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The original problem: Maxwell-Boltzman statistics

Original problem: calculation of Maxwell-Boltzman
statistics

Model for non-interacting particles (i.e perfect gas).
Thermodynamical system, state s, state space S finite.

Potential energy of a state E(s), temperature T > 0, b
Boltzmann constant.

At thermodynamical equilibrium, the system state follows
the Boltzmann distribution:

_E(s)
P(S) = eXp( bTE)(S/)
>ses OXP(—7)

Problem: |S| large, > ¢ s exp(—Et(ff/)) impossible to

calculate directly.
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The first MCMC method: Metropolis-Hastings
» Solution (Metropolis, 1953): define a Markov chain {X,}
which admits p as a stationary distribution
» Result obtained by averaging
1 t
T Z f(Xn) —t—400 ZP(S)f(S) a.s.
n=1 ses
» Define N(s) C S neigbours of s. Symmetry: s’ € N(s) iff
se N(s).
» Metropolis-Hastings algorithm:

Xo €S
Yn ~ Uniform(N(Xp))

. . E(Yn)—E(Xn)
Xni1 = Yn with proba min(e™ 57 1)

Xni1 = Xp otherwise.
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The first MCMC method: Metropolis-Hastings

» Transition probability, s € N(s):

(
~  Mmin(e” &7 1)
Pl s) =" INGs))

» X, reversible Markov chain with stationary distribution p
(detailed balance holds):

p(s)P(s,s") = p(s')P(s’, ),

» If N is large: low probability of changing, if N is small,
takes time to go through the state space.



MCMC: sampling a distribution known up to a constant
» General problem: distribution p(.) known up to a constant
on a high dimensional space, how to sample from p ?

» Ingredients: Q(.,.) (symmetrical) proposal distribution,
R(.,.) acceptance probability
» Basic algorithm:
X() €S
Yo~ Q(Xn,.)
Xni1 = Yn with probability R(Xn, Yn)
Xni1 = Xn with probability 1 — R(Xq, Ya).

» Detailed balance equations impose:

Ris.s) — {1 it p(s') > p(s)

’;((SS/)) otherwise.



MCMC: the impact of mixing

» The sequence generally moves towards regions of high
probability

» Advantage over rejection sampling: the proposal
distribution is a function of the samples

» Disadvantage: samples are correlated

» Efficiency measured by the mixing time: successive
samples should be as de-correlated as possible.

» Choice of Q is critical:

» large jumps: most states have very low probability,
acceptance probability is low, so the chain stays static most
of the time

» small jumps: the chain takes a lot of time to go through the
state space.

» Choosing Q is not straightforward.



Sampling per component: Gibbs Sampling

» Going back to the first example, consider K particles each
with 2 possible states.

» State space, S = [0, 1]X, state s = (sy,. .., sk).
» k-th particle , state: s = (sx, S_«) ,

» Joint distribution p is complex, however p(sk|s_k) is very
simple (Bernoulli distribution):

E(0,s_k)
e  bT
p(sk = 0|s_) = ) B
e T 4e BT

» |dea of Gibbs sampling (Geman , 1984): at each step,
change the state of at most 1 particle.



Sampling per component: Gibbs Sampling

» Gibbs sampler: a sampling method for p (known up to a
constant), when conditionals p(xx|x_x) are easy to
calculate

» At each step, change a component selected at random.

X eS8
k(n) ~ Uniform({1,...,K})
Yn~p(. ‘Xn,—k(n))
Xn+1,k(n) = Yp
Xn+1,k = Xn,k if k 7£ k(n)

» No rejection in Gibbs sampling.
» Lends itself to distributed implementation.

» Blocked Gibbs sampler: same method with blocks of
variables
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Simulated annealing

» S finite set, cost function V : S — Rt
» Goal: minimize V, set of minima H = {argmaxs V(s)}.
» Boltzmann distribution:

exp(— 1)
Yees exp(=F)
» At low temperatures, p(., T) is concentrated on H,
p(H,T) =1, T—0".
» Intuition: sample from p using MCMC while decreasing T

» Cooling schedule: T — 0 slowly enough so that
Xn —n-oo Ha.s.

» Annealing principle, analogy with solid state physics: first
heat then slowly cool a metal to improve its crystalline
structure. Minimal potential = perfect crystal.

p(s, T)=




Cooling schedules

» Main question: which cooling schedules ensure
convergence ?

» Here we study a simple case: the schedule is constant by
parts.

» Step m € N of duration am, tm = > 1y < m -
» Cooling schedule: T = Ty, t € [tm, tm + am]

» Intuition: if oy is large with respect to the mixing time at
temperature Tm, X;,,, should follow p(., Trm)
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A convergence theorem

Define: 6 = minggy V(S) , Voo = Maxses V().

Theorem
There exists ay > 0 such that by choosing Ty, = % ,
am = m2, a> ay, the simulated annealing converges:

Xt, 7 m—oo H, a@.s.
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A convergence theorem: proof

Lemma
There exists a positive sequence {Bm} such that if for all m,

Xt, 7 m—oo H, a.s.
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Mixing time of reversible Markov chains
» Ergodic flow between subsets S, So:

K(S1,82) = Z ZP& (s1,82),

S1ES1 SHESy
» Conductance of the chain
K(S',S\S)

b= min
S'CS,p(8H<1/2 p(S")

» Mixing time:

7(e) =min{n: sup[B(Xr = s) - p(s)| < ¢}. (1)

Theorem
With the above definitions, and p* = mins p(s), we have:

7(e) < (|09( /P*) +log(1/e)).
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Payoff-based learning

» Principle: N independent agents with finite action sets want
to minimize a function without any information exchange

» Agent i chooses a; € A; and observes payoff
Ui(at,...,an) €]0,1)

» Goal: maximize U(a) = Zf; Ui(a), H = argmaxg U(a)

» “Payoff-based learning”: agents do not observe the payoffs
or actions of the other players.

» Assumption: agents cannot be separated in 2 disjoint
subsets that do not interact.
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Payoff based learning: a sampling method

» Sampling approach proposed by (Peyton-Young, 2012):
design a Markov chain whose stationary distribution is
concentrated on H

» State of agent i: @; € A; benchmark action, u; € [0,1)
benchmark payoff, “mood”m; € {C, D} (“Content’ ,
“Discontent’)

» Experimentation rate e > 0, constant ¢ > N.
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Payoff based learning: update mechanism
If j is content:
» Choose action a;:

°/(|Ail—1) a#a
P[aj:a]: 6/(‘ I’ ) 7& i
1—€ a=a
» Observe resulting u;:
» If (ai, u;)) = (@, U;)) , i stays content
» If (a;, u;) # (@;, U;): i becomes discontent with probability
1 —lmu,
» Benchmark actions are updated (a;, u;) « (a;, uj;)
If / is discontent:
» Choose action a;:

Plaj=al =1/|Ai|l, a€ A,

» Observe resulting u;, and become content with probability
1—u;
€ I

» Benchmark actions are updated (a;, u;) + (&, Uj;)
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Rationale of Peyton-Young’s method

» Experiment (a lot) until content: When an agent is
discontent, he plays an action at random, and becomes
content only if he has chosen an action yielding high
reward

» Do not change if content: An agent that is content
remembers the (action,reward) that caused him to become
content, so he keeps playing that same action with
overwhelming probability

» Become discontent when others change: (change
detection mechanism) whenever a content agent detects a
change in reward he becomes discontent, because it
indicates that another agent has deviated

» Experiment (a little) if content: Occasionally a content
agent experiments (mandatory to avoid local minima)
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A concentration result

Theorem

Consider the (irreducible) Markov chain (U;, a;, m;); , denote by
p(., €) its stationary distribution. Define

Then H is the only stochastically stable set so that:

p(H,e) = 1,e = 07.
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Resistance trees

» Main difficulty: the chain is not reversible .

» The proof is based on the theory of stochastic potential for
perturbed Markov chains (Peyton-Young 1993).

» Perturbed Markov Chain: P(s, &', ¢) ~ ¢(85) e - 0

» Eq,..., Eyrecurrence classes of P(.,.,0)
» r(s, s') resistance of link (s, s')
» Pathfromstos, (= (s=sy,...,5,=¢5"), resistance is

additive on paths:

r(§) =r(s1,82) + - +r(sp_1, ba).

19/21



Resistance trees

» Potential: p;; = ming r(¢) ; minimum is taken on all paths
from E; — E;.

» Define G weighted graph with vertices {1,..., M} and
weights (pij)1<ij<m-

» Fix /i, consider a directed tree 7 on G which contains
exactly one path from j to i (for all j # /).

» The stochastic potential of class /i is the minimum of
>_(ijyeT Pij> Where the minimum is taken over all possible
trees 7.

Theorem

The only stochastically stable recurrence classes Eq, ..., Ey
are the ones with minimum stochastic potential.
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Some good reading

» Metropolis-Hastings: Metropolis, “Equations of State
Calculations by Fast Computing Machines”

» MCMC: Andrieu, “An Introduction to MCMC for Machine
Learning”

» Gibbs sampling: Geman, “Stochastic Relaxation, Gibbs
Distributions, and the Bayesian Restoration of Images”

» Markov chain mixing time: Levin, “Markov Chains And
Mixing Times”

» Simulated Annealing: Hajek, “Cooling Schedules for
Optimal Annealing ”

» Payoff-based learning: Peyton-Young, “The evolution of
conventions”
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