Distributed Optimization Introduction

Richard Combes

Jie Lu

Alexandre Proutiere

Objectives

- Cooperative setting
- Provide a survey of recent advances in distributed optimization techniques

$$\min \sum_{i=1}^{m} f_i(x)$$

- m independent agents cooperating towards a single objective
- How can they reach the desired minimizer?
- How much should they communicate?
- How fast can they reach the objective?

Objectives

- Competitive setting
- Provide a survey of recent advances in convergence to Nash Equilibria in games

$$\forall i = 1, \dots, m, \quad \min_{x_i} f_i(x_i, x_{-i})$$

- m independent agents competing towards different objectives
- Does the notion of Nash Equilibrium make sense?
- Are there natural learning algorithms leading to NEs?
- Can agents / players select socially efficient NEs?
- How fast can they reach equilibrium?

Applications

- Large networked systems
 - Internet
 - AdHoc networks
 - Data centers
 - Sensor networks
 - Social networks
 - Economic networks
 - **—** ...
- New interaction paradigms
 - Resource allocation
 - Coordination
 - Estimation
 - Games over networks
 - **–** ...

Decentralized interactions

 We need new tools to understand the way agents interact in these large-scale networked complex systems

Challenges

- Lack of central authority
- Network dynamics
- Stochastic phenomena
- Lack of (or partial) local communication among agents
- **—** ...

Concrete examples

- Resource allocation in communication networks
 - Internet Congestion Control
 - Power control in wireless systems
 - Routing
 - Load balancing
- Games
 - Load balancing games
 - Routing games
 - Power control games
 - Marriage problems
 - **—** ...

Schedule

- Sept 10 / 10:15AM-12:15PM | Brinelly. 23 (B24) | Overview and basic concepts in optimisation
- Sept 12 / 10:15AM-12:15PM | Osquldasv. 6 (Q22) |
 Convexity, gradient descent and sub-gradient method
- Sept 17 / 10:15AM-12:15PM | Osquarsbacke 14 (E52) |
 Optimal first order methods
- Sept 19 / 10:15AM-12:15PM | Lindstedtv. 3 (E34) | Duality, dual decomposition, and ADMM
- Sept 24 / 10:15AM-12:15PM | Drottning Krist. 30 (L42) | Iterative methods, parallel computing, and gossiping algorithms
- Sept 26 / 10:15AM-12:15PM | Drottning Krist. 30 (L43) |
 Project session 1

Schedule

- Oct 1 / 10:15AM-12:15PM | Drottning Krist. 30KV (L22) |
 Stochastic optimization Stochastic approximation
- Oct 8 / 10:15AM-12:15PM | Drottning Krist. 30KV (L22) |
 Sampling-based optimization
- Oct 15 / 10:15AM-12:15PM | Brinelly. 23 (B23) | Learning in games 1
- Oct 17 / 10:15AM-12:15PM | Brinelly. 23 (B24) | Learning in games 2
- Oct 22 / 10:15AM-12:15PM | Brinelly. 23 (B24) | Project session 2

Outline

- Part I: Convex optimization (Sept 12, Sept 17)
- Part II: Distributed optimization (Sept 19, Sept 24)
- Part III: Stochastic optimization (Oct 1, Oct 8)
- Part IV: Dynamics in games (Opt 15, Oct 17)

Part I: Convex optimization Jie Lu

- Convexity
- Gradient descent, sub-gradient descent algorithms
- Optimal first-order methods
 - Convergence rate: lower bounds
 - Order-optimal algorithms

- Y. Nesterov, *Introductory lectures on Convex Optimization: A Basic Course*. Norwell, MA: Kluwer Academic Publishers, 2004.
- D. P. Bertsekas, *Nonlinear Programming*. Belmont, MA: Athena Scientific, 1999.
- D. P. Bertsekas, A. Nedich, and A. Ozdaglar, *Convex Analysis and Optimization*. Belmont, MA: Athena Scientific, 2003.
- S. Boyd and L. Vandenberghe, *Convex Optimization*. New York, NY: Cambridge University Press, 2004.

Part II: Distributed optimization Jie Lu

- Duality, dual decomposition, and ADMM
- Iterative methods
- Parallel computing, and gossiping algorithms
- Material:
 - D. P. Bertsekas, A. Nedich, and A. Ozdaglar, *Convex Analysis and Optimization*. Belmont, MA: Athena Scientific, 2003.
 - S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY: Cambridge University Press, 2004.
 - S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed
 Optimization and Statistical Learning via the Alternating Direction
 Method of Multipliers, Foundations and Trends in Machine Learning,
 2011.

Part II: Distributed optimization Jie Lu

- D. P. Bertsekas, J. Tsitsiklis, <u>Parallel and Distributed Computation:</u> Numerical Methods, Prentice-Hall, 1989.
- IEEE JSAC special issue on Distributed Optimization, vol 8, 2006.
 Mathematical decomposition techniques for distributed cross-layer optimization of data networks, B. Johansson, P. Soldati and M. Johansson.

Part III: Stochastic optimization Richard Combes

- Stochastic approximation
- Sampling-based optimization
 - Simulated annealing
 - Non-reversible dynamics

- V. Borkar, Stochastic approximation: A dynamical systems viewpoint, Cambridge University Press, 2008.
- H. Kushner and G. G. Yin, *Stochastic approximation and recursive algorithm*. Springer, 2003.
- S. Kirkpatrick; C. D. Gelatt; M. P. Vecchi, *Optimization by Simulated annealing*, Science, 1983.
- J.R. Marden, P. Young, L.Y. Pao, Achieving Pareto-optimality through distributed learning, CDC, 2012.

Part IV: Learning in games R. Combes / A. Proutiere

- Games and equilibria
- Nash dynamics
- Fictitious play
- No-regret dynamics
- Trial and error learning

- P. Young, *Strategic learning and its limit, Oxford* University Press, 2004.
- D. Fudenberg and D. Levine, The theory of learning in games. MIT press, 2004.
- P. Young, *Learning by trials and errors*, Games and economic behavior, 2009.

Grading policy

- Grading: P/F
- Credits: 8hp
- 2 project sessions
- Take-home exam

How to reach us?

alepro@kth.se, jielu@kth.se, rcombes@kth.se

http://www.ee.kth.se/~alepro/DistriOptCourse/

A first fundamental example: Internet congestion control

Based on:

Rate control for communication networks: shadow prices, proportional fairness and stability **Kelly-Maulloo-Tan**, J. Oper. Res. Soc., 1998.

Internet congestion control

Objective of TCP: adapt the rates of sources to fairly and efficiently share network resources

A simple model

 Resources: a set of L links shared by a fixed population of n connections or data flows

Network Utility Maximization

The goal is to design distributed protocols converging to the solution of:

maximize
$$\sum_{i=1}^{n} U_i(x_i)$$

subject to $Rx \leq C$

Previous example:

$$C = \begin{pmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \end{pmatrix}$$

$$C = \left(egin{array}{c} C_1 \ C_2 \ C_3 \ C_4 \end{array}
ight) \qquad R = \left(egin{array}{ccc} 1 & 0 & 0 \ 1 & 1 & 0 \ 1 & 0 & 1 \ 0 & 1 & 1 \end{array}
ight)$$
 LINKS

FLOWS

Network Utility Maximization

Utility functions:

- Proportional fairness (Kelly): $U_i(\cdot) = \log(\cdot)$
- α -fairness: $U_i(\cdot) = (\cdot)^{(1-\alpha)}/(1-\alpha)$
- Max-min fairness (Rawls): $\alpha = \infty$
- Max-thru: $\alpha = 0$

Decomposition

Lagrangean:

$$L(x,\mu) = \sum_{i=1}^{n} (U_i(x_i) - x_i \sum_{l:R_{li}=1} \mu_l) + \sum_{l} \mu_l C_l$$

Dual function:

$$q(\mu) = \sum_{i=1}^{n} \max_{x_i} (U_i(x_i) - x_i \sum_{l:R_{li}=1} \mu_l) + \sum_{l} \mu_l C_l$$

Source sub-problems

Dual decomposition

Link price update: for each link /

$$\mu_l(k+1) = \left[\mu_l(k) + \beta(\sum_{i:R_{li}=1} x_i(k) - C_l)\right]^+$$

Source rate update:

$$x_i(k+1) = \arg\max_{x_i} (U_i(x_i) - x_i \sum_{l:R_{li}=1} \mu_l)$$

Convergence of dual GD algorithm

- The gradient of the dual function is lipschitz
 - Assume that $-U_i''(x_i) \ge 1/g > 0$
 - Let L and S be the length of the longest route and maximum number of sources using a given link, respectively

Lemma* We have:

$$\|\nabla q(\mu) - \nabla q(\mu')\|_2 \le gLS\|\mu - \mu'\|_2$$

... which ensures convergence of the algorithm

* Optimization flow control-I: Basic algorithm and convergence, **Low-Lapsley**, ACM/IEEE trans. on Networking, 1999.

Primal decomposition

Source rate update:

$$x_i(k+1) = x_i(k) + \beta \left(U'_i(x_i(k)) - \sum_{l:R_{li}=1} \mu_l \right)$$

Price update:

$$\mu_l(k+1) = p_l(\sum_{i:R_{l,i}=1} x_i(k+1))$$

 p_l : barrier function (to be defined later)

Convergence of the primal algorithm

Theorem* For appropriate choice of β , the primal algorithm converges to a solution of:

$$\max \sum_{i} U_{i}(x_{i}) - \sum_{l} \int_{0}^{\sum_{i:R_{li}=1} x_{i}} p_{l}(y) dy$$

• The barrier functions are increasing, and can be chosen so that we obtain a good approximation of the initial NUM problem p_l

^{*} Rate control for communication networks: shadow prices, proportional fairness and stability, **Kelly-Maulloo-Tan**, J. Oper. Res. Soc., 1998.