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Lagrange Duality 

 Consider the primal problem 

   

   

   

   

 Lagrangian function 

   
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Dual Function and Dual Problem 

 Dual function 

   

   

   

   

  Lagrange Dual problem 
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Strong Duality 

 Weak duality: 

 Strong duality: 

   
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Optimality Conditions (Under Strong Duality) 

 From now on, suppose strong duality holds. 

   

   

    
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Primal Function 

 Consider the previous problem with inequality constraints only: 

 Primal function 

   

   

   

   
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Decomposition Techniques 

 Basic idea: Decompose one complex problem into many small: 
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Coordinator 

        

“Simple” 
subproblems 



The Trivial Case 

 Separable objectives and constraints 

 

 

 

 Trivially separates into n decoupled subproblems 

 

 

 

      that can be solved in parallel and combined. 
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More Interesting Ones 

 Problems with coupling constraints 

 Problems with coupled objectives 

 Coupled objectives can be cast as a problem of coupling 

constraints: 
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Dual Decomposition 

 Basic idea: decouple problem by relaxing coupling constraints. 

 Dual function 

 Dual problem 

 Additive (hence, can be evaluated in parallel) with simple constraints 

 Subgradient of  the dual function: 

 Can be solved using subgradient projection method  10 



Example of Dual Decomposition 

 Problem 

 Optimal value 

 Primal optimum 
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Network Utility Maximization (NUM) 

 

 

 

 

 

 

 

 

 Adjust end-to-end rates fairly to share limited network capacity  

     : utility function (concave) 

 Fairness by appropriate utility functions, e.g., 
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Network Utility Maximization (NUM) 

 Rewrite the problem in vector form 

 R: Routing matrix 

 Row i of R indicates which flows share link i 

 Rewrite on our standard form (                 ) 
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Dual Decomposition for NUM 

 Form Lagrangian 

 Dual function is additive 

 Each source i can adjust its rate       based on feedback of  

 Use the dual subgradient projection method 

 Use locally available information at the router queues 14 



Drawback of Dual Decomposition 

 The dual iterates can converge to some dual optimum. 

 However, in general, the primal iterates can only reach sub-optimality and 

violate constraints. 

 Suppose strong duality holds. Feasibility and primal optimality recovered in 

the limit. 

 How to evaluate the primal optimality  and feasibility of each primal iterate? 

How fast do primal iterates converge to primal optimum?  
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Evaluate Optimality of Primal Iterates 

 Strongly convex objective function (           )  and linear constraints 

 Dual function is differentiable 

 Dual function has Lipschitz gradient with Lipschitz constant 

 Guaranteed convergence rate of the dual iterates 

   

   

 Allow the linear constraints to be both inequality and equality 16 



Primal Convergence of Running Average 

 Running average of primal iterates 

 Using subgradient projection method, 

 Note: L is not Lipschitz constant  (but an upper bound on constraint violation of 

the primal iterates) 

 For more details,  

     A. Nedic and A. Ozdaglar, Approximate Primal Solutions and Rate Analysis for 

Dual Subgradient Methods, SIAM Journal on Optimization 19 (4) 1757-1780, 

2009. 
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Example 

 Simple example as before 
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Augmented Lagrangian 

 Consider 

 Augmented Lagrangian 

            : penalty parameter 

  The unaugmented Lagrangian  of the equivalent problem 
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Method of Multipliers 

 The dual function associated with the augmented Lagrangian is differentiable 

 The dual methods lead to convergence under more general conditions 

 Method of multipliers 

 The dual gradient method applied to the dual associated with the augmented 

Lagrangian (with step-size    ,  Why?) 

 Does not need      to be strongly convex to guarantee convergence 

 Dual and primal convergence rates can be derived 
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Alternating Direction Method of Multipliers (ADMM) 

 Consider 

  The augmented Lagrangian 

 Drawback of the method of multipliers : not parallelizable in 

 ADMM 
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Primal Decomposition 

 Basic idea: coordinator immediately allocates primal variables 

 Feasibility of primal iterates guaranteed throughout. 
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Coordinator 

        



Primal Decomposition 

 Consider the resource allocation problem 

 Rewrite as 

   
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Primal Decomposition 

                                                                             is the primal function of 

 p(c) is convex because the above problem is convex  

 A subgradient of  p(c) is               , where           is the dual optimal solution of 

 p(c) is differentiable if the optimal Lagrange multiplier is unique 

 Hence, coordinator can use subgradient projection method to allocate resources 
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Distributed Primal Decomposition 

 Primal decomposition advantageous when primal function has the form 

  The projection in the update 

       can be computed in a distributed manner. (more about this in Lecture 4) 

 

25 



Modeling for Decomposition 

 Clever introduction of new variables enable distribution of dual, primal 

 

 Example: Transforming coupling variables into coupling constraints.  

 

 Example: Making problem that is a clear candidate for dual decomposition 

 

 

 

 

      into the standard form for primal decomposition 
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Summary 

 Duality 

 strong duality 

 primal and dual optimality  

 primal function 

 Decomposition: subdivide large problem into many small 

 coupling constraints, coupling variables 

 Dual decomposition 

 relax coupling constraints to make dual function additive/distributable 

 dual problem possibly non-smooth, might require central coordinator 

 primal iterates not always well-behaved, might need primal recovery 

 Primal decomposition 

 coordinator immediately allocates resources to subsystems 

 feasibility of primal iterates guaranteed 

 can sometimes be distributed (more in next lecture) 
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