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Objectives

* Competitive setting
* Provide a survey of recent advances for convergence to Nash
Equilibria in games
Vi=1,...,m, I’I;;III fi(xi, x_y;)
— m independent agents competing towards different objectives
— Does the notion of Nash Equilibrium make sense?
— Are there natural learning algorithms leading to NEs?

— Can agents / players select socially efficient NEs?
— How fast can they reach equilibrium?



Today’s lecture

Aims at understanding how players may adapt their actions in
repeated games

Aims at modeling natural and robust ways of adapting actions
over time, and at understanding the resulting dynamics



Outline

Games, Equilibrium concepts, and Information
Fundamental limits

Nash dynamics

Replicator dynamics

Fictitious play

No-regret dynamics

Trial and error learning



Games

A set of m agents or players
Finite strategy set for playeri: S,

Cost function for playeri: ¢; : S = (51, ...

Notation: s = (81,...,8m) = (Si,5_4)



Ex 1: coordination game

* Coordination game

Player 2
a b

A |(1,1)|(0,0)

Player 1

B | (0,0)(1,1)




Ex 2: Shapley game

* Shapley game: pay-off matrix

Player 2
L M R

T 1(0,0){(1,0)| (0,2)

Player1 M | (0,1) | (0,0) | (1,0)

B |(1,0)|(0,1) | (0,0)




Network congestion game

RRR
R

Network: set of links with limited capacity

Strategies: set of routes to destination

Latency function of linke: [ : N — R

Under strategies s : n.(s) = number of users going through e
Cost for user using route 7 : Z le(ne(s))

ecr



Pure Nash Equilibrium

* A pure Nash equilibrium is a set of strategies s = (s1,...,Sm)
such that no player has incentive to modify her strategy

Vi, ci(s;,5-i) > ci(s), Vs;€S;

e Strict Nash equilibirum = (with strict inequalities)



Ex 1: coordination game

e Coordination game: pay-off matrix

Player 2
a b

A | (1,1)|(0,0)

N——

Player 1

— Y

B | (0,0)|(1,1)




Ex 2: Shapley game

* Shapley game
* No pure NE Player 2

T 1(0,0){(1,0)| (0,2)

Player1 M | (0,1) | (0,0) | (1,0)

B |(1,0)|(0,1) | (0,0)




Mixed strategies

* A mixed strategy for player i is a distribution over S;
* Set of mixed strategies: AS;

piEASi’ pi:S’i%[Ovl]v Z pZ(SZ):l

S;E€S;

* Costsunder p= (p1,...,0m) €E A=A X ...,

Cip) = >, pi(s1)pmlsm)ei(s)



Mixed Nash equilibrium

* p=(p1,...,pm) € AS =AS] x...AS,, isamixed NE if:

Vi, Cy(pl,p_i) > Ci(p), Vp. € AS,

* Every game has at least one mixed NE (Brouwer’s theorem)
 Apure NE is also a mixed NE



Correlated equilibrium

e peP(Y) isacorrelated equilibrium if:

Z <Zp czs S_;

S_;

* Every game has at least one correlated equilibrium
A mixed NE is also a correlated equilibrium



Equilibria

Inefficiency

(Load balancing game)
1
log(m)/ loglog(m)

vm

Correlated Eqs



Learning rules

* Discrete updates: p;(t+ 1) = Fi(0;(t)) € A(S;)
e R-recall full information rule:

* Uncoupled rule: o;(t) = (s(1),...,s(t),c)

 Completely uncoupled rule or pay-off based:



Convergence concepts

* Almost sure, convergence in probability of the “per-period”
behaviors

* Convergence of empirical distribution of play



Generic and inter-dependent games

* Generic games: best response is always unique

* Inter-dependent games: for any subset K of player can
influence the cost of at least one player not in K:

Ji ¢ K, dsh #sx: ci(sy,s_ k) # ci(s)



Fundamental limits



Correlated equilibrium

Theorem* There is an uncoupled learning rule such that the
empirical distribution of play converges almost surely to the set
of correlated equilibria.

RGK =7 S (@) - eilk,s ()

T7<t:5;(7)=3
<t:si(7)=J |

Wk £ G pilt+ 1)) = - R R)

* Regret matching, Hart-MasColell, 2000



Correlated equilibrium

Theorem* There is a completely uncoupled learning rule such
that the empirical distribution of play converges almost surely to
the set of correlated equilibrium.

Idea: At each step, select a strategy uniformly at random with
probability §/t”

* Modified regret matching, Hart-MasColell, 2001



Mixed Nash Equilibrium

Theorem* There is an uncoupled learning rule such that in
generic games, for t large enough: P[p(t) ¢ NE] < ¢

* Play the same mixed strategy for T periods

* Regret:

R =7 3 (als(r) — cilh,s-i(r))
T=t—T+1

o Ifforsomek, Ri(k)>p selectanew strategy uniformly at
random; else select the same strategy w.p. 1-g, and
randomize w.p. g.

* Regret testing, Foster-Young, 2006



Mixed Nash Equilibrium

Theorem* There is an uncoupled learning rule such that in
generic games, the mixed strategies converge a.s. to a mixed NE.

* Annealed regret testing, Germano-Lugosi, 2007



Mixed Nash Equilibrium

Theorem There is an uncoupled learning rule such that in
generic games, the mixed strategies converge a.s. to a mixed NE.

Theorem* There is no finite recall uncoupled learning rule such
that in all games, the mixed strategies converge a.s. to a mixed
e-NE (for € small enough).

Theorem* For any g, there is a finite memory uncoupled
learning rule such that in all games, the mixed strategies
converge a.s. to a mixed e-NE.

* Hart-MasColell, 2006



Mixed Nash Equilibrium

Theorem* There is a completely uncoupled learning rule such
that in generic games, the mixed strategies converge a.s. to a
mixed NE.

* Germano-Lugosi, 2007



Pure Nash Equilibrium

Theorem* There is no 1-recall uncoupled learning rule with a.s.
convergence to a pure NE in all games.

Theorem* There is a 2-recall uncoupled learning rule with a.s.
convergence to a pure NE in all games.

e |If S(t — 1) = S(t — 2) and Si(t — 1) < BRl(S_Z(t — 2)),\V/’l,, then
we are done; else randomize.

* Hart-MasColell, 2006



Pure Nash Equilibrium

Theorem* There is no completely uncoupled learning rule with
a.s. convergence to a pure NE in generic games.

* Babichenko, 2012



Pure Nash Equilibrium

Theorem* There is no completely uncoupled learning rule with
a.s. convergence to a pure NE in generic games.

Theorem* There is no completely uncoupled learning rule with
convergence to pure NE with frequency 1-€ (¢>0) in all games.

* Babichenko, 2012



Proof

 Two 3-player games, indistinguishable from player 3

perspective

bl b2 bl b2
al (1,1,1) (1,1,1) (1,0,1) (0,1,1)

GAME 1
a2 (1,1,1) (1,1,1) (0,1,1) (1,0,1)

cl c2

bl b2 bl b2
al (1,0,1) (0,1,1) (1,1,1) (1,1,1)

GAME 2
32 (0,1,1) (1,0,1) (1,1,1) (1,1,1)

cl c2



Pure Nash Equilibrium

Theorem There is no completely uncoupled learning rule with
a.s. convergence to a pure NE in generic games.

Theorem There is no completely uncoupled learning rule with
convergence to pure NE with frequency 1-€ (¢>0) in all games.

Theorem* There is a completely uncoupled learning rule with
convergence to pure NE with frequency 1-€ in inter-dependent
games.

*Trial and Error learning, Young, 2008



Nash dynamics



Best responses

Consider pure actions here
Best response: a best response a; against strategies s_; is
such that:

a; € arg min ¢;(s;,S_;)
S; €S,

Nash dynamics: a sequence of best responses (one player

updates her strategy at a time)

Liveness property: each player gets a chance of updating after
at most a fixed number of updates

Random Nash dynamics: players are chosen uniformly at
random for updates



Graph representation

* Vertices: set of strategies

e Directed edges: best responses



Graph representation

* Pure NEs =sinks of the graph

o« ;

S = (S;, S—’i)



Network congestion game

RRR
R

Network: set of links with limited capacity

Strategies: set of routes to destination

Latency function of linke: [ : N — R

Under strategies s : n.(s) = number of users going through e
Cost for user using route 7 : Z le(ne(s))

ecr



Potential games

Rosenthal, 1973
Every network congestion game admits a potential function

s' = (s;,5_;)
O(s) — () = ci(s') — cils)

0 < P(s) <nm.dpmax, VSES] X...X 8y

Nne(s)

Proof: ®(s) = S: S: le(k)
k=1

(&

NEs are local minima of the potential function



Social efficiency of NEs

 There is a difference between NEs and socially optimal
routing strategies:

ne(s)

NEs: minimize ®(s) = S: S: le (k)
k=1

€

Socially optimal routing:

minimize ®(s) = » ne(s)le(ne(s))



Convergence of Nash dynamics

* Best response dynamics with liveness property converge to
NEs

e Convergence time?

Theorem* There is a network congestion game and an initial
condition such that all better response sequences have
exponential (w.r.t. the number of players) length.

* The complexity of pure NEs, Fabrikant-Papadimitriou-Talwar, STOC, 2004



Non-potential games

* Notion of sink equilibrium®*: strongly connected components
without outgoing link

a - I

C/

o /

C/\@ State graph

* Goemans-Vetta, FOCS, 2005




Non-potential games

* Every random Nash dynamics converge to a sink equilibrium
* Nothing else can be said

a - I

C/

o /

C/\@ State graph

* Goemans-Vetta, FOCS, 2005




Stable marriage problem

* Two sets: set of women, set of men
e Each person has a preference list

A (a,c,b) a

B (a,b,c) b (A,C,B)

C (c,b,a) c | (ACB)
L



Applications

Patients/hospitals
Students/college
Labor market

Connection to games: there is an active side (women) who
proposes
— Women are playing against each other

— Strategy of a woman: proposes a single man, and gets the pay-off if
she wins him

— NEs = stable matchings



Matching

e Stable matching?

A (a,c,b) a (A,B,C)
B (a,b,c) b (A,C,B)
C (c,b,a) C (A,C,B)




Matching

e Stable matching = no blocking pair

A (a,c,b) a (A,B,C)
B (a,b,c) b (A,C,B)
C (c,b,a) C (A,C,B)




Unstable matching

* (A,a) is a blocking pair

A

(a,c,b) a ﬁ

(a,b,c) b

(c,b,a) C

(A,C,B)



Unstable matching

* (A,a) is a blocking pair

A

(3,C,D)  e— 3 ﬁ

(a,b,c) b

(c,b,a) C

(A,C,B)



Existence of stable matching

* Gale-Shapley, 1962

Theorem* A stable matching always exists.

* Proof: construction of a stable matching



Centralized construction

e Step 1: each man proposes his favorite woman. Women
accepts the best proposal (if several)

PROPOSALS
(alclb) A a (AIBIC)
a,b,c
(a,b,c) B 5\ b (A,C,B)
(c,b,a) C h%' C (A,C,B)



Centralized construction

e Step 1: each man proposes his favorite woman. Women
accepts the best proposal (if several)

CANDIDATE
(a,c,b) A a (A,B,C)
d
(a,b,c) B 5\ b (A,C,B)
(c,b,a) C h%' C (A,C,B)



Centralized construction

e Step 2: rejected men propose their second choices.

CANDIDATE
(a,c,b) A ?
d

(a,b,c) B

3

.

c,b,a -
(l V4 ) C h b’C j,'
A%



Centralized construction

e Step 2: rejected men propose their second choices.

CANDIDATE
(a,c,b) A ? a (A,B,C)
a

<s

N WY

(a,b,c) B

Wi
7N

2 c

;b; ' ’"‘
(c,b,a) C h b
A%



Centralized construction

» Step 3: rejected men propose their third choices.

CANDIDATE
(a,c,b) A ? a (A,B,C)
a
,\ c

<s

N WY

(a,b,c) B

Wi
7N

2 c

;b; . ’"‘
(c,b,a) C h b
A%



e Result:

(a,c,b) A

(a,b,c) B

(c,b,a) C

Centralized construction

(A,C,B)




Complexity

« Gale-Shapley’s algorithm finishes in at most n? — 2n + 2
steps

A man proposes a given woman only once
 What about distributed algorithms?



Best response dynamics

e Starting from any given unstable matching, a woman plays
her best response (possibly breaking a marriage)

A (a,c,b) a (A,B,C)
B (a,b,c) b (A,C,B)
C (c,b,a) C (A,C,B)




Best response dynamics

 Example: A proposes a, and wins him ...

A

(a,c,b) a ﬁ (A,B,C)

(a,b,c) b

(c,b,a) C




BR dynamics

 The best response dynamics can cycle (heed 3 women and 3
men)*

* From every matching, there exists a sequence of BR of length
2n* leading to a stable matching

 Random BR reaches a stable matching, but it can take an
exponential time

* Uncoordinated two sided market, Ackermann et al., EC, 2008



Replicator dynamics



Replicator dynamics

* Proposed by Maynard Smith, 1974
pir = pik(t)(Ci(p(t) — Ci(k,p-i(1)))

* Analysis:
— Stationary points

— Stability of stationary points
— Global stability (Lyapounov function)

 Completely uncoupled implementation: see later (Exp3)



Results

Lemma Let S be the set of stationary points of the replicator
dynamics: SNintAC NECS

Lemma If a stationary point is stable, then it is a mixed NE. If a
trajectory in intA converges, then the limiting point is a mixed

NE.

Lemma |If a pure NE is not strict, it is not stable.



Congestion games

Lemma |n congestion games, the potential function is a
Lyapunov function of the replicator dynamics.

Theorem* From almost all initial conditions, the replicator
dynamics converge to weakly stable NEs.

Weakly stable NE: any player remains indifferent between the
actions in the support of her mixed strategy whenever any other
player modifies her mixed strategy to any pure action in its
support. Examples: Pure NEs.

* Kleinberg-Piliouras-Tardos, STOC, 2009



Fictitious play



Fictitious play

* Introduced by G. W. Brown 1951
* Principle:

“Every player plays the best response action to the
distribution of past actions of the other players.”



Fictitious play

* Introduced by G. W. Brown 1951
* Principle: Bayesian interpretation

“Every player assumes that each of the other players is
using a stationary (i.e., time independent) mixed
strategy. The players observe the actions taken in
previous stages, update their beliefs about their
opponents’ strategies, and choose the pure best
responses against their beliefs.”



Discrete time fictitious play

Empirical distribution of player-i’s play up to time t:
=
pi(ss) = " D av=as}
u=0

p": distribution on S given by the independent product of
individual distributions p§

. : ' ¢
For stage t, player i selects action a; € BR;(p” ;)



Continuous time fictitious play
Empirical distribution of player-i’s play up to time t:

1 t

t

p;(si) = ;/ Lfqu=a, du
u=0

p': distribution on S given by the independent product of
individual distributions p:

For stage t, player i selects action so that:

Opt

BR;i(p" ;) — pi
5 € (p°;) — ;i




Discrete time: NE

Lemma If a pure strategy s is always played from a given time,
then it is a pure NE.

Lemma |f a strict NE is played at time t, then it is played
thereafter.

Lemma |If tlim p' = p, then the limiting distribution is a mixed
— 00
NE.



Survey of existing convergence results

e Zero-sum 2x2 games: Robinson, 1951

e Super-modular games with unique equilibirum, Milgrom-
Roberts, 1991

* 2xn games, Berger, 2003
* Super-modular games with diminishing returns, Krishna, 1992

 Weighted and ordinal potential games, Monderer-Shapley,
1996

* ..etc.



No-regret learning



An adversarial setting

ldea: each player assumes that the other players’ actions
can be arbitrary, and try to do the best she can.

The other players are replaced by an adversarial nature

No-regret algorithms: an algorithm has zero regret, if
asymptotically, after a sufficiently large number of stages,
it performs almost optimally.



Exp3 Algorithm (Auer et al 2002)

Initialization: w;(1) =1, Vj=1,..., m.
Foreach t =1,2,...

1.Set p;(t)=(1—"7) w; (1) + vj

> wi(t) m’

2. Draw j(t) according to p(t)

=1,..., m.

3. Receive reward X (t)

4. Update the weights

)= { OG0

w;(t), J# ()




Back to the game

 What if each player applies no-regret algorithms?
Convergence to NEs?

 Know convergence results:

— Convergence to NEs in constant-sum games, general
sum 2x2 games, Jafari-Greenwald-Gondek-Ercal, 2001

— Exp3 dynamics converge to weakly stable equilibria

(efficient NEs) in congestion games, Kleinberg-
Piliouras-Tardos, 2009

— Extension of the previous results to the case of some
ordinal potential games, Kasbekar-Proutiere, 2010

— ...etc.



Example: channel allocation

I

N links
m channels available for communication

Interaction through interference
Fading (unreliable transmissions)

Payoffs: link throughput (in bit/s)
(depends on interference and fading)



Interference

7

If two links simultaneously transmit
on the same channel

* Collision. None of the
transmissions is successful

* Fair time sharing. They share
time fairly



Payoffs - Collisions

7

If link 1 transmits on channelj at time t,
it receives a payoff R; equal to:

X1 % [ [ Lsucty g
i1
| J
v

interference

v
X1 € {0,1} random fading
E[X1;] = pa;



Payoffs — Fair time sharing

7

If link 1 transmits on channelj at time t,
it receives a payoff R; equal to:

1
Xl' X ; :
T i si(t) = 4}
\ 1
Y
interference
\Y%

X1 € {0,1} random fading
E[X1;] = pa;



Constraints and Objective

I

Lack of information
* Transmitter of link i has no a priori
knowledge about channel conditions
on her link
* Transmitter of link i has no a priori
information about other links

Objectives: Transmitters should
select channels so as to guarantee
* High network throughput
* Fairness



¢ &

Multiple links

C1

C2

C3

A\

C4

C5

* i.i.d. sequences of payoffs: for
all i

* Each transmitter applies Exp3
to select a channel at each step,
e.g. link 1 observes a payoff
(collisions)

X1; % ] Leiwys
i1



Result

Choose Exp3 parameter 7+ such that: Z% 00, Z% < o9,

wirlh) i m

e.g. pi(t) = (1_%)le@'l(t) m

Theorem Under Exp3, the system converges a.s. towards
a pure Nash Equilibrium (one link per channel).



Proof

Stochastic approximation. The stochastic processes
generated by Exp3 are asymptotic pseudo-trajectories of a
system of ODEs

Analysis of the system of ODEs

a. Fixed points (include all NEs)

b. Convergence towards fixed points (Lyapounov analysis)
c. Instability of fixed points that are not pure NEs

Exp3 stochastic processes cannot converge towards
unstable fixed points



Step 1.

Theorem Almost surely,
lim sup ||P(t+h)—p(t+h)||=0

t—00 0<h<8 \ 1 \ v J

Exp3 ODE with p(t) = P(t)

dp’ij
where o= i (fij — szlle

fi; = E|R;li selects ]]

Exp3 mimics the replicator dynamics



Step 2. Analysis of the ODE

Theorem All NEs are equilibrium points of the ODE. But
There are many more fixed points.

P22
1 3 O 9
2 users — 2 channels |
R .
Fixed points 12 + f11 ¢ ‘ ¢
® Pure NEs .
® Mixed NE o—o o,
0
® Other Ha1 1

U1 + U292



Step 2. Analysis of the ODE

Theorem Pure NEs are stable fixed points. The remaining
fixed points are unstable

P22

2 users — 2 channels

f12
Fixed points ): """"" i ):

U122 + H11
® Pure NEs |
® Mixed NE 0 ® % N -
® Other H21 1

U1 + U292



Step 2. Analysis of the ODE

Theorem From any initial condition, the ODE converges
to a fixed point.



Step 3.

Theorem* Unlike the ODE, the stochastic process
generated by Exp3 cannot converge to unstable fixed
points.

* Pemantle, Annals of Probability 1990



p22

2 links — 2 channels

ODE —
Simulation




