Lecture 4 Duality and Decomposition Techniques

Jie Lu (jielu@kth.se)

Richard Combes Alexandre Proutiere

Automatic Control, KTH

September 19, 2013

Lagrange Duality

Consider the primal problem

 $\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, 2, \dots, m, \\ & Ax + b = 0, \\ & x \in X. \end{array}$

- Each $f_i : \mathbb{R}^n \to \mathbb{R}, i = 0, 1, \dots, m$ is convex.
- $A \in \mathbb{R}^{p \times n}$ and $b \in \mathbb{R}^p$.
- $X \subset \mathbb{R}^n$ is closed and convex.
- There exists a primal optimum x^*

• Lagrangian function $\mathcal{L} : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ $\mathcal{L}(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \nu^T (Ax + b).$

• $\lambda = [\lambda_1, \dots, \lambda_m]^T \in \mathbb{R}^m$ and $\nu \in \mathbb{R}^p$: Lagrange multipliers

Dual Function and Dual Problem

Dual function $g : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ $g(\lambda, \nu) = \min_{x \in X} \mathcal{L}(x, \lambda, \nu) = \min_{x \in X} f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \nu^T (Ax + b)$

- g is concave even if the primal problem is not convex.
- $g(\lambda, \nu) \leq f^*, \forall \lambda \geq 0$, where f^* is the primal optimal value.
- $\partial g(\lambda,\nu) = \{ [f_1(z),\ldots,f_m(z),(Az+b)^T]^T : z \in \arg\min_{x \in X} \mathcal{L}(x,\lambda,\nu) \}, \lambda \ge 0.$
- g is differentiable at every $(\lambda, \nu), \lambda \ge 0$ if f_0 is strongly convex.
- Lagrange Dual problem

$$\begin{array}{ll} \underset{\lambda,\nu}{\text{maximize}} & g(\lambda,\nu) \\ \text{subject to} & \lambda \ge 0. \end{array}$$

Strong Duality

• Weak duality:

 $g^{\star} \leq f^{\star}$, where g^{\star} is the dual optimal value. (always hold, even nonconvex)

Strong duality:

 $g^{\star} = f^{\star}$, i.e., no duality gap. (convex+more assumptions)

Theorem [Slater's constraint qualifications]: If there exists $\tilde{x} \in$ rel int X such that $f_i(\tilde{x}) < 0, \forall i = 1, ..., m$ and $A\tilde{x} + b = 0$, then strong duality holds and there is at least one optimal Lagrange multiplier/dual optimum (λ^*, ν^*) .

Optimality Conditions (Under Strong Duality)

From now on, suppose strong duality holds.

i=1

Theorem [Primal optimality condition]: Let (λ^*, ν^*) be a dual optimum. Then, x^* is a primal optimum if and only if x^* is primal feasible and satisfies m

$$\mathcal{L}(x^{\star}, \lambda^{\star}, \nu^{\star}) = \min_{x \in X} \mathcal{L}(x, \lambda^{\star}, \nu^{\star}), \quad \sum_{i=1}^{m} \lambda_i^{\star} f_i(x^{\star}) = 0.$$

Theorem [Lagrangian saddle point theorem]: (x^*, λ^*, ν^*) forms a primal-dual optimal pair if and only if (x^*, λ^*, ν^*) is a saddle point of \mathcal{L} in the sense that $x^* \in X$, $\lambda^* \geq 0$, and

 $\mathcal{L}(x^{\star},\lambda,\nu) \leq \mathcal{L}(x^{\star},\lambda^{\star},\nu^{\star}) \leq \mathcal{L}(x,\lambda^{\star},\nu^{\star}), \quad \forall x \in X, \; \forall \lambda \geq 0, \; \forall \nu \in \mathbb{R}^{p}.$

Theorem [Necessary and sufficient optimality condition]:
 (x^{*}, λ^{*}, ν^{*}) forms a primal-dual optimal pair if and only if
 x^{*} is primal feasible, (Primal feasibility)

 $\lambda^{\star} \geq 0, \quad \text{(Dual feasibility)}$ $\mathcal{L}(x^{\star}, \lambda^{\star}, \nu^{\star}) = \min_{x \in X} \mathcal{L}(x, \lambda^{\star}, \nu^{\star}), \quad \text{(Lagrangian optimality)}$ $\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(x^{\star}) = 0. \quad \text{(Complementary Slackness)}$

Primal Function

Consider the previous problem with inequality constraints only:

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, 2, \dots, m, \\ & x \in X. \end{array}$$

Primal function

$$p(u) = \inf_{x \in X: f_i(x) \le u_i, \forall i=1,...,m} f_0(x)$$

- p(u): optimal value of the primal problem with perturbed constraints
- p(u) is convex
- Strong duality holds if and only if p is lower semicontinuous at u = 0.
- Let $\lambda^* \geq 0$ be a dual optimum and suppose strong duality holds. Then, $-\lambda^* \in \partial p(0)$.

Decomposition Techniques

Basic idea: Decompose one complex problem into many small:

The Trivial Case

Separable objectives and constraints

 $\begin{array}{ll}\text{minimize} & \sum_{i=1}^{n} f_{0i}(x_i) \\ \text{subject to} & x_i \in X_i \end{array}$

Trivially separates into n decoupled subproblems

 $\begin{array}{ll}\text{minimize} & f_{0i}(x_i) \\ \text{subject to} & x_i \in X_i \end{array}$

that can be solved in parallel and combined.

More Interesting Ones

Problems with coupling constraints

minimize $f_{01}(x_1) + f_{02}(x_2)$ subject to $x_1 + x_2 \le c$

Problems with **coupled objectives**

minimize $f_{01}(x_1, x_{12}) + f_{02}(x_{12}, x_2)$

Coupled objectives can be cast as a problem of coupling constraints:

minimize $f_{01}(x_1, z_{12}) + f_{02}(z_{21}, x_2)$ subject to $z_{12} = z_{21}$

Dual Decomposition

Basic idea: decouple problem by relaxing coupling constraints.

minimize $f_{01}(x_1) + f_{02}(x_2)$ subject to $x_1 + x_2 \le c$

Dual function

$$\mathcal{L}(x,\lambda) = f_{01}(x_1) + f_{02}(x_2) + \lambda(x_1 + x_2 - c)$$

$$g(\lambda) = \min_x \mathcal{L}(x,\lambda) = -\lambda c + \min_{x_1} \{ f_{01}(x_1) + \lambda x_1 \} + \min_{x_2} \{ f_{02}(x_2) + \lambda x_2 \}$$

Dual problem

 $\begin{array}{ll} \text{maximize} & g_1(\lambda) + g_2(\lambda) \\ \text{subject to} & \lambda \ge 0 \end{array}$

- Additive (hence, can be evaluated in parallel) with simple constraints
- Subgradient of the dual function: $x_1^{\star}(\lambda) + x_2^{\star}(\lambda) c$
- Can be solved using subgradient projection method

Example of Dual Decomposition

Problem

minimize
$$|x_1 - 1| + |x_2 - 1|$$

subject to $x_1 + x_2 \le 1$
 $x_i \in [0, 10]$

• Optimal value $f_0^{\star} = 1$

• Primal optimum $x_1^{\star} = 1 - x_2^{\star}, \quad x_2^{\star} \in [0, 1]$

Network Utility Maximization (NUM)

Adjust end-to-end rates fairly to share limited network capacity

$$\begin{array}{ll} \text{maximize}_{x \in \mathbb{R}^N} & \sum_{i=1}^N u_i(x_i) \\ \text{subject to} & \sum_{i \in \mathcal{P}(\ell)}^N x_i \leq c_\ell, \quad \forall \ell \in L, \\ & x_i \in X_i. \end{array}$$

- u_i : utility function (concave)
 - Fairness by appropriate utility functions, e.g., $u_i(x_i) = \log(x_i)$

Network Utility Maximization (NUM)

Rewrite the problem in vector form

 $\begin{array}{ll} \text{maximize}_{x \in \mathbb{R}^N} & \sum_{i=1}^N u_i(x_i) \\ \text{subject to} & Rx \leq c, \\ & x \in X. \end{array}$

- *R*: Routing matrix
 - Row *i* of *R* indicates which flows share link *i*

$$\sum_{i=1}^{N} r_{\ell i} x_i = \sum_{i \in \mathcal{P}(\ell)} x_i \le c_{\ell}$$

Rewrite on our standard form ($f_i = -u_i$)

$$\begin{array}{ll} \text{minimize}_{x \in \mathbb{R}^N} & \sum_{i=1}^N f_i(x_i) \\ \text{subject to} & Rx \leq c, \\ & x \in X \end{array}$$

Dual Decomposition for NUM

Form Lagrangian

$$\mathcal{L}(x,\lambda) = \sum_{i=1}^{N} f_i(x_i) - \lambda^T (Rx - c) = \lambda^T c + \sum_{i=1}^{N} f_i(x_i) - x_i \sum_{\ell \in L(i)} \lambda_\ell$$

Dual function is additive

$$g(\lambda) = \lambda^T c + \sum_{i=1}^N \min_{x_i \in X_i} \left\{ f_i(x_i) - x_i \sum_{\ell \in L(i)} \lambda_\ell \right\}$$

- Each source *i* can adjust its rate x_i based on feedback of $\sum_{\ell \in L(i)} \lambda_{\ell}$
- Use the dual subgradient projection method

$$\lambda(t+1) = P_{+}[\lambda(t) + \alpha(Rx(t) - c)] \text{ (dual iterate)}$$

$$x(t) = x^{*}(\lambda(t)) \in \arg\min_{x \in X} \mathcal{L}(x, \lambda(t)) \text{ (primal iterate)}$$

$$\lambda_{\ell}(t+1) = \max\{0, \lambda_{\ell}(t) + \alpha(\sum_{i \in P(\ell)} x_{i}(t) - c_{\ell})\}, \quad \forall \ell \in L$$

$$x_{i}(t) = \arg\min_{x_{i} \in X} f_{i}(x_{i}) - x_{i} \sum_{\ell \in L(i)} \lambda_{\ell}, \quad \forall i = 1, 2, \dots, N$$

Use locally available information at the router queues

Drawback of Dual Decomposition

- The dual iterates can converge to some dual optimum.
- However, in general, the primal iterates can only reach sub-optimality and violate constraints.
- Suppose strong duality holds. Feasibility and primal optimality recovered in the limit.
- How to evaluate the primal optimality and feasibility of each primal iterate? How fast do primal iterates converge to primal optimum?

Evaluate Optimality of Primal Iterates

Strongly convex objective function ($\mu > 0$) and linear constraints

 $\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f_0(x) \\ \text{subject to} & Ax + b \leq 0, \\ & x \in X \end{array}$

- Dual function is differentiable
- Dual function has Lipschitz gradient with Lipschitz constant $\frac{\lambda_{\max}(A^T A)}{\mu}$
 - Guaranteed convergence rate of the dual iterates

$$\|x^{\star}(\lambda) - x^{\star}\| \leq \frac{\sqrt{\lambda_{\max}(A^T A)}}{\mu} \|\lambda - \lambda^{\star}\|$$
$$\|x^{\star}(\lambda) - x^{\star}\| \leq \sqrt{\frac{g^{\star} - g(\lambda)}{\mu}}$$

Allow the linear constraints to be both inequality and equality

Primal Convergence of Running Average

Running average of primal iterates

$$\overline{x}^{\star}(t) = \frac{1}{t} \sum_{k=0}^{t} x^{\star}(\lambda(t))$$

Using subgradient projection method,

$$f_0(\overline{x}^{\star}(t)) \le f^{\star} + \frac{\alpha L^2}{2} + \frac{\|\lambda(0)\|^2}{2t\alpha}$$

- Note: L is not Lipschitz constant (but an upper bound on constraint violation of the primal iterates)
- For more details,

A. Nedic and A. Ozdaglar, *Approximate Primal Solutions and Rate Analysis for Dual Subgradient Methods*, SIAM Journal on Optimization 19 (4) 1757-1780, 17 2009.

Example

Simple example as before

Augmented Lagrangian

Consider

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f_0(x) \\ \text{subject to} & Ax + b = 0. \end{array}$$

Augmented Lagrangian

$$\mathcal{L}_{\rho}(x,\lambda) = \mathcal{L}_{0}(x,\lambda) + \frac{\rho}{2} ||Ax + b||^{2}$$
$$= f_{0}(x) + \lambda^{T}(Ax + b) + \frac{\rho}{2} ||Ax + b||^{2}$$

- $\rho > 0$: penalty parameter
- The unaugmented Lagrangian of the equivalent problem

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f_0(x) + \frac{\rho}{2} \|Ax + b\|^2 \\ \text{subject to} & Ax + b = 0. \end{array}$$

Method of Multipliers

- The dual function associated with the augmented Lagrangian is differentiable
- The dual methods lead to convergence under more general conditions
- Method of multipliers

$$x(t+1) = \arg \min_{x} \mathcal{L}_{\rho}(x, \nu(t))$$
$$\nu(t+1) = \nu(t) + \rho(Ax(t+1) + b)$$

- The dual gradient method applied to the dual associated with the augmented Lagrangian (with step-size ρ , Why?)
- Does not need f_0 to be strongly convex to guarantee convergence
- Dual and primal convergence rates can be derived

Alternating Direction Method of Multipliers (ADMM)

Consider

$$\begin{array}{ll} \underset{x \in \mathbb{R}^{n}, z \in \mathbb{R}^{m}}{\text{minimize}} & f(x) + g(z) \\ \text{subject to} & Ax + Bz + c = 0. \end{array}$$

The augmented Lagrangian

$$\mathcal{L}_{\rho}(x, z, \nu) = f(x) + g(z) + \nu^{T} (Ax + Bz + c) + \frac{\rho}{2} \|Ax + Bz + c\|^{2}$$

Drawback of the method of multipliers : not parallelizable in

$$(x(t+1), z(t+1)) = \arg\min_{x,z} \mathcal{L}_{\rho}(x, z, \nu(t))$$

ADMM

$$x(t+1) = \arg \min_{x} \mathcal{L}_{\rho}(x, z(t), \nu(t))$$

$$z(t+1) = \arg \min_{z} \mathcal{L}_{\rho}(x(t+1), z, \nu(t))$$

$$\nu(t+1) = \nu(t) + \rho(Ax(t+1) + Bz(t+1) + c)$$

Primal Decomposition

Basic idea: coordinator immediately allocates primal variables

Feasibility of primal iterates guaranteed throughout.

Primal Decomposition

Consider the resource allocation problem

 $\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq c_i \\ & \sum_i c_i \leq c_{\text{tot}} \end{array}$

Rewrite as

$$\begin{array}{ll} \text{minimize} & p(c) \\ \text{subject to} & \sum_i c_i \leq c_{\text{tot}} \end{array}$$

•
$$p(c) = \inf_{x} \{ f_0(x) \mid f_i(x) \le c_i, i = 1, \dots, n \}$$

Primal Decomposition

• $p(c) = \inf_{x} \{f_0(x) \mid f_i(x) \le c_i, i = 1, ..., n\}$ is the primal function of

$$\begin{array}{ll} \text{minimize}_{x \in \mathbb{R}^n} & f_0(x) \\ \text{subject to} & f_i(x) \le 0, \quad i = 1, \dots, n \end{array}$$

• p(c) is convex because the above problem is convex

• A subgradient of p(c) is $-\lambda^*(c)$, where $\lambda^*(c)$ is the dual optimal solution of

minimize
$$f_0(x)$$

subject to $f_i(x) \le c_i, \ i = 1, \dots, n$

• p(c) is differentiable if the optimal Lagrange multiplier is unique

Hence, coordinator can use subgradient projection method to allocate resources

Distributed Primal Decomposition

Primal decomposition advantageous when primal function has the form

$$p(c) = \sum_{i} p_i(c_i) = \sum_{i} \inf_{x_i} \{ f_{0i}(x_i) \mid f_i(x_i) \le c_i \}$$

The projection in the update

$$c(t+1) = P_C\{c(t) - \alpha(t)\lambda^*(c(t))\}$$

can be computed in a distributed manner. (more about this in Lecture 4)

Modeling for Decomposition

- Clever introduction of new variables enable distribution of dual, primal
- **Example:** Transforming coupling variables into coupling constraints.

minimize
$$f_{01}(x_1, x_{12}) + f_{02}(x_{12}, x_2)$$

 \downarrow
minimize $f_{01}(x_1, z_{12}) + f_{02}(z_{21}, x_2)$
subject to $z_{12} = z_{21}$

Example: Making problem that is a clear candidate for dual decomposition

$$\begin{array}{ll} \text{minimize} & \sum_{i} f_{0i}(x_i) \\ \text{subject to} & \sum_{i} f_i(x_i) \leq c_{\text{tot}} \end{array} \xrightarrow{\text{minimize}} & \begin{array}{l} \text{minimize} & \sum_{i} f_{0i}(x_i) \\ \text{subject to} & f_i(x_i) \leq c_i \\ & \sum_{i} c_i \leq c_{\text{tot}} \end{array} \end{array}$$

into the standard form for primal decomposition

Summary

Duality

- strong duality
- primal and dual optimality
- primal function
- Decomposition: subdivide large problem into many small
 - coupling constraints, coupling variables
- Dual decomposition
 - relax coupling constraints to make dual function additive/distributable
 - dual problem possibly non-smooth, might require central coordinator
 - primal iterates not always well-behaved, might need primal recovery
- Primal decomposition
 - coordinator immediately allocates resources to subsystems
 - feasibility of primal iterates guaranteed
 - can sometimes be distributed (more in next lecture)

References

- Duality theory
 - D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena Scientific, 1999.
 - D. P. Bertsekas, A. Nedich, and A. Ozdaglar, *Convex Analysis and Optimization*. Belmont, MA: Athena Scientific, 2003.
 - S. Boyd and L. Vandenberghe, *Convex Optimization*. New York, NY: Cambridge University Press, 2004
- Decomposition techniques
 - B. Johansson, P. Soldati and M. Johansson, *Mathematical decomposition* techniques for distributed cross-layer optimization of data networks, IEEE Journal on Selected Areas in Communications, Vol. 24, No. 8, pp. 1535-1547, August 2006.

ADMM

 S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, *Distributed Optimization* and Statistical Learning via the Alternating Direction Method of Multipliers, Foundations and Trends in Machine Learning, 3(1):1–122, 2011.