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1 The basic stochastic approximation scheme

1.1 A first example

We propose to start the exposition of the topic by an example. The arguments are given in a
crude manner. Formal proofs will be given in section 2. This example is taken from the very
article [6] which introduced stochastic approximation. Consider x ∈ R the parameter of a
system and g(x) ∈ R an output value from this system when parameter x is used. We assume
g to be a smooth, increasing function. An agent wants to determine sequentially x∗ ∈ R the
value such that the system output equals a target value g∗. If for all x, the value of g(x) can
be observed directly from the system, then determining g∗ could be solved by a simple search
technique such as binary search or golden ratio search. Here we assume that only a noisy
version of g can be observed. Namely, at time n ∈ N, the decision maker sets the parameter
equal to xn, and observes Yn = g(xn) +Mn with Mn a random variable denoting noise, with
E[Mn] = 0.

In order to determine g(x), a crude approach would be to sample parameter x repeatedly
and average the result, so that the effect of noise would cancel out, and apply a deterministic
line search (such as binary search).

[6] proposed a much more elegant approach. If xn > x∗ , we have that g(xn) > g∗, so that
diminishing xn by a small amount proportional to g∗−g(xn) would guarantee xn+1 ∈ [x∗, xn].
Therefore, define εn a sequence of small positive numbers, and consider the following update
scheme:

xn+1 = xn + εn(g∗ − Yn) = xn + εn(g∗ − g(xn)) + εnMn.

The first intuition is that if the noise sequence is well behaved (say {Mn} is i.i.d Gaussian
with mean 0 and variance 1) and εn = 1/n, then the law of large numbers would guarantee
that the noise “averages out” so that for large n noise can be ignored altogether. Namely,
define Sn =

∑
k≥nMk/k, then var(Sn) is upper bounded by

∑
k≥n 1/k2 →n→+∞ 0, so that

Sn should be negligible. (Obviously this reasoning is heuristic and to make it precise we have
to use a law of large numbers-like result ... )

Now assume no noise (Mn ≡ 0 for all n), and εn = 1/n, g smooth with a strictly positive
first derivative upper bounded by g′. Removing the noise term Mn:

g(xn+1) = g(xn) +
g′(xn)

n
(g∗ − g(xn)).
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By the fundamental theorem of calculus: (1/n)|g∗ − g(xn)| ≤ (g′/n)|x∗ − xn|. So for n ≥ g′,
we have either xn ≤ xn+1 ≤ x∗ or xn ≥ xn+1 ≥ x∗. In both cases, n 7→ |g(xn) − g∗| is
decreasing for large n.

It is also noted that:
xn+1 − xn

n
= (g∗ − g(xn)),

so that xn appears as a discretization (with discretization steps {1/n} of the following
ordinary differential equation (o.d.e.):

ẋ = g∗ − g(x).

This analogy will be made precise in the next subsection.

1.2 The associated o.d.e

We now introduce the so-called o.d.e. approach popularized by [5], which allow to analyze
stochastic recursive algorithms such as the one considered by Robbins in his original paper.
It is noted that [6] did not rely on the o.d.e. method and used direct probabilistic arguments.

The crude reasoning above suggests that the asymptotic behavior of the random sequence
{xn} can be obtained by determining the asymptotic behavior of a corresponding (determin-
istic) o.d.e. In this lecture we will consider a sequence xn ∈ Rd, d ≥ 1, and a general update
scheme of the following form:

xn+1 = xn + εn(h(xn) +Mn),

with h : Rd → Rd . We define the associated o.d.e.:

ẋ = h(x).

We will prove that (with suitable assumptions on h, the noise and step sizes) if the o.d.e.
admits a continously differentiable Liapunov function V , then we have that V (xn)→n→+∞ 0
almost surely. We recall that V is a Liapunov function if it is positive, radially unbounded,
and strictly diminishing along the solutions of the o.d.e.

1.3 Instances of stochastic approximation algorithms

Algorithms based on stochastic approximation schemes have become ubiquitous in various
fields, including signal processing, optimization, machine learning and economics/game the-
ory. There are several reasons for this:

� Low memory requirements: the basic stochastic approximation is a Markovian update:
the value of xn+1 is a function of xn and the observation at time n. So its implementation
requires a small amount of memory.

� Influence of noise: stochastic approximation algorithms are able to work with noise, so
that they are good candidates as “on-line” optimization algorithms which work with
the noisy output of a running system. Furthermore the convergence of a stochastic ap-
proximation scheme is determined by inspecting a deterministic o.d.e. which is simpler
to analyze and does not depend on the statistics of the noise.
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� Iterative updates: Once again since they are Markovian updates, stochastic approxima-
tion schemes are good models for collective learning phenomena where a set of agents
interact repeatedly and update their behavior depending on their most recent observa-
tion. This is the reason why results on learning schemes in game theory rely heavily
on stochastic approximation arguments.

We give a few examples of stochastic algorithms found in the literature.

1.4 Stochastic gradient algorithms

Stochastic gradient algorithms allow to find a local maximum of a cost function whose value
is only known through noisy measurements, and are commonplace in machine learning (on-
line regression, training of neural networks, on-line optimization of Markov decision processes
etc). We consider a function f : R→ R which is strongly convex, twice differentiable with a
unique minimum x∗. f cannot be observed directly, nor can its gradient ∇f . At time n we
can observe f(xn) + Mn. Therefore it makes sense to approximate ∇f by finite differences,
with a suitable discretization step. Consider the scheme (due to Kiefer and Wolfowitz [4]):

xn+1 = xn − εn
f(xn + δn)− f(xn − δn)

2δn
,

The associated o.d.e is ẋ = −∇f(x) which admits the Liapunov function V (x) = f(x)−
f(x∗). With the proper step sizes (say εn = n−1, δn = n−1/3) it can be proven that the
method converges to the minimum xn →n→∞ f(x∗) almost surely.

1.5 Distributed updates

In many applications, the components of xn are not updated simultaneously. This is for
instance the case in distributed optimization when each component of xn is controlled by
a different agent. This is also the case for on-line learning algorithms for Markov Decision
Processes such as Q-learning.

For instance assume that at time n, a component k(n) uniformly distributed {1, . . . , d}
is chosen, and only the k(n)-th component of xn is updated:

xn+1,k =

{
xn,k + εn(hk(xn) +Mn,k) , k = k(n)

xn,k , k 6= k(n)
.

Then it can be proven that the behavior of {xn} can be described by the o.d.e. ẋ = h(x).
Namely, the asymptotic behavior of {xn} is the same as in the case where all its components
are updated simultaneously. This is described for instance in [1][Chap 7].

1.6 Fictitious play

Fictitious play is a learning dynamic for games introduced by [2], and studied extensively by
game theorists afterwards (see for instance [3]). Consider 2 agents playing a matrix game.
Namely, at time n ∈ N, agent k ∈ {1, 2} chooses action akn ∈ {1, . . . ,A}, and receives a
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reward Aka1,a2 , where A1, A2 are two A by A matrices with real entries. Define the empirical
distribution of actions of player k at time n by :

pk(a, n) =
1

n

n∑
t=1

1{akt = a}.

A natural learning scheme for agent k is to assume that at time n+1, agent k′ will choose an
action whose probability distribution is equal to pk

′
(., n), and play the best action. Namely

agent k assumes that P[ak
′
n+1 = a] = pk

′
(a, n), and chooses the action maximizing his expected

payoff given that assumption.
We define

gk(., p′) = max
p∈P

∑
1≤a≤A

∑
1≤a′≤A

p(a)Aka,a′p
′(a′),

with P the set of probability distributions on {1, . . . ,A}. gk(., p′) is the probability distribu-
tion of the action of k maximizing the expected payoff, knowing that player k′ will play an
action distributed as p′.

The empirical probabilities can be written recursively as:

(n+ 1)pk(a, n+ 1) = npk(a, n) + 1{akn = a},

so that:

pk(a, n+ 1) = pk(a, n) +
1

n+ 1
(1{akn = a} − pk(a, n)).

Using the fact that E[1{akn = a}] = gk(., pk
′
), we recognize that the probabilities p are updated

according to a stochastic approximation scheme with εn = 1/(n+ 1), and the corresponding
o.d.e. is

ṗ = g(p)− p.

It is noted that such an o.d.e may have complicated dynamics and might not admit a Liapunov
function without further assumptions on the structure of the game (the matrices A1 and A2).

2 Convergence to the o.d.e limit

In this section we prove the basic stochastic approximation convergence result for diminishing
step sizes with martingale difference noise. This setup is sufficiently simple to grasp the proof
techniques without relying on sophisticated results. The only prerequisites are: the (discrete-
time) martingale convergence theorem and two basic results on o.d.e., namely Gonwall’s
inequality and the Picard - Lindelöf theorem. We largely follow the exposition given by
Borkar in [1][Chap 2].

2.1 Assumptions

We denote by Fn the σ-algebra generated by (x0,M0, . . . , xn,Mn). Namely Fn contains all
the information about the history of the algorithm up to time n.

We introduce the following assumptions:
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(A1) (Lipshitz continuity of h) There exists L ≥ 0 such that for all x, y ∈ Rd ||h(x)−h(y)|| ≤
L||x− y||.

(A2) (Diminishing step sizes) We have that
∑

n≥0 εn =∞ and
∑

n≥0 ε
2
n <∞.

(A3) (Martingale difference noise) There exists K ≥ 0 such that for all n we have that
E[Mn+1|Fn] = 0 and E[||Mn+1||2|Fn] ≤ K(1 + ||xn||).

(A4) (Boundedness of the iterates) We have that supn≥0 ||xn|| <∞ almost surely.

(A5) (Liapunov function) There exists a positive, radially unbounded, continuously differ-
entiable function V : Rd → R such that for all x ∈ Rd , 〈∇V (x), h(x)〉 ≤ 0 with strict
inequality if V (x) 6= 0.

(A1) is necessary to ensure that the o.d.e. has a unique solution given an initial condition,
and that the value of the solution after a given amount of time depends continuously on the
initial condition. (A2) is necessary for almost sure convergence, and holds in particular for
εn = 1/n. (A3) is required to control the random fluctuations of xn around the solution of
the o.d.e. (using the martingale convergence theorem), and holds in particular if {Mn}n∈N is
independent with bounded variance. (A4) is essential, and can (in some cases) be difficult
to prove. We will discuss how to ensure that (A4) holds in the latter sections. (A5) ensures
that all solutions of the o.d.e. converge to the set of zeros of V , and that this set is stable (in
the sense of Liapunov). Barely assuming that all solutions of the o.d.e. converge to a single
point does not guarantee convergence of the corresponding stochastic approximation.

2.2 The main theorem

We are now equipped to state the main theorem.

Theorem 1. Assume that (A1) - (A5) hold, then we have that:

V (xn)→n→∞ 0, a.s.

The proof of theorem 1 is based on an intermediate result stating that the sequence {xn}
(suitably interpolated) remains arbitrarily close to the solution of the o.d.e. We define Φt(x)
the value at t of the unique solution to the o.d.e. starting at x at time 0. Φ is uniquely
defined because of (A1) and the Picard-Lindelöf theorem. We define t(n) =

∑n−1
k=0 εk, and

x(t) the interpolated version of {xn}n∈N. Namely for all n , x(t(n)) = xn , and x is linear by
parts. We define xn(t) = Φt−t(n)(xn) the o.d.e. trajectory started at xn at time t(n).

Lemma 1. For all T > 0, we have that:

sup
t∈[t(n),t(n)+T ]

||x(t)− xn(t)|| →n→∞ 0 a.s.

Proof of lemma 1: Since the result holds almost surely we consider a fixed sample path
throughout the proof. Define m = inf{k : t(k) > t(n)+T} so that we can prove the result for
T = t(m)−t(n) and consider the time interval [t(n), t(m)]. Consider n ≤ k ≤ m, we are going
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to start by bounding the difference between x and xn at time instants t ∈ {t(n), ..., t(m)},
that is supn≤k≤m |xk − xn(t(k))|.

We start by re-writing the definition of xk and xk(t(k)):

xk = xn +
k−1∑
u=n

εuh(xu) +
k−1∑
u=1

εkMk

and by the fundamental theorem of calculus:

xn(t(k)) = xn +

∫ t(k)

t(n)

h(xn(v))dv

= xn +
k−1∑
u=n

∫ t(u+1)

t(u)

h(xn(v))dv

= xn +
k−1∑
u=n

εuh(xn(t(u))) +

∫ t(u+1)

t(u)

[
h(xn(v))− h(xn(t(u)))

]
dv

we recall that
∫ t(u+1)

t(u)
dv = εu.

Our goal is to upper bound the following difference, decomposed into 3 terms:

Ck = ||xn(t(k))− xk|| ≤ Ak +
k−1∑
u=n

Bu +
k−1∑
u=n

LεuCu, (1)

with:

Ak = ||
k−1∑
u=n

εkMk||,

Bk =

∫ t(u+1)

t(u)

||h(xn(v))− h(xn(t(u)))||dv.

The stochastic term
We first upper bound Ak , the stochastic term in (1). Define Sn =

∑n
u=0 εuMu. It is noted

that Ak = Sk − Sn. Sn is a martingale since:

E[Sn+1 − Sn|Fn] = E[εn+1Mn+1|Fn] = 0.

From (A3) , E[||Mn+1||2|Fn] ≤ K(1 + supk ||xk||) < ∞. Therefore the sequence {Sn} is a
square integrable martingale:∑

n≥0

E[||Sn+1 − Sn||2|Fn] ≤ K(1 + sup
n
||xn||)

∑
n≥0

ε2n <∞.

Using the martingale convergence theorem (lemma 2), we have that Sn converges almost
surely to a finite value S∞. This implies that:

Ak ≤ ||Sk − Sn|| ≤ ||Sk − S∞||+ ||Sn − S∞|| ≤ 2 sup
n′≥n
||Sn′ − S∞|| →n→∞ 0 , a.s.
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Therefore, until the end of the proof we choose n large enough so that Ak ≤ δ/2 for all k ≥ n
with δ > 0 arbitrarily small.

The discretization term, maximal slope of xn

In order to upper bound Bu, we prove that for t ∈ [t(u), t(u + 1)], xn(t) can be approxi-
mated by xn(t(u)) (up to a term proportional to εu). To do so we have to bound the maximal
slope of t 7→ xn(t) on [t(n), t(m)]. We know that xn(t(n)) = xn ≤ supn∈N ||xn|| which is finite
by (A4). Using the fact that h is Lipshitz and applying Gromwall’s inequality (lemma 2)
there exists a constant KT > 0 such that:

||h(xn(t))|| ≤ ||h(0)||+ L||xn(t)|| ≤ KT , t ∈ [t(n), t(m)].

We have used the fact that h is Lipschitz so it grows at most linearly: for all x, ||h(x)−h(0)|| ≤
L||x||, so that ||h(x)|| ≤ ||h(0)||+ L||x||. Therefore by the fundamental theorem of calculus,
for t ∈ [t(u), t(u+ 1)]:

||xn(t)− xn(t(u))|| ≤
∫ t(u+1)

t(u)

||h(xn(v))||dv ≤ εkKT .

In turn, using the Lipschitz continuity of h we have that:

Bu ≤
∫ t(u+1)

t(u)

L||xn(v)− xn(t(u))||dv ≤ ε2uLKT .

By (A2),
∑

u≥n ε
2
u →n→+∞ 0, and so

∑k−1
u=nBu ≤

∑
u≥nBu →n→+∞ 0. Until the end of the

proof, we consider n large enough so that
∑

u≥nBu ≤ δ/2.
The recursive term
Going back to (1), by the reasoning above, we have proven that:

Ck ≤ δ + L
k−1∑
u=0

εuCu.

Using the fact that
∑k−1

u=n εu ≤ t(m) − t(n) = T , and applying the discrete time version of
Gronwall’s inequality (lemma 3):

sup
n≤k≤m

Ck ≤ δeLT .

By letting δ arbitrary small we have proven that:

sup
n≤k≤m

||xk − xn(t(k))|| →n→∞ 0

Error due to linear interpolation
In order to finish the proof, we need to provide an upper bound for ||x(t)− xn(t)|| when

t /∈ {t(n), ..., t(m)}. Consider n ≤ k ≤ m, and t ∈ [t(k), t(k + 1)]. Since x is linear by parts
(by definition), there exists λ ∈ [0, 1] such that:

x(t) = λxk + (1− λ)xk+1.
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Applying the fundamental theorem of calculus twice, xn(t) can be written:

xn(t) = xn(t(k)) +

∫ t

t(k)

h(xn(v))dv

= xn(t(k + 1))−
∫ t(k+1)

t

h(xn(v))dv

Therefore the error due to linear interpolation can be upper bounded as follows:

||x(t)− xn(t)|| ≤ λ||xk − xn(t(k))||+ (1− λ)||xk+1 − xn(t(k + 1))||

+ λ

∫ t

t(k)

||h(xn(v))||dv + (1− λ)

∫ t(k+1)

t

||h(xn(v))||dv,

and we obtain the announced result:

sup
t∈[t(n),t(m)]

||x(t)− xn(t)|| ≤ sup
n≤k≤m

||xk − xn(t(k))||+ εnCT →n→+∞ 0

which concludes the proof.

We can proceed to prove the main theorem.

Proof. Once again we work with a fixed sample path. We consider ν > 0, and define the
level set Hν = {x : V (x) ≥ ν}. Choose ε > 0 such that if V (x) ≤ ν and ||x − y|| ≤ ε,
then V (y) ≤ 2ν. Such an ε exists because (by radial unboundedness) the set {x : V (x) ≤
ν} is compact, and because of the uniform continuity of V on compact sets. Since V is
continuously differentiable, x 7→ 〈∇V, h(x)〉 is strictly negative on Hν , and Hν is closed, we
define ∆ = supx∈Hν 〈∇V, h(x)〉 < 0. Denote by V∞ = sup||x||≤supn ||xn|| V (x) which is finite
since supn ||xn|| is finite and V is continuous. Define T = (V∞ − ν)/∆. Then for all x such
that ||x|| ≤ supn ||xn|| and all t > T , we must have V (Φt(x)) ≤ ν. Finally, choose n large
enough so that supt∈[t(n),t(n)+T ] ||x(t)−xn(t)|| ≤ ε and m such that t(m) = t(n)+T . Then we
have that V (xn(t+ T )) ≤ ν and that |xn(t+ T )− xm| ≤ ε, which proves that V (xm) ≤ 2ν.

The reasoning above holds for all sample paths, for all ν > 0, for all m arbitrarily large,
so V (xn)→n→∞ 0 a.s. which is the announced result.

3 Appendix

3.1 Ordinary differential equations

We state here two basic results on o.d.e.s used in the proof of the main theorem.

Lemma 2 (Gronwall’s inequality). Consider T ≥ 0, L ≥ 0 and a function t 7→ x(t) such
that ẋ(t) ≤ L||x(t)||, t ∈ [0, T ]. Then we have that supt∈[0,T ] ||x(t)|| ≤ ||x(0)||eLT .
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Lemma 3 (Gronwall’s inequality, discrete case). Consider K ≥ 0 and positive sequences
{xn} , {εn} such that for all 0 ≤ n ≤ N :

xn+1 ≤ K +
n∑
u=0

εnxn.

Then we have the upper bound: sup0≤n≤N xn ≤ Ke
∑N
n=0 εn.

3.2 Martingales

We state the martingale convergence which is required to control the random fluctuations of
the stochastic approximation in the proof of the main theorem.

Consider a sequence of σ-fields F = (Fn)n∈N, and {Mn}n∈N a sequence of random variables
in Rd. We say that {Mn}n∈N is a F - martingale if Mn is Fn - measurable and E[Mn+1|Fn] =
Mn. The following theorem (due to Doob) states that if the sum of squared increments of a
martingale is finite (in expectation), then this martingale has a finite limit a.s.

Theorem 2 (Martingale convergence theorem). Consider {Mn}n∈N a martingale in Rd with:∑
n≥0

E[||Mn+1 −Mn||2|Fn] <∞,

then there exists a random variable M∞ ∈ Rd such that ||M∞|| <∞ a.s. and Mn →n→∞ M∞
a.s.
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