Sequential decisions under uncertainty

KTH/EES PhD course Lecture 2

Lecture 2

- A few words on probability theory
- Finite-horizon Markov Decision Processes

Probability theory

Probability space

- The goal is to formally model "random" experiments (e.g. coin tossing)
- Samples: all information you need in understanding an experiment is contained in a sample randomly selected by nature
- Set of samples: Ω
- Example 1: throwing a dice, $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Example 2: select a real number uniformly at random between 0 and 1, $\Omega = [0,1]$

σ-algebras

• A σ -algebra is a subset of sets of the sample set such that:

1.
$$\Omega \in \mathcal{F}$$

2.
$$F \in \mathcal{F} \Rightarrow {}^{c}F \in \mathcal{F}$$

3. If
$$F_n \in \mathcal{F}$$
 for all $n \in \mathbb{N}$, then $\bigcup_{n \in \mathbb{N}} F_n \in \mathcal{F}$

- σ -algebra generated by a set G of subsets is the smallest σ -algebra containing the subsets of G
- Example 1: throwing a dice, a natural σ -algebra is the set of all subsets of the sample space

σ-algebras

• Example 2: select a real number uniformly at random between 0 and 1, the Borel algebra is that generated by the open sets of [0,1].

Notation: $\mathcal{F} = \mathcal{B}([0,1])$

Probability measures

- Measurable space: (Ω, \mathcal{F})
- A probability measure is $P: \mathcal{F} \to [0,1]$ such that:
 - 1. $P(\emptyset) = 0, P(\Omega) = 1$
 - 2. If $F_n \in \mathcal{F}$ for all $n \in \mathbb{N}$, and $F_n \cap F_m = \emptyset$, for all n, m, then

$$P(\cup_{n\in\mathbb{N}}F_n) = \sum_{n\in\mathbb{N}}P(F_n)$$

• Example 1: throwing a dice, $P(\omega) = 1/6$, $\forall \omega \in \Omega$

Probability measures

• Example 2: select a real number uniformly at random between 0 and 1, $\mathcal{F} = \mathcal{B}([0,1])$

Lebesgue measure: $P([0,x)) = x, \quad \forall x \in [0,1]$

- Terminology:
 - (Ω, \mathcal{F}, P) is a probability space
 - $-F\in\mathcal{F}$ is an event

Random variables

- Measurable space: (Ω, \mathcal{F})
- A random variable is a measurable function $X:\Omega o\mathbb{R}$

$$\forall A \in \mathcal{B}(\mathbb{R}), X^{-1}(A) \in \mathcal{F}$$

Example 1: throw a dice

$$\forall \omega \in \Omega, X(\omega) = \begin{cases} 1, & \text{if } \omega \text{ is even,} \\ 0, & \text{otherwise.} \end{cases}$$

 Interpretation: we run an experiment, and observe the value of a random variable. It provides partial information about the sample selected by nature.

σ-algebras generated by random variables

- Family of random variables on $(\Omega, \mathcal{F}): (X_{\gamma}, \gamma \in G)$
- The σ -algebra generated by $(X_{\gamma}, \gamma \in G)$ is the smallest algebra $\mathcal{G} \subset \mathcal{F}$ such that for all $\gamma \in G, X_{\gamma}$ is \mathcal{G} -measurable
- Notation: $\mathcal{G} = \sigma(X_{\gamma}, \gamma \in G)$
- Interpretation: We run an experiment with (Ω, \mathcal{F}, P) . Nature selects a sample ω . We observe the values $X_{\gamma}(\omega)$. The algebra $\mathcal{G} = \sigma(X_{\gamma}, \gamma \in G)$ consists of those events F for which for all sample, you are able to decide whether F occurred or not observing $X_{\gamma}(\omega)$
- Example 1. (cf. previous slide)

$$\sigma(X) = \{\emptyset, \Omega, \{1, 3, 5\}, \{2, 4, 6\}\}\$$

Expectation

- Restrict attention to countable sample sets
- Probability space: (Ω, \mathcal{F}, P)
- Random variable: $X:\Omega \to \mathbb{R}$
- Define $A=\{X(\omega),\omega\in\Omega\},\quad F_a^X=X^{-1}(\{a\}), \forall a\in A$
- Expectation (if it exists):

$$E[X] = \sum_{a \in A} aP(F_a^X) = \sum_{a \in A} aP[X = a]$$

Conditional expectation

- Restrict attention to countable sample sets
- Probability space: (Ω, \mathcal{F}, P)
- Conditional probability: $F,G \in \mathcal{F}$

$$P(F|G) = P(F \cap G)/P(G)$$

• Two random variables X and Z with respective values $(x_1,\ldots,x_m),(z_1,\ldots,z_n)$

$$E[X|Z = z_j] = \sum_{i=1}^{n} x_i P[X = x_i | Z = z_j]$$

Conditional expectation

• Random variable Y = E[X|Z]

if
$$Z(\omega) = z_j$$
, $Y(\omega) = E[X|Z = z_j]$

$$\Omega$$
 $Z = z_1$ $Z = z_2$ F_2 $Z = z_n$ F_n

Y is constant over $F_j \iff Y\sigma(Z)$ —measurable

Conditional expectation

• Interpretation: An experiment has been performed. The available information is $Z(\omega)$. $Y(\omega)$ is the expectation of X given that information.

Properties

- For any pair of r.v. $X,Z,\quad E[X]=E[E[X|Z]]$
- If X is $\sigma(Z)$ measurable, X = E[X|Z]
- Tower property: two algebras $\,\mathcal{H}\subset\mathcal{G}\,$

$$E[E[X|\mathcal{G}]|\mathcal{H}] = E[X|\mathcal{H}]$$

References

See Chapters 2 – 9 in
 Probability with Martingales, David Williams
 Cambridge University Press

Finite-horizon Markov Decision Processes

Model

States, actions, time horizon

- Set of states: *S*
- Set of actions available in state s: A_s , $A = \bigcup_{s \in S} A_s$
- These sets are finite, countably infinite, or compacts subsets of a Euclidian space (finite dimension)
- Time horizon $N: t \in \{1, \dots, N\}$

Rewards and transitions

- Reward when selecting at time t action a in state s: $r_t(s,a)$ It could also depend on the next state: $r_t(s,a,s')$
- Reward at time N: $r_N(s)$
- Probability to move from state s to s' when selecting at time t action a: $p_t(s'|s,a)$

Decision rules, policies

- History up to time t: $h_t = (s_1, a_1, \dots, s_{t-1}, a_{t-1}, s_t)$
- Set of possible histories: $(S \times A)^{t-1} \times S$
- We distinguish different types of policies:
 - History dependent Randomized: HR
 - History dependent Deterministic: HD
 - Markov Randomized: MR
 - Markov Deterministic: MD

Decision rules, policies

- HR: $\pi=(\pi_1,\dots,\pi_{N-1})$ $\pi_t:(S\times A)^{t-1}\times S\to \mathcal{P}(A_{s_t})$ $q_{\pi_t(h_t)}(a): \text{probability to select action } a$
- HD: $\pi_t: (S \times A)^{t-1} \times S \to A_{s_t}$ $\pi_t(h_t):$ selected action
- MR: $\pi_t:S \to \mathcal{P}(A_{s_t})$ $q_{\pi_t(s_t)}(a): \text{ probability to select action } a$

Decision rules, policies

• MD: $\pi_t:S \to A_{s_t}$ $\pi_t(s_t):$ selected action

• Note that: $MD \subset MR \subset HR$ $MD \subset HD \subset HR$

We will provide conditions under which MD are as good as HR policies

Induced probability space

- Restrict attention to discrete states and actions
- Probability space: $\Omega = (S \times A)^{N-1} \times S$
- Sample path: $\omega = (s_1, a_1, \dots, s_{t-1}, a_{t-1}, s_t)$
- Algebra: all possible subsets of sample paths
- Random variables: $X_t(\omega) = s_t, \quad Y_t(\omega) = a_t, \quad Z_t(\omega) = h_t$
- A policy induces a probability measure
- When starting at $s_1 = s$
- For $\pi \in HR$ $P^{\pi}[X_1=s]=1$ $P^{\pi}[Y_t=a|Z_t=h_t]=q_{\pi_t(h_t)}(a)$ $P^{\pi}[X_{t+1}=s|Z_t=h_t,Y_t=a_t]=p_t(s|s_t,a_t)$

Induced probability space

Sample path probability:

$$P^{\pi}[s, a_1, s_2, \dots, s_t] = q_{\pi_1(s)}(a_1)p_1(s_2|s, a_1)$$
$$q_{\pi_2(h_1)}(a_2) \dots q_{\pi_{t-1}(h_{t-1})}(a_{t-1})p_{t-1}(s_t|s_{t-1}, a_{t-1})$$

Conditional probability:

$$P^{\pi}[a_t, s_{t+1}, \dots, s_N | s, a_1, \dots, s_t] = \frac{P^{\pi}[s, a_1, \dots, s_N]}{P^{\pi}[s, a_1, \dots, s_t]}$$

$$P^{\pi}[a_t, s_{t+1}, \dots, s_N | s, a_1, \dots, s_t] = q_{\pi_t(h_t)}(a_t) p_t(s_{t+1} | s_t, a_t)$$
$$\dots q_{\pi_{N-1}(h_{N-1})}(a_{N-1}) p_{N-1}(s_N | s_{N-1}, a_{N-1})$$

Induced probability space

• Reward from time *t*:

$$R_t(s_t, a_t, ..., s_N) = \sum_{u=t}^{N-1} r_u(s_u, a_u) + r_N(s_N)$$

• Given that the history is h_t :

$$E_{h_t}^{\pi}[R_t] = \sum_{(a_t, s_{t+1}, \dots, s_N)} R_t(s_t, a_t, \dots, s_N) \times P^{\pi}[a_t, s_{t+1}, \dots, s_N | s, a_1, \dots, s_t]$$

Value function

• Defined as: $v_N^\star(s) = \sup_{\pi \in HR} v_N^\pi(s)$

with

$$v_N^{\pi}(s) = E_s^{\pi} \left[\sum_{t=1}^{N-1} r_t(X_t, Y_t) + r_N(X_N) \right]$$

• Optimal policies may not exist (countably infinite actions), in which case we look for $\pi^\star: v_N^{\pi^\star}(s) \geq v_N^\star(s) - \epsilon$

Computing rewards

- Let $\pi \in HR$
- Define the reward from time t given history h_t

$$u_t^{\pi}(h_t) = E_{h_t}^{\pi} \left[\sum_{u=t}^{N-1} r_u(X_u, Y_u) + r_N(X_N) \right]$$

- Note that $v_N^{\pi}(s) = u_1^{\pi}(s)$
- We compute rewards using a backward induction

Algorithm

1. For
$$t=N, \quad \forall h_N, u_N^\pi(h_N)=r_N(s_N)$$

2. Until
$$t = 1$$

$$t - 1 \rightarrow t$$

$$\forall h_t:$$

$$u_t^{\pi}(h_t) = \sum_{a \in A_{s_t}} q_{\pi_t(h_t)}(a) \left[r_t(s_t, a) + \sum_{j \in S} p(j|s_t, a) u_{t+1}^{\pi}(h_t, a, j) \right]$$

Principle of optimality

- We construct optimal policies using backward induction
- i.e., we compute the optimal reward from time t given history h_t

$$u_t^{\star}(h_t) = \sup_{\pi \in HR} u_t^{\pi}(h_t)$$

Optimality equations

$$u_N(h_N) = r_N(s_N)$$

$$u_t(h_t) = \sup_{a \in A_{s_t}} \left[r_t(s_t, a) + \sum_{j \in S} p_t(j|s_t, a) u_{t+1}(h_t, a, j) \right]$$

Principle of optimality

Optimality equations

$$u_t(h_t) = \sup_{a \in A_{s_t}} \left[r_t(s_t, a) + \sum_{j \in S} p_t(j|s_t, a) u_{t+1}(h_t, a, j) \right]$$

- Case 1: the sup is always reached
- Case 2: the sup is not always reached

Principle of optimality

Theorem We have:

(i)
$$u_t(h_t) = u_t^*(h_t), \quad \forall t = 1, ..., N-1, \forall h_t$$

(ii)
$$u_1(s) = v_N^*(s)$$

 In other words, we have identified the value function, i.e., the optimal reward

Optimal policy in HD

Theorem Let $\pi^* \in HD$

Assume that for all $t = 1, \dots, N-1, h_t$:

$$r_t(s_t, \pi_t^*(h_t)) + \sum_{j \in S} p_t(j|s_t, \pi_t^*(h_t)) u_{t+1}(h_t, \pi_t^*(h_t), j)$$

$$= \max_{a \in A_{s_t}} \left[r_t(s_t, a) + \sum_{j \in S} p_t(j|s_t, a) u_{t+1}(h_t, a, j) \right]$$

Then for all $t=1,\ldots,N,h_t:u_t^{\pi^\star}(h_t)=u_t(h_t)$ and π^\star is optimal: $v_N^{\pi^\star}(s)=v_N^\star(s)$

ε-optimal policy in HD

Theorem Let $\epsilon > 0$, $\pi^{\epsilon} \in HD$

Assume that for all $t = 1, ..., N - 1, h_t$:

$$r_t(s_t, \pi_t^{\epsilon}(h_t)) + \sum_{j \in S} p_t(j|s_t, \pi_t^{\epsilon}(h_t)) u_{t+1}(h_t, \pi_t^{\epsilon}(h_t), j)$$

$$\geq \sup_{a \in A_{s_t}} \left[r_t(s_t, a) + \sum_{j \in S} p_t(j|s_t, a) u_{t+1}(h_t, a, j) \right] - \frac{\epsilon}{N - 1}$$

Then for all $t=1,\ldots,N, h_t: u_t^{\pi^\epsilon}(h_t) \geq u_t(h_t) - \frac{(N-t)\epsilon}{N-1}$ and π^ϵ is ϵ -optimal: $v_N^{\pi^\epsilon}(s) \geq v_N^\star(s) - \epsilon$

HD optimality

Corollary

- (a) For all $\varepsilon>0$, there exists an ε -optimal policy in HD;
- (b) Assume that for all $t=1,\ldots,N-1,h_t$: there exists an action a':

$$r_t(s_t, a') + \sum_{j \in S} p_t(j|s_t, a') u_{t+1}(h_t, a', j)$$

$$= \sup_{a \in A_{s_t}} \left[r_t(s_t, a) + \sum_{j \in S} p_t(j|s_t, a) u_{t+1}(h_t, a, j) \right]$$

then there exists an optimal policy in HD.

Optimality of Markov Deterministic policies

 It would greatly simplify the analysis, and reduce the computational complexity of identifying optimal policies

MD optimality

Theorem

For any t = 1, ..., N, $u_t(h_t)$ depends on h_t only through s_t

- (a) For all $\varepsilon>0$, there exists an ε -optimal policy in MD;
- (b) Assume that for all $t=1,\ldots,N-1,h_t$: there exists an action a': $r_t(s_t,a')+\sum_{i\in S}p_t(j|s_t,a')u_{t+1}(h_t,a',j)$

$$= \sup_{a \in A_{s_t}} \left[r_t(s_t, a) + \sum_{j \in S} p_t(j|s_t, a) u_{t+1}(h_t, a, j) \right]$$

then there exists an optimal policy in MD.

Algorithm: Optimal MD policy

1. For
$$t = N$$
, $u_N(s) = r_N(s), \forall s \in S$

2. Until t=1

$$t-1 \rightarrow t$$

$$\forall s_t \in S$$
:

$$u_t(s_t) = \max_{a \in A_{s_t}} \left[r_t(s_t, a) + \sum_{j \in S} p_t(j|s_t, a) u_{t+1}(j) \right]$$

$$A_{s_t,t}^{\star} = \arg\max_{a \in A_{s_t}} \left[r_t(s_t, a) + \sum_{j \in S} p_t(j|s_t, a) u_{t+1}(j) \right]$$