Lecture 2
Gradient Descent and Subgradient Methods

Jie Lu (jielu@kth.se)

Richard Combes
Alexandre Proutiere

Automatic Control, KTH

September 12, 2013
Outline

- Convex analysis
- Gradient descent method
- Gradient projection method
- Subgradient method
Convex Set

- A set $X \subset \mathbb{R}^n$ is convex iff $\forall x, y \in X$, $\forall \alpha \in [0, 1]$, $\alpha x + (1 - \alpha)y \in X$.

Examples

- Hyperplane $\{x \in \mathbb{R}^n : a^T x + b = 0\}$, $a \neq 0$
- Polyhedral $\{x \in \mathbb{R}^n : Ax + b \leq 0\}$, $A \in \mathbb{R}^{m \times n}$
- Ellipsoid $\{x \in \mathbb{R}^n : (x - x_0)^TP^{-1}(x - x_0) \leq 1\}$, $P \in \mathbb{S}_+^n$

Convex hull: the set of all convex combinations of the points in X

- Convex Combination:
 \[
 \sum_{i=1}^{m} \alpha_i x_i, \; \alpha_i \in [0, 1], \; \sum_{i=1}^{m} \alpha_i = 1, \; x_i \in X
 \]
Convex Function

- A function \(f : \mathbb{R}^n \to \mathbb{R} \) is convex iff
 \[f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y), \forall x, y \in \mathbb{R}^n, \forall \alpha \in (0, 1). \]
 - \(f \) is strictly convex if the equality holds only when \(x = y \).
 - Jensen’s Inequality \(f(\sum_{i=1}^{N} \alpha_i x_i) \leq \sum_{i=1}^{N} \alpha_i f(x_i), \alpha_i \in [0, 1], \sum_{i=1}^{N} \alpha_i = 1. \)

- Suppose \(f \) is differentiable. Then, \(f \) is convex iff
 \[f(y) \geq f(x) + \nabla f(x)^T(y - x), \forall x, y \in \mathbb{R}^n. \] (1.1)

- Eq(1.1) is equivalent to \((\nabla f(y) - \nabla f(x))^T(y - x) \geq 0.\) If \(f \) is twice differentiable, it is equivalent to \(\nabla^2 f(x) \geq 0. \)

- \(f \) is concave if \(-f\) is convex.
Strong Convexity

- A differentiable function f is *strongly convex* iff $\exists \mu > 0$ such that one of the following holds:

 (i) $f(y) \geq f(x) + \nabla f(x)^T(y - x) + \frac{\mu}{2} \|y - x\|^2$, $\forall x, y \in \mathbb{R}^n$.

 ![Graph showing quadratic lower bound](image)

 Quadratic lower bound

 (ii) $(\nabla f(y) - \nabla f(x))^T(y - x) \geq \mu \|y - x\|^2$, $\forall x, y \in \mathbb{R}^n$.

 (iii) $\nabla^2 f(x) \geq \mu I$, $\forall x \in \mathbb{R}^n$, if f is twice differentiable.
Convex Function with Lipschitz Continuous Gradient

- Let ∇f be Lipschitz continuous, i.e., there exists $L > 0$ such that $\|\nabla f(x) - \nabla f(y)\| \leq L\|x - y\|$, $\forall x, y \in \mathbb{R}^n$.

- f is convex and has Lipschitz continuous gradient iff one of the following holds:
 $$0 \leq f(y) - f(x) - \nabla f(x)^T(y - x) \leq \frac{L}{2}\|y - x\|^2, \forall x, y \in \mathbb{R}^n.$$

 ![Graph illustrating convex function with Lipschitz continuous gradient](image)

 $$f(y) - f(x) - \nabla f(x)^T(y - x) \geq \frac{1}{2L}\|\nabla f(y) - \nabla f(x)\|^2, \forall x, y \in \mathbb{R}^n.$$

 $$(\nabla f(y) - \nabla f(x))^T(y - x) \geq \frac{1}{L}\|\nabla f(y) - \nabla f(x)\|^2, \forall x, y \in \mathbb{R}^n.$$

- If f is strongly convex and has Lipschitz continuous gradient, then
 $$(\nabla f(y) - \nabla f(x))^T(y - x) \geq \frac{\mu L}{\mu + L}\|x - y\|^2 + \frac{1}{\mu + L}\|\nabla f(y) - \nabla f(x)\|^2, \forall x, y \in \mathbb{R}^n.$$
Gradient Descent Method

- Unconstrained convex optimization
 \[\min_{x \in \mathbb{R}^n} f(x) \]
 - \(f \) is convex and continuously differentiable

- Optimality condition: \(x^* \in \arg \min_{x \in \mathbb{R}^n} f(x) \iff \nabla f(x^*) = 0 \)
 - Unique if \(f \) is strictly convex

- Basic gradient method
 \[x_{k+1} = x_k - \alpha_k \nabla f(x_k), \ \alpha_k > 0 \]

- A descent method (for sufficiently small stepsize \(\alpha_k \))
 \[f(x_k + \alpha_k d) = f(x_k) + \alpha_k \nabla f(x_k)^T d + o(\alpha_k) \]
 \[= f(x_k) + \alpha_k \left(\nabla f(x_k)^T d + o(\alpha_k)/\alpha_k \right) \]
 If \(\alpha_k > 0 \) is small enough so that \(o(\alpha_k)/\alpha_k \) is negligible,
 \[f(x_{k+1}) - f(x_k) \approx -\alpha_k \| \nabla f(x_k) \|^2 \leq 0 \]
Convergence Analysis

- Choose sufficiently small stepsize α_k so that $f(x_{k+1}) \leq f(x_k)$ $\forall k \geq 0$

- $f(x_k) - f^* \leq \frac{\|x_0 - x^*\|^2 + \sum_{t=0}^{k-1} \alpha_t^2 \|\nabla f(x_t)\|^2}{2 \sum_{t=0}^{k-1} \alpha_t}$, $\forall k \geq 1$

 - Need further assumptions to guarantee convergence

- Suppose f is Lipschitz continuous with $L_f > 0 \Rightarrow \|\nabla f(x)\| \leq L_f$, $\forall x \in \mathbb{R}^n$

 $$f(x_k) - f^* \leq \frac{\|x_0 - x^*\|^2 + L_f^2 \sum_{t=0}^{k-1} \alpha_t^2}{2 \sum_{t=0}^{k-1} \alpha_t}, \quad \forall k \geq 1$$

 - For constant stepsize $\alpha_k = \alpha$,
 $$\lim_{k \to \infty} f(x_k) \leq f^* + \frac{\alpha L_f^2}{2}$$

 - For diminishing stepsize $\sum_{k=0}^{\infty} \alpha_k = \infty$, $\sum_{k=0}^{\infty} \alpha_k^2 < \infty$,
 $$\lim_{k \to \infty} f(x_k) = f^*$$

- Accuracy ϵ can be obtained in $(\|x_0 - x^*\| L_f)^2 / \epsilon^2$ iterations

 With $\alpha_t = \frac{\|x_0 - x^*\|}{L_f \sqrt{k}}$, $t = 0, 1, \ldots, k - 1$, $f(x_k) - f^* \leq \frac{\|x_0 - x^*\| L_f}{\sqrt{k}}$
Convergence Rate

- Suppose f has Lipschitz continuous gradient with $L > 0$ and use constant stepsize $\alpha \in (0, \frac{2}{L})$. Then,

$$f(x_k) - f^* \leq \frac{2(f(x_0) - f^*)\|x_0 - x^*\|^2}{2\|x_0 - x^*\|^2 + (f(x_0) - f^*)\alpha(2 - L\alpha)k}.$$

- R.H.S. achieves minimum when $\alpha = \frac{1}{L}$

$$f(x_k) - f^* \leq \frac{2L\|x_0 - x^*\|^2}{k + 4}$$

- Further suppose f is strongly convex with $\mu > 0$ and use constant stepsize $\alpha \in (0, \frac{2}{\mu + L}]$. Then,

$$\|x_k - x^*\|^2 \leq q^k\|x_0 - x^*\|^2, \text{ where } q = 1 - \frac{2\alpha\mu L}{\mu + L}.$$

- q achieves minimum $\left(\frac{L/\mu - 1}{L/\mu + 1}\right)^2$ when $\alpha = \frac{2}{\mu + L}$

- L/μ is condition number
Gradient Projection Method

- Constrained convex optimization
 \[
 \min_{x \in X} f(x)
 \]
 - \(f \) is convex and continuously differentiable
 - \(X \) is a nonempty, closed, and convex set

- Optimality condition
 \[
 x^* \in \arg \min_{x \in X} f(x) \iff \nabla f(x^*)^T (x - x^*) \geq 0, \forall x \in X
 \]
 - Unique if \(f \) is strictly convex

- Gradient projection method
 \[
 x_{k+1} = P_X [x_k - \alpha_k \nabla f(x_k)] \text{ with } x_0 \in X
 \]
 - Projection operator
 \[
 P_X [x] = \arg \min_{y \in X} \|y - x\| \quad \text{(unique)}
 \]
 - Similar convergence analysis as unconstrained case, using properties of projection
 - Suppose \(\nabla f \) is Lipschitz with \(L > 0 \). If \(\alpha \in (0, 2/L) \), \(f(x_k) - f^* \leq O(1/k) \).
Important Facts of Projection

- For any $x \in \mathbb{R}^n$, $(x - P_X[x])^T(z - P_X[x]) \leq 0$, $\forall z \in X$.

- For any $x, y \in \mathbb{R}^n$, $\|P_X[x] - P_X[y]\| \leq \|x - y\|$.

- For any $z \in X$, $z \in \text{arg min}_{x \in X} f(x) \iff P_X[z - \alpha \nabla f(z)] = z$, $\forall \alpha > 0$.
Subgradient and Subdifferential

- Consider a convex and possibly non-differentiable function $f : \mathbb{R}^n \to \mathbb{R}$.

- A vector $s \in \mathbb{R}^n$ is a subgradient of f at x if
 \[f(y) \geq f(x) + s^T(y - x), \quad \forall y \in \mathbb{R}^n \]

- **Subdifferential** at x (denoted as $\partial f(x)$): the set of all subgradients at x
 - If f is differentiable at x, then $\partial f(x) = \{ \nabla f(x) \}$.

- $\partial f(x)$ is nonempty, convex, and compact for all $x \in \mathbb{R}^n$.

- For any compact set $X \subset \mathbb{R}^n$, $\bigcup_{x \in X} \partial f(x)$ is bounded.

- $f'(x; d) = \max_{s \in \partial f(x)} s^T d$
 - $f'(x; d)$: directional derivative of f at x along direction d
 \[
 f'(x : d) = \lim_{h \to 0} \frac{f(x + hd) - f(x)}{h}
 \]
Subgradient Method

- Consider the (constrained) nonsmooth convex optimization problem
 \[\min_{x \in X} f(x) \]

- Optimality condition
 \[x^* \in \arg \min_{x \in X} f(x) \iff \exists s \in \partial f(x^*) \text{ such that } s^T(x - x^*) \geq 0, \forall x \in X \]
 - For unconstrained case \((X = \mathbb{R}^n)\), the condition becomes \(0 \in \partial f(x^*)\).

- Subgradient method
 \[x_{k+1} = P_X [x_k - \alpha_k s_k] \text{ with } x_0 \in X \text{ and } s_k \in \partial f(x_k) \]
Convergence Analysis

- Very similar to the convergence analysis of the gradient descent method

- If every $\|s_k\|$ is bounded by $L > 0$, then accuracy ϵ can be obtained in $(\|x_0 - x^*\|L^2/\epsilon^2)$ iterations.

- Averages behave better

\[
\bar{x}_K = \frac{1}{K} \sum_{k=0}^{K-1} x_k
\]

Note that $f(\bar{x}_K) \leq \frac{1}{K} \sum_{k=0}^{K-1} f(x_k)$.

Choose stepsize $\alpha_k = \frac{\gamma}{\sqrt{K}} \ \forall k = 0, 1, \ldots, K - 1$, where $\gamma > 0$.

\[
f(\bar{x}_K) - f^* \leq \frac{\|x_0 - x^*\|^2 + \gamma^2 L^2}{\gamma \sqrt{K}}
\]
Summary

- Convex set
- Convex function
 - Strictly convex, strongly convex, Lipschitz continuous gradient
- Gradient descent method
 - Smooth unconstrained convex optimization
 - Convergence performance
 - Lipschitz continuous function: \(O(1/\epsilon^2) \)
 - Lipschitz continuous gradient: sublinear convergence \(O(1/k) \)
 - Strongly convex function with Lipschitz continuous gradient: linear convergence \(q^k, q \in [0, 1) \)
- Gradient projection method
 - Smooth constrained convex optimization
 - Facts of projection
 - Similar convergence results as gradient descent method
- Subgradient method
 - Subgradient and subdifferential
 - Nonsmooth convex optimization
 - Convergence complexity \(O(1/\epsilon^2) \)
References