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Objectives

* Cooperative setting

* Provide a survey of recent advances in distributed
optimization techniques

min ) ~ f;(x)
i—1

— m independent agents cooperating towards a single objective
— How can they reach the desired minimizer?

— How much should they communicate?

— How fast can they reach the objective?



Objectives

* Competitive setting
* Provide a survey of recent advances in convergence to Nash
Equilibria in games
Vi=1,...,m, I’I;;III fi(xi, x_y;)
— m independent agents competing towards different objectives
— Does the notion of Nash Equilibrium make sense?
— Are there natural learning algorithms leading to NEs?

— Can agents / players select socially efficient NEs?
— How fast can they reach equilibrium?



Applications

* lLarge networked systems
— Internet
— AdHoc networks
— Data centers
— Sensor networks
— Social networks
— Economic networks

* New interaction paradigms
— Resource allocation
— Coordination
— Estimation
— Games over networks



Decentralized interactions

* We need new tools to understand the way agents interact in
these large-scale networked complex systems

e Challenges
— Lack of central authority
— Network dynamics
— Stochastic phenomena
— Lack of (or partial) local communication among agents



Concrete examples

* Resource allocation in communication networks
— Internet Congestion Control
— Power control in wireless systems
— Routing
— Load balancing
* Games
— Load balancing games
— Routing games
— Power control games
— Marriage problems



Schedule

Sept 10 / 10:15AM-12:15PM | Brinellv. 23 (B24) | Overview
and basic concepts in optimisation

Sept 12 / 10:15AM-12:15PM | Osquldasv. 6 (Q22) |
Convexity, gradient descent and sub-gradient method

Sept 17 / 10:15AM-12:15PM | Osquarsbacke 14 (E52) |
Optimal first order methods

Sept 19 / 10:15AM-12:15PM | Lindstedtv. 3 (E34) | Duality,
dual decomposition, and ADMM

Sept 24 / 10:15AM-12:15PM | Drottning Krist. 30 (L42) |
Iterative methods, parallel computing, and gossiping
algorithms

Sept 26 / 10:15AM-12:15PM | Drottning Krist. 30 (L43) |
Project session 1



Schedule

Oct1l /10:15AM-12:15PM | Drottning Krist. 30KV (L22) |
Stochastic optimization - Stochastic approximation

Oct8 /10:15AM-12:15PM | Drottning Krist. 30KV (L22) |
Sampling-based optimization

Oct 15 /10:15AM-12:15PM | Brinellv. 23 (B23) | Learning in
games 1

Oct 17 /10:15AM-12:15PM | Brinellv. 23 (B24) | Learning in
games 2

Oct 22 /10:15AM-12:15PM | Brinellv. 23 (B24) | Project
session 2



Outline

Part I: Convex optimization (Sept 12, Sept 17)
Part Il: Distributed optimization (Sept 19, Sept 24)
Part Ill: Stochastic optimization (Oct 1, Oct 8)

Part IV: Dynamics in games (Opt 15, Oct 17)



Part |: Convex optimization
Jie Lu

Convexity
Gradient descent, sub-gradient descent algorithms

Optimal first-order methods
- Convergence rate: lower bounds
- Order-optimal algorithms

Material:

Y. Nesterov, Introductory lectures on Convex Optimization: A Basic
Course. Norwell, MA: Kluwer Academic Publishers, 2004.

D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena
Scientific, 1999.

D. P. Bertsekas, A. Nedich, and A. Ozdaglar, Convex Analysis and
Optimization. Belmont, MA: Athena Scientific, 2003.

S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY:
Cambridge University Press, 2004.



Part Il: Distributed optimization
Jie Lu

Duality, dual decomposition, and ADMM
Iterative methods
Parallel computing, and gossiping algorithms

Material:

- D. P. Bertsekas, A. Nedich, and A. Ozdaglar, Convex Analysis and
Optimization. Belmont, MA: Athena Scientific, 2003.

- S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY:
Cambridge University Press, 2004.

- S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers, Foundations and Trends in Machine Learning,
2011.



Part Il: Distributed optimization
Jie Lu

* Material:
- D. P. Bertsekas, J. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods, Prentice-Hall, 1989.
— |EEE JSAC special issue on Distributed Optimization, vol 8, 2006.

Mathematical decomposition techniques for distributed cross-layer
optimization of data networks, B. Johansson, P. Soldati and M.

Johansson.



Part Ill: Stochastic optimization
Richard Combes

e Stochastic approximation
 Sampling-based optimization
— Simulated annealing

— Non-reversible dynamics

e Material:

V. Borkar, Stochastic approximation: A dynamical systems viewpoint,
Cambridge University Press, 2008.

- H. Kushner and G. G. Yin, Stochastic approximation and recursive
algorithm. Springer, 2003.

- S. Kirkpatrick; C. D. Gelatt; M. P. Vecchi, Optimization by Simulated
annealing, Science, 1983.

- J.R. Marden, P. Young, L.Y. Pao, Achieving Pareto-optimality through
distributed learning, CDC, 2012.



Part IV: Learning in games
R. Combes / A. Proutiere

Games and equilibria
Nash dynamics
Fictitious play
No-regret dynamics

Trial and error learning

Material:

- P.Young, Strategic learning and its limit, Oxford University Press,
2004.

- D. Fudenberg and D. Levine, The theory of learning in games. MIT
press, 2004.

- P.Young, Learning by trials and errors, Games and economic behavior,
20009.



Grading policy

Grading: P/F
Credits: 8hp
2 project sessions
Take-home exam



How to reach us?

alepro@kth.se, jielu@kth.se, rcombes@kth.se

http://www.ee.kth.se/~alepro/DistriOptCourse/




A first fundamental example:
Internet congestion control

Based on:
Rate control for communication networks:

shadow prices, proportional fairness and stability
Kelly-Maulloo-Tan, J. Oper. Res. Soc., 1998.



Internet congestion control

Alice
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Objective of TCP: adapt the rates of sources to fairly and
efficiently share network resources



A simple model

* Resources: a set of L links shared by a fixed population of n
connections or data flows

* Fixed routing

FLOW 2
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Network Utility Maximization

 The goal is to design distributed protocols converging to the
solution of:

maximize Y., U;(z;)
subject to Rx < C

Previous example:
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Network Utility Maximization

e Utility functions:

- Proportional fairness (Kelly): U;(-) = log(-)
- a-fairness: U;(-) = ()17 /(1 — )

- Max-min fairness (Rawls): a = oo

- Max-thru: a =20



Decomposition

Lagrangean:
L(z,p) =Y (Ui(z:) —xi > )+ > mC
' = l
Dual function:

ZmaX Z % +ZMzCz

Source sub-problems



Dual decomposition

* Link price update: for each link /

n
pi(k+1) = [Ml(k)+5( Z zi(k) _Cl)]

i:Rlizl

* Source rate update:

zi(k + 1) = arg max(U;(x;) — x; Z 1)
l I:Ry;=1



Convergence of dual GD algorithm

 The gradient of the dual function is lipschitz
— Assume that U/ (z;) > 1/g >0

— Let L and S be the length of the longest route and maximum number
of sources using a given link, respectively

Lemma* We have:
IVa(p) = Va(p')|l2 < gLS||p — 1|2

* ... which ensures convergence of the algorithm

* Optimization flow control-I: Basic algorithm and convergence, Low-
Lapsley, ACM/IEEE trans. on Networking, 1999.



Primal decomposition

* Source rate update:

zi(k +1) = zi(k) + 6<U’(ajz( D= D m)

Z:Rli:].

* Price update:

uk+1) =p( Y @i(k+1))

’i:Rlizl

p; : barrier function (to be defined later)



Convergence of the primal algorithm

Theorem™* For appropriate choice of B, the primal algorithm
converges to a solution of:

Zz‘:RM:1 L
maxz U;(x;) — Z/o pi(y)dy
7 [

* The barrier functions are increasing, and can be chosen so
that we obtain a good approximation of the initial NUM
problem DI

Y

C
* Rate control for communication networks: shadow prices, proportional
fairness and stability, Kelly-Maulloo-Tan, J. Oper. Res. Soc., 1998.



