)) +Zpt(ﬂstaW:(ht))utﬂ(htaﬁf(ht)d)

JES

— arg%i ’rt(st, a) -+ ngt(j|8t, a)ut+1(ht7 a,,j)
yis

Thenforall t =1,..., N, hy: u (hy) = ug(he)

and ¥ is optimal: v, (s) = vy (s)




e-optimal policy in HD

Theorem Let € >0, 1€ HD
Assume thatforallt =1,...,N — 1, h; :

re(se, w5 (he)) + D pe(lse, 7 (he) Y (he, 7 (e, 5)

jES
€
> | he,a,3) | —
> as€1114p Tt(St,CL) + Zpt(]‘sta@)ut—l—l( tvCL?]) N —1
t | JjES |
e N —1
Thenforall t =1,..., N, hy 2 uf (he) > ui(he) — (N 1)6

and 7 is e-optimal: v (s) > vi(s) — e



HD optimality

Corollary

(a) For all e>0, there exists an e-optimal policy in HD;

(b) Assume thatforallt=1,...,N —1,h;: there exists an
action a':

Tt St, +Zpt ‘Sta ut+1(ht7 7.])
J€S

= sup |r(se,a —|—Zpt |5t, a)utt (e, a, )
a€As, JeES

then there exists an optimal policy in HD.



Optimality of Markov Deterministic
policies

* It would greatly simplify the analysis, and reduce the
computational complexity of identifying optimal policies



MD optimality

Theorem

Forany t=1,..., N, us;(h;) dependson h; only through s;
(a) For all >0, there exists an e-optimal policy in MD;

(b) Assumethatforallt =1,..., N —1,h;: there exists an

action a’: .
ri(sg, a’) + E pi(jlse, augiq (he,a’, 7)
jeS

— Sup Tt (St7 =+ Zpt ‘Sta )ut-I—l(htaa’ j)
ac€ds, JES

then there exists an optimal policy in MD.



Algorithm: Optimal MD policy

1. For t=N, un(s)=ryn(s),Vse S
2. Until t =1

t—1—=1%

Vs, € 5 :

Ut(St):aIg%i "“(St, +z€;pt ’3157 )Ut+1(J)
J

*
A t_argcf?f{x St, +E pt \St, Ut+1()
JES




