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Lagrange Duality 

 Consider the primal problem 

   

   

   

   

 Lagrangian function 
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Dual Function and Dual Problem 

 Dual function 

   

   

   

   

  Lagrange Dual problem 
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Strong Duality 

 Weak duality: 

 Strong duality: 
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Optimality Conditions (Under Strong Duality) 

 From now on, suppose strong duality holds. 
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Primal Function 

 Consider the previous problem with inequality constraints only: 

 Primal function 
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Decomposition Techniques 

 Basic idea: Decompose one complex problem into many small: 
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Coordinator 

        

“Simple” 
subproblems 



The Trivial Case 

 Separable objectives and constraints 

 

 

 

 Trivially separates into n decoupled subproblems 

 

 

 

      that can be solved in parallel and combined. 
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More Interesting Ones 

 Problems with coupling constraints 

 Problems with coupled objectives 

 Coupled objectives can be cast as a problem of coupling 

constraints: 
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Dual Decomposition 

 Basic idea: decouple problem by relaxing coupling constraints. 

 Dual function 

 Dual problem 

 Additive (hence, can be evaluated in parallel) with simple constraints 

 Subgradient of  the dual function: 

 Can be solved using subgradient projection method  10 



Example of Dual Decomposition 

 Problem 

 Optimal value 

 Primal optimum 
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Network Utility Maximization (NUM) 

 

 

 

 

 

 

 

 

 Adjust end-to-end rates fairly to share limited network capacity  

     : utility function (concave) 

 Fairness by appropriate utility functions, e.g., 
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Network Utility Maximization (NUM) 

 Rewrite the problem in vector form 

 R: Routing matrix 

 Row i of R indicates which flows share link i 

 Rewrite on our standard form (                 ) 
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Dual Decomposition for NUM 

 Form Lagrangian 

 Dual function is additive 

 Each source i can adjust its rate       based on feedback of  

 Use the dual subgradient projection method 

 Use locally available information at the router queues 14 



Drawback of Dual Decomposition 

 The dual iterates can converge to some dual optimum. 

 However, in general, the primal iterates can only reach sub-optimality and 

violate constraints. 

 Suppose strong duality holds. Feasibility and primal optimality recovered in 

the limit. 

 How to evaluate the primal optimality  and feasibility of each primal iterate? 

How fast do primal iterates converge to primal optimum?  

15 



Evaluate Optimality of Primal Iterates 

 Strongly convex objective function (           )  and linear constraints 

 Dual function is differentiable 

 Dual function has Lipschitz gradient with Lipschitz constant 

 Guaranteed convergence rate of the dual iterates 

   

   

 Allow the linear constraints to be both inequality and equality 16 



Primal Convergence of Running Average 

 Running average of primal iterates 

 Using subgradient projection method, 

 Note: L is not Lipschitz constant  (but an upper bound on constraint violation of 

the primal iterates) 

 For more details,  

     A. Nedic and A. Ozdaglar, Approximate Primal Solutions and Rate Analysis for 

Dual Subgradient Methods, SIAM Journal on Optimization 19 (4) 1757-1780, 

2009. 
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Example 

 Simple example as before 
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Augmented Lagrangian 

 Consider 

 Augmented Lagrangian 

            : penalty parameter 

  The unaugmented Lagrangian  of the equivalent problem 
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Method of Multipliers 

 The dual function associated with the augmented Lagrangian is differentiable 

 The dual methods lead to convergence under more general conditions 

 Method of multipliers 

 The dual gradient method applied to the dual associated with the augmented 

Lagrangian (with step-size    ,  Why?) 

 Does not need      to be strongly convex to guarantee convergence 

 Dual and primal convergence rates can be derived 
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Alternating Direction Method of Multipliers (ADMM) 

 Consider 

  The augmented Lagrangian 

 Drawback of the method of multipliers : not parallelizable in 

 ADMM 
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Primal Decomposition 

 Basic idea: coordinator immediately allocates primal variables 

 Feasibility of primal iterates guaranteed throughout. 
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Coordinator 

        



Primal Decomposition 

 Consider the resource allocation problem 

 Rewrite as 
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Primal Decomposition 

                                                                             is the primal function of 

 p(c) is convex because the above problem is convex  

 A subgradient of  p(c) is               , where           is the dual optimal solution of 

 p(c) is differentiable if the optimal Lagrange multiplier is unique 

 Hence, coordinator can use subgradient projection method to allocate resources 
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Distributed Primal Decomposition 

 Primal decomposition advantageous when primal function has the form 

  The projection in the update 

       can be computed in a distributed manner. (more about this in Lecture 4) 
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Modeling for Decomposition 

 Clever introduction of new variables enable distribution of dual, primal 

 

 Example: Transforming coupling variables into coupling constraints.  

 

 Example: Making problem that is a clear candidate for dual decomposition 

 

 

 

 

      into the standard form for primal decomposition 
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Summary 

 Duality 

 strong duality 

 primal and dual optimality  

 primal function 

 Decomposition: subdivide large problem into many small 

 coupling constraints, coupling variables 

 Dual decomposition 

 relax coupling constraints to make dual function additive/distributable 

 dual problem possibly non-smooth, might require central coordinator 

 primal iterates not always well-behaved, might need primal recovery 

 Primal decomposition 

 coordinator immediately allocates resources to subsystems 

 feasibility of primal iterates guaranteed 

 can sometimes be distributed (more in next lecture) 
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