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Lagrange Duality

Consider the primal problem

minimize fo(x)

subjectto fi(x) <0, i=1,2,...,m,
Ax +b =0,
x e X.
= BFach f;, :R" - R,2=0,1,...,m is convex.

= A cRPX™ and b € RP.
= X C R"is closed and convex.

= There exists a primal optimum z*

Lagrangian function £ : R™ x Rm x RP — R

L(z,\v) +Z/\ fi(z) + T (Az +b).

= A=[\1,..., 2 \n]t € R™ and v € RP: Lagrange multipliers



Dual Function and Dual Problem

m Dual function ¢:R™ xRP - R
g\, v) = mingex L(z,\,v) = mingex fo(z) + >y Mifi(z) + v (Az +b)
= ¢ is concave even if the primal problem is not convex.
= g\, v) < f*, YA >0, where f* is the primal optimal value.
= g\ v) ={[f1(2),..., fm(2),(Az + b)1]! : z € arg min, .y L(z,\,v)}, A > 0.

= ¢ is differentiable at every (A, v), A > 0 if fy is strongly convex.

m Lagrange Dual problem

maximize ¢g(\,v)
A,V

subjectto A\ > 0.



Strong Duality

m Weak duality:

g* < f*, where g* is the dual optimal value.
(always hold, even nonconvex)

m Strong duality:

g* = f*, i.e., no duality gap.
(convex+more assumptions)

® Theorem [Slater’s constraint qualifications]:
If there exists Z € rel int X such that f;(z) <0, Vi=1,...,m and
Az + b = 0, then strong duality holds and there is at least one optimal
Lagrange multiplier /dual optimum (\*,v*).



Optimality Conditions (Under Strong Duality)

From now on, suppose strong duality holds.

m Theorem [Primal optimality condition]:
Let (A*,v*) be a dual optimum. Then, z* is a primal optimum if and only if z*
is primal feasible and satisfies

L(x*, \*,v*) = min L(z, \*, v Z:)\*fz =

rzeX

Theorem [Lagrangian saddle point theorem].
(x*, A\*,v*) forms a primal-dual optimal pair if and only if (z*, \*, v*) is a saddle
point of £ in the sense that z* € X, \* > 0, and

Lx* A\ v) < L(x*, \,v°) < L(x, \*,v"), Vexe X, VA>0, VveRP.
Theorem [Necessary and sufficient optimality condition]:
(z*, \*,v*) forms a primal-dual optimal pair if and only if
x* is primal feasible, (Primal feasibility)
A* >0, (Dual feasibility)
L(x*, X5, v") = Hg(l L(x,\*,v*), (Lagrangian optimality)

Z A fi(z) = 0. (Complementary Slackness) s



Primal Function

Consider the previous problem with inequality constraints only:
minimize fo(z)
subjectto fi(x) <0, i=1,2,...,m,
r e X.

Primal function
p(u) = inf fo(x)

z€X: fi(x)<u;, Vi=1,....m
« p(u): optimal value of the primal problem with perturbed constraints
« p(u) is convex

= Strong duality holds if and only if p is lower semicontinuous at u = 0.

= Let \* > 0 be a dual optimum and suppose strong duality holds.
Then, —A\* € dp(0).



Decomposition Technigques

m Basic idea: Decompose one complex problem into many small:

minimize  fo(x)
subject to z € X

Coordinator

—

for(+) 1 fom(")

“Simple”
subproblems



The Trivial Case

m Separable objectives and constraints

minimize Z;L:l foi(xi)
subject to x; € X;

m Trivially separates into n decoupled subproblems

minimize  fo;(x;)
subject to x; € X;

that can be solved in parallel and combined.



More Interesting Ones

m Problems with coupling constraints

minimize  fo1(z1) + fo2(72)
subject to x1 +x9 < c

m Problems with coupled objectives

minimize f01(£€1, 51312) -+ f02 <C1312, 332)

m Coupled objectives can be cast as a problem of coupling
constraints:

minimize  fo1(x1, 212) + fo2(221, 22)
subject to 212 = 2921



Dual Decomposition

Basic idea: decouple problem by relaxing coupling constraints.

minimize  fo1(z1) + fo2(x2)
subject to 1+ x5 <c

Dual function
E(CE, )\) = fol(flfl) + fOQ(CCQ) + )\(331 + Lo — C)
g(A) =min L(x,\) = —Ac+ n;in{fm(xl) + Az} + r?cizn{fog(xg) + Ao}

T

Dual problem

maximize  g1(A) 4+ g2(A)
subject to A >0

= Additive (hence, can be evaluated in parallel) with simple constraints
= Subgradient of the dual function: z7(\) + x3(\) — ¢

= Can be solved using subgradient projection method 10



Example of Dual Decomposition

m Problem
minimize |r; — 1| 4 |zg — 1]
subject to 1 + 22 <1
Tr; € [O, 10]

= QOptimal value f3 =1

= Primal optimum 2zf =1—2x3, x5 €]0,1]

2 T T T ! T T T ! T
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Network Utility Maximization (NUM)

o N
maximize,cpy  » . Ui(x;)
subject to Ziep(f) xi <cp, V0EL,

= u;: utility function (concave)

= Fairness by appropriate utility functions, e.g., u;(x;) = log(z;)

12



Network Utility Maximization (NUM)

m  Rewrite the problem in vector form

maximize, g~ ZL wi(z;)
subject to Rx <,
r e X.

= R: Routing matrix

= Row i of R indicates which flows share link i

N
Zizl Feily = Zie’P(Z) Ti < ¢y

m Rewrite on our standard form ( f; = —u; )

. N

MINIMIZE, crN Zizl fz(il?z)

subject to Rx < ¢,
reX
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Dual Decomposition for NUM

Form Lagrangian

L, A) = S0, filw) = AT (Re — ) = NTe+ 300 fulws) — 25 e iy Mo

Dual function is additive
g\ =2\Te+ S ming ey, { film) = 25 Sper Ag}
Each source I can adjust its rate ; based on feedback of >_,.; ;) As

Use the dual subgradient projection method
At + 1) = Py [A(t) + a(Rx(t) — ¢)] (dual iterate)
x(t) = 2" (\(t)) € arg min, . y L(z, A(t)) (primal iterate)

Ae(t +1) = max{0, A\e(t) + sz —¢)}, Vel

ri(t) = arg min, c x fi(x;) — z; Z Ae, Vi=1,2,...,N

: : : £eL(1)
= Use locally available information at the router queues

14



Drawback of Dual Decomposition

The dual iterates can converge to some dual optimum.

However, in general, the primal iterates can only reach sub-optimality and
violate constraints.

Suppose strong duality holds. Feasibility and primal optimality recovered in
the limit.

How to evaluate the primal optimality and feasibility of each primal iterate?
How fast do primal iterates converge to primal optimum?
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Evaluate Optimality of Primal Iterates
Strongly convex objective function (1 > 0) and linear constraints

minimize fo()

subjectto Az + b <0,
re X

Dual function is differentiable

Dual function has Lipschitz gradient with Lipschitz constant Amax(A" A)
o)

= Guaranteed convergence rate of the dual iterates

max (AT A
a* () — o) < Yomax(ATA)

||.ZC*()\)—.’L‘*|| < \/g*g()\)

1

Allow the linear constraints to be both inequality and equality
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Primal Convergence of Running Average

m Running average of primal iterates
1 t
T () = > T (A®)
k=0
m Using subgradient projection method,

al? |0

fo(@(t)) < f*+ T o

= Note: L is not Lipschitz constant (but an upper bound on constraint violation of
the primal iterates)

= For more details,

A. Nedic and A. Ozdaglar, Approximate Primal Solutions and Rate Analysis for
Dual Subgradient Methods, SIAM Journal on Optimization 19 (4) 1757-1780, .
2009.



Example

m Simple example as before
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Augmented Lagrangian

m Consider

minimize fo(z)

subjectto Ax+b=0.

m Augmented Lagrangian

Lo(@,X) = Lo(w, X) + £[[ Az + |

= folw) + AT (Az +b) + £ Az + b

= p > 0: penalty parameter

= The unaugmented Lagrangian of the equivalent problem

. . . 2
minimize fo(z) + §|| Az + b||

subjectto Az +b=0.
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Method of Multipliers

m The dual function associated with the augmented Lagrangian is differentiable
m The dual methods lead to convergence under more general conditions

m  Method of multipliers

z(t+1) =arg min, L,(x,v(t))
v(t+1)=v(t)+ p(Az(t+1) +b)

= The dual gradient method applied to the dual associated with the augmented
Lagrangian (with step-size p, Why?)

= Does not need f;to be strongly convex to guarantee convergence
= Dual and primal convergence rates can be derived
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Alternating Direction Method of Multipliers (ADMM)

m Consider
minimize  f(z) + g(2)
subjectto Az + Bz+c¢=0.

m The augmented Lagrangian
L,(z,z,v) = f(z)+ g(2) + v (Az + Bz +¢) + gHAx + Bz + ¢||?
m Drawback of the method of multipliers : not parallelizable in
(x(t+1),2(t +1)) = arg min, , L,(x,z,v(t))
m ADMM

z(t+ 1) = arg min, £,(z, 2(t), v(t))
2(t+1)=argmin, L,(z(t+1),2,v(t))
v(it+1) =v(t)+ p(Az(t+ 1)+ Bz(t+ 1) +¢)
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Primal Decomposition

m Basic idea: coordinator immediately allocates primal variables

Coordinator

71 (2) @ mw@

pi(:) e e o pal)

m Feasibility of primal iterates guaranteed throughout.
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Primal Decomposition

m Consider the resource allocation problem

minimize  fo(x)
subject to  fi(z) < ¢
Zz’ & S Ctot

m Rewrite as

minimize  p(c)
subject to Y. ¢; < ot

b p(c) — igf{f0<x) ‘ fz(x) < Gy 1= 17"'7”}
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Primal Decomposition
p(c) = irxlf {folx) | fi(x) < ¢, i =1,...,n} isthe primal function of

minimize,crn  fo(z)
subject to filz) <0, i=1,....,n

p(c) is convex because the above problem is convex

A subgradient of p(c) is —A*(c) , where \*(¢) is the dual optimal solution of

minimize  fo(x)
subject to  fi(x) < ¢, i=1,...,n

= p(c) is differentiable if the optimal Lagrange multiplier is unique

Hence, coordinator can use subgradient projection method to allocate resources
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Distributed Primal Decomposition

m Primal decomposition advantageous when primal function has the form

plc) = sz'(cz') = Zigif {foi(xi) | fizi) < ci}

m The projection in the update
c(t +1) = Pofe(t) — at)A"(c(t)) }

can be computed in a distributed manner. (more about this in Lecture 4)
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Modeling for Decomposition

m Clever introduction of new variables enable distribution of dual, primal

m Example: Transforming coupling variables into coupling constraints.

minimize fo1(z1,212) + fo2 (12, 22)

4

minimize fOl (331, 212) + f02 (221, CE‘Q)
Subject to 212 — 2921

m Example: Making problem that is a clear candidate for dual decomposition
minimize ) . foi(x;) minimize ) ; foi(@:)
subject to Y. fi(xi) < ctot :> subject to  fi(z;) < ¢

Zi C; < Ctot

into the standard form for primal decomposition
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Summary

Duality

= strong duality

= primal and dual optimality
= primal function

Decomposition: subdivide large problem into many small
= coupling constraints, coupling variables

Dual decomposition
= relax coupling constraints to make dual function additive/distributable
= dual problem possibly non-smooth, might require central coordinator
= primal iterates not always well-behaved, might need primal recovery
Primal decomposition
= coordinator immediately allocates resources to subsystems
= feasibility of primal iterates guaranteed
= can sometimes be distributed (more in next lecture)
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