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Problem 1. Strongly concave dual function.

Consider the following linearly constrained optimization problem
minimize f(z)
subjectto Ax +b=0,

where f : R™ — R is strongly convex with convexity parameter x> 0 (not necessarily differentiable)

and A € RP*" has full row rank. Suppose that the subgradients of f satisfy the Lipschitz condition
|ls(x1) — s(z2)|| < Lljz1 — 22|, Vs(z1) € 0f(x1), Vs(x2) € Of(x2), for some L > 0.

(a) Prove that the corresponding dual function g(v) is strongly concave with concavity parameter
—pAmin(AAT)/L? < 0, where Apin(+) denotes the smallest eigenvalue of a real symmetric matrix.
(b) Provide an algorithm which generates a sequence {zj}32, such that |z, — 2*|| < ¢ ¢*, where
¢ € (0,00) and ¢ € (0,1) are some constants and z* is the unique primal optimal solution.

Hint: Let 2*(v) = arg mingepn f(z) + v7 (Az + b) and express the (sub)gradient of g(v) in terms
of z*(v).



Problem 2. Linear convergence of gradient projection method.

Consider the following constrained optimization problem

min f(2),

where f : R™ — R is convex and has Lipschitz continuous gradient with Lipschitz constant L > 0
and X C R" is a closed convex set. Suppose the optimal set X* = arg min,cy f(«) is nonempty.

Let {x1}72, be a sequence generated by the gradient projection method
Tp+1 = Px[zr — aV f(zy)], Yk >0, with xg € X,
where 0 < a < % Assume that for every closed bounded set .S C R", there exists og > 0 such that
dist(z, X*) < og||Px[z — aV f(x)] — z|, Vz € SN X, (1)
where dist(z, X*) = inf,+cx+ || — 2*||. Prove that there exists ¢ € (0,1) such that
dist(zg41, X*) < gdist(zg, X*), VE >0.

Hint 1: Use the fact (z — Px[z])” (2 — Px[z]) €0, Yz € R", Vz € X and the optimality condition
Vf(z*)(x —2*) > 0 Vz € X to prove that

(zp — zpg1) T (2% — 2pgr) + (VS (21) = V(@) (2p41 — %) <0, V2* € X*

Hint 2: (2, — 2011)7 (0" — a11) = (llow — a2 + g — g |2 + op — o]2)/2.

Hint 3: Prove that (Vf(zy) — Vf(2*)T (2k41 — %) > —L£|zp41 — 24)?. Here you need the
inequality [[y[> +y"z > — 2>

Hint 4: Combining the above, show that x; remains in a closed bounded subset of X and then

apply (1) to get the linear convergence rate.



Solution of Problem 1.
(a) Let *(v) € arg mingepn f(x) + v7(Az +b), Vv € RP. Due to the strong convexity of f, z*(v)
uniquely exists. In addition, there exists a subgradient s(z*(v)) C 9f(x*(v)) such that

s(z*(v)) + ATv =0. (2)
Moreover, g is differentiable and

Vg(v) = Ax*(v) + b. (3)
It follows that for any 1,19 € RP,

(Vg(r1) = V) (1 — v2) = (Az* (1) — Az* (1)) (11 — 1)
(*(11) — 2* (1)) (AT, — ATwy)
= (" (1) = " (12))" (s(a" (1)) = s(a* (v2))
—plla* (1) = ¥ ()|
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where the first equality is due to (3), the third equality and the last equality come from (2), the
first inequality is a result of the strong convexity of f, and the second inequality is because of the
Lipschitz condition that the subgradients of f satisfy. Since A has full row rank, Apin(A4AT) >0
and therefore ¢ is strongly concave with concavity parameter —“)‘mi"Li(QAAT) < 0.
(b) The dual problem is

max g().

Amax(AAT)
"

Recall that Vg is Lipschitz continuous with Lipschitz constant Lg = > 0 [Lecture 4].

. T
Also from (a), —g is strongly convex with convexity parameter pg = %(QAA) > (0. Therefore, if

we apply the gradient method
Vi1 = vk + aVg(vg) = v + a(Az™(vg) +b), Vk>0
with o € (0,2/(pqg + Lq)], then

2apqLg
pa + Lq
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lve — v < |lvo — V7| (1 ) , [from Lecture 2]



where v* is the unique dual optimal solution. This, along with

Amax (AAT)

() — 2| <
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v — v*|, [from Lecture 4]

implies that by letting xx = 2*(), we can obtain

|z — 2] <

s AT e (- 2oaly
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An alternative is to apply Nesterov’s optimal method (Lecture 3) to solve the dual problem. A

simple version of the method is as follows:

Mo = o,
1 *

Vkt1 Zuk-l-fd(z‘lx (1) +0), Vk >0,
VLq— /I

M+l = Vg1 + (Vg1 —vk), Yk >0.

VLa+ /i

This method gives the convergence rate

Lg+ pg Itd F
g —g) < - P(1-,/5 ],
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where g* is the optimal value of the dual problem. Again, we let 23 = 2*(v,) and note that

*
lxg — 2| < gig(vk) [from Lecture 4]

Combining the above, we obtain
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Solution of Problem 2.
Let £ > 0 and z* € X*. Using the fact (z — Px[z])T (2 — Px[z]) < 0, Vo € R", ¥z € X (let
x =x —aV f(xrg) and z = 2*) and the optimality condition V f(z*)(x —z*) > 0, Vo € X, we have

(zh — aV f(zx) — 2p1)" (@ — 2pp1) <0 < aVf (") (241 — %)
Re-arranging the items, we get
(2 — 2p41) T (@ = wppa) + AV f(2r) = V(@) (@11 — 27) <0, (4)
Note that
(2 = 1) (0" = 2p1) = (<lae — |7+ lan — 2 |2 + o —2*)1%) /2. (5)
Also note that
(Vf(zx) = V(@) (wpsr — 2*)
=(Vf(xx) = V(@) (ar — 2*) + (Vf(xx) = V(@) (@1 — )
Z%va(wk) = V@) + (V) = V(@) (@par — 1)
- (©)

Here the first inequality is due to the Lipschitz continuity of V f and the second inequality comes
from [ly[|> + 47z > —1||z||%. Combining (4), (5), and (6),

Lo

s = a1 < low = a1 = (1= 57 fowrn -l ™

If we let z* be constant for all k > 0, then (7) implies that z; € S Vk > 0 for some compact S C X.
Thus, from (1), there exists og > 0 such that

I
|xps1 — x| > - dist(xg, X™). (8)

Another implication of (7) is that if for each given k, we let z* be such that ||z, —z*|| = dist(zy, X*),
then

L
dist? (zpy1, X*) < dist?(zg, X*) — <1 - 20‘> lzrs1 — zrll?. (9)

It follows from (9) and (8) that

L
dist? (241, X*) < [1 —0g? <1 — ;‘ﬂ dist? (z, X*).



