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Purpose: This paper introduces a method that maximizes the probability of satisfying the clinical
goals in intensity-modulated radiation therapy treatments subject to setup uncertainty.
Methods: The authors perform robust optimization in which the clinical goals are constrained to be
satisfied whenever the setup error falls within an uncertainty set. The shape of the uncertainty set is
included as a variable in the optimization. The goal of the optimization is to modify the shape of the
uncertainty set in order to maximize the probability that the setup error will fall within the modified
set. Because the constraints enforce the clinical goals to be satisfied under all setup errors within the
uncertainty set, this is equivalent to maximizing the probability of satisfying the clinical goals. This
type of robust optimization is studied with respect to photon and proton therapy applied to a prostate
case and compared to robust optimization using an a priori defined uncertainty set.
Results: Slight reductions of the uncertainty sets resulted in plans that satisfied a larger number of
clinical goals than optimization with respect to a priori defined uncertainty sets, both within the
reduced uncertainty sets and within the a priori, nonreduced, uncertainty sets. For the prostate case,
the plans taking reduced uncertainty sets into account satisfied 1.4 (photons) and 1.5 (protons) times
as many clinical goals over the scenarios as the method taking a priori uncertainty sets into account.
Conclusions: Reducing the uncertainty sets enabled the optimization to find better solutions with
respect to the errors within the reduced as well as the nonreduced uncertainty sets and thereby
achieve higher probability of satisfying the clinical goals. This shows that asking for a little less
in the optimization sometimes leads to better overall plan quality. C 2015 American Association of
Physicists in Medicine. [http://dx.doi.org/10.1118/1.4921998]
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1. INTRODUCTION

Misalignment of the patient relative to the beams can lead
to large differences between the planned and the delivered
dose distributions in external beam radiation therapy. The
conventional approach to take such errors into account is to
apply margins during treatment planning. Planning is then
performed to yield high dose to an enlarged target volume,
called the planning target volume (PTV), and low doses to
enlarged organ at risk (OAR) volumes.

For cases of heterogeneous density, and especially cases
subject to ion treatment, conventional margins do not al-
ways provide the intended robustness against uncertainties.1

Methods that explicitly compute dose distributions under a
number of scenarios (e.g., patient setup shifts) and optimize
all scenario doses simultaneously appear to lead to more
robust plans in general.2–5 Many of the methods intended
to create robust plans are based on robust optimization and
aim to minimize the objective function value under the worst
scenario. If the plan quality under the worst scenario is unac-

ceptable, the optimization algorithm has no incentive to make
the quality under other scenarios acceptable, which can lead
to unnecessarily poor plan quality under these scenarios.6 This
calls for a method that determines which scenarios to consider
in the robust optimization in order to achieve acceptable plan
quality under as many scenarios as possible. In the present
paper, we devise such a method.

The goal of the method that we propose is to maximize the
probability that the setup error will fall within an uncertainty
set, subject to the constraint that the clinical goals are satisfied
for all setup errors within this set. Because it cannot be known
a priori whether it is possible to satisfy the clinical goals within
a given uncertainty set, the method includes the shape of the
uncertainty set as a variable in the optimization. The optimiza-
tion thus simultaneously determines the treatment plan and the
set of errors against which the treatment plan should be robust.

The rationale for modifying the size of the uncertainty set
is the same as the rationale for modifying margins. Margins
are generally specified in accordance with the magnitudes
of measured errors in order to ensure a high probability of
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meeting the planning goals.7 However, in cases for which the
conflicting goals between PTV coverage and OAR sparing
cannot be simultaneously fulfilled, the margins are sometimes
retracted in the directions that correspond to the problematic
conflicts.8 Hence, prostate tumors are often given less margin
toward the rectum than in the other directions, not because the
prostate is less likely to move posteriorly, but because rectum
sparing is considered more important than robustness against
such errors. A plan with such a margin is not robust against
the target moving posteriorly but on the other hand satisfies
the clinical goal of rectum sparing.

Changing the magnitudes of the errors against which the
plan should be robust has similarities to some previous
methods: Gordon and Siebers9 iteratively updated the sizes of
the PTVs and reoptimized the treatment plans until a specified
probability of target coverage was met. Gordon et al.10 and
Moore et al.11 considered multiple setup error scenarios and
tried to meet the clinical goals for a specified fraction of
these. Bohoslavsky et al.12 optimized the expected value of the
objective conditioned on that one of the P best outcomes will
occur. Rather than trying to reach a predetermined probability
or optimizing for a specific quantile, our method optimizes
the probability of satisfying the clinical goals directly. It can
thereby reach the highest probability for which the goals
can be fulfilled. The methods of Yang et al.13 and Sobotta
et al.14 consider a number of predetermined error scenarios and
optimize over these to maximize the probability of satisfying
the clinical goals. The method proposed in the present paper
differs from these methods in that it does not use predetermined
error scenarios. Instead, it considers uncertainty sets of errors,
the dimensions of which can be modified. This makes it
feasible to consider a smaller number of error scenarios, which
reduces the planning time. Moreover, the ability to continu-
ously modify the dimensions of the uncertainty sets enables
higher precision than when the set of considered scenarios is
predetermined.

To demonstrate the method that we introduce, we use it
to perform retrospective planning on a prostate case using
both photon-mediated intensity-modulated radiation therapy
(IMRT) and intensity-modulated proton therapy (IMPT). The
resulting plans are compared to plans optimized to be robust
against all errors within a priori selected uncertainty sets.

2. PRELIMINARIES

Before formulating the problem in which the shape of the
considered uncertainty set is optimized, we give a standard
robust optimization formulation that aims to robustly satisfy
the clinical goals of a radiation therapy treatment without
modifying the uncertainty set. We also describe how the prob-
ability of satisfying the clinical goals can be computed on the
basis of an uncertainty set.

2.A. Robust optimization with respect to clinical goals

Robust optimization with respect to clinical goals can be
formulated as an optimization problem with constraints en-
forcing the clinical goals of all region of interests (ROIs)

to be satisfied whenever the setup error falls within a given
uncertainty set.

To formulate the robust optimization problem mathemati-
cally, we denote by d(x;s) the dose distribution as a function of
the variables x (machine parameters or spot weights) and the
setup shift s ∈R3. For each ROI r from the set R enumerating
the ROIs, we assume that the function fr of dose evaluates to
0 or less whenever the clinical goals of ROI r are satisfied. The
uncertainty set is the set of setup errors under which the clinical
goals should be satisfied. It is denoted by U and is a subset of
R3. This enables us to formulate the optimization problem for
robustly satisfying the clinical goals as

minimize
x∈X

g(x)
subject to fr(d(x;s)) ≤ 0, r ∈ R, s ∈U, (2.1)

where the objective g is selected to reflect some goal that is
secondary to the clinical goals, such as minimizing the dose
outside the target, and X is the set of feasible variables.

2.B. Probability of satisfying the clinical goals

A solution to problem (2.1) satisfies the clinical goals if the
setup error falls within the uncertainty set U. The probability
that the clinical goals are satisfied is therefore given by the
probability that the setup error falls within U . Here, we specify
how this probability can be calculated.

We consider radiation therapy treatment subject to system-
atic setup uncertainty. The coordinate system is defined such
that the patient is fixed and that the beam isocenters move as a
result of the setup error. The setup error is a random variable
vector S that takes on values s inR3 according to some assumed
probability distribution. The value s determines the shift of the
beam isocenters.

A solution to problem (2.1) ensures that whenever the setup
error S takes on a value s that lies in the uncertainty set U, then
fr(d(x;s)) will evaluate to 0 or less, implying that the clinical
goals of ROI r are satisfied. The probability that the clinical
goals will be satisfied is thus given by

P(the clinical goals of all ROIs are satisfied)
=P( fr(d(x;S)) ≤ 0 for all r ∈ R)
=P(S ∈U)
=


U

pdf(s) ds, (2.2)

where P(A) denotes the probability of the event A occurring
and pdf(s) is the probability density function of the random
variable S.

3. METHOD

When there is no treatment plan such that the clinical goals
are satisfied under all setup errors within U, formulation (2.1)
often yields unacceptable plans. Here, we present a method
that avoids this problem by modifying the size of the uncer-
tainty set U until a plan that satisfies the clinical goals under all
setup errors within the modified uncertainty set can be found.
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The set U is modified with the goal of maximizing probability
equation (2.2).

We begin by introducing an idealized method for optimiz-
ing the uncertainty set. A computationally tractable approxi-
mation of the idealized method is given in Appendix A.

3.A. Uncertainty set optimization

To enable optimization of the uncertainty set, we introduce
a parameterization of U: For each ROI r in R, we consider
an individual uncertainty set U(αr), in which the goals of
ROI r should be satisfied. The set U(αr) is a function of the
non-negative vector αr , each component of which specifies
the size of U(αr) in a positive or negative axis direction.
Because we consider errors in 3D, αr is an element of R6

+. In
nonaxis directions, U(αr) is interpolated, see Appendix B for
a mathematical definition. Figure 1 shows a 2D illustration of
an uncertainty set U(αr). The set U, in which the clinical goals
of all ROIs are satisfied, is then given by U =∩r ∈RU(αr).

Our goal is to find plans that maximize the probability of
satisfying the clinical goals, which is the same as maximizing
Eq. (2.2). We include the parameters αr for all ROIs as vari-
ables in the optimization and combine objective equation (2.2)
with the constraints of Eq. (2.1) to achieve an idealized uncer-
tainty set optimization problem according to

maximize
α,x

P(S ∈U(αr) for all r ∈ R)
subject to fr(d(x;s)) ≤ 0, r ∈ R, s ∈U(αr),

αr, i ≥ 0, r ∈ R, i = 1,. . .,6,
x ∈X. (3.1)

The objective function measures the probability that the setup
error S falls within U =∩r ∈RU(αr) and the constraints ensure
that for each ROI r , the clinical goals of the ROI are satisfied
when the setup error falls within the region U(αr). Thus, the

F. 1. 2D illustration of the uncertainty set U (α). The clinical goals are
enforced whenever the setup error S falls within U (α). The non-negative
scalar αi determines the size of the uncertainty set U (α) in the axis unit
direction pi for i = 1, . . .,4. In other directions,U (α) interpolates elliptically
between these points. The scalar ᾱi corresponds to the a priori value of αi.

clinical goals of all ROIs are satisfied when the setup error
falls within U. Note that g from Eq. (2.1) is not considered
in Eq. (3.1). Once Eq. (3.1) is solved, g can be considered in
a second optimization with α fixed.

Problem (3.1) can be seen as roughly maximizing αr, i for
all r in R and i = 1,. . .,6. However, while the constraints for
all s in U(αr) in Eq. (3.1) do not take the probability of the
different scenarios into account, the objective function does.
Hence, because large setup errors are generally less probable
than small ones, it will be worth more in terms of improved
objective value to increase αr, i when it is close to zero than
when it is large. This means that it is worth more to extend
U(αr) so that it includes regions close to the origin than regions
distant from the origin.

In order to achieve a computationally tractable problem,
we discretize Eq. (3.1). Specifically, the uncertainty set U(αr)
is discretized into a set of scenarios αr, ipi for i = 1,. . .,6,
where pi are the positive and negative axes unit directions. The
discretization is further explicated in Appendix A.

3.B. Computational study

3.B.1. Patient cases

Practical uncertainty set optimization according to Eq. (A1)
was applied to a prostate case. A five-field IMRT treatment
with equispaced beams beginning at 0◦ and a two-field IMPT
treatment with beams at 90◦ and 270◦ were optimized. The
dose grid resolution was 2.5×2.5×2.5 mm3. The setup errors
were assumed to follow a truncated normal distribution with
standard deviation 0.5 cm, bounded to have length at most
1 cm. A transversal slice of the patient is shown in Fig. 2.

3.B.2. Optimization

Uncertainty set optimization according to Eq. (A1) was
implemented in a research version of the RayStation 2.8
treatment planning system (RaySearch Laboratories, Stock-
holm, Sweden). The optimization in RayStation is performed
by a sequential quadratic programming algorithm. A similar
method is described by Gill et al.15 The uncertainty set optimi-
zations were started from plans optimized for seven iterations
with fixed scenario positions. For IMRT, these iterations were

F. 2. Transversal slice of the patient case. Contours indicate the target
(white) and the rectum (gray).
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fluence map optimization iterations. The resulting plans were
converted to segments before the scenario positions were
optimized in combination with direct step-and-shoot optimi-
zation. The optimization functions constituting the objectives
and constraints used in the present paper are the standard
quadratically penalizing functions defined mathematically by,
e.g., Oelfke and Bortfeld.16

When problem (A1) has been solved, α determines the
largest errors that can be taken into account while the clinical
goals are satisfied. When the uncertainty set optimization had
determined α, we performed an additional optimization with
α fixed to the determined value. The resulting plans were
compared to plans optimized with α fixed to the a priori
value corresponding to setup shifts of 1 cm from the nominal
scenario. The optimization problem with fixed values of α is
formulated as

minimize
x∈X


r ∈O

gr(d(x;0))
subject to fr(d(x;αr, ipi)) ≤ 0, r ∈ R, i = 0, . . .,n,

fr(d(x;0)) ≤ 0, r ∈N , (3.2)

where fr is the same as in Eq. (A1),N enumerates the ROIs for
which the clinical goals are enforced in the nominal scenario
only, O enumerates the OARs, and gr penalizes the mean
dose of ROI r . This problem thus minimizes the mean dose
to the OARs under the nominal scenario while requiring some
clinical goals to be satisfied under all scenarios and other
clinical goals to be satisfied under the nominal scenario.

3.B.3. Scenario dose calculation

During the optimizations, the scenario doses were calcu-
lated using the nominal mapping from fluence to dose, but
with the fluence maps shifted (and bilinearly interpolated)
according to the displacements of the scenarios.

In the robustness evaluation, the scenario doses were calcu-
lated with the patient positions shifted. The scenario dose
calculation used during the optimization thus differed from
that used in the evaluation. The discrepancy implies that con-
straints that are satisfied with respect to the doses used during
optimization are not necessarily satisfied with respect to the
evaluation doses.

Doses were computed by the dose calculation algorithms
of RayStation. For IMRT, optimization was performed using
RayStation’s fast dose engine and followed by computation of
final doses using its accurate dose engine. For IMPT, all doses
were computed by its pencil beam algorithm. The line spacing

and the energy layer separation (in water equivalent media)
were both set to 5 mm, but to improve upon the approximate
dose calculation with shifted fluences used during the optimi-
zation, auxiliary spots were computed for 2.5 mm line spacing,
cf. Unkelbach et al.5 The weights of the auxiliary spots were
not included as variables in the optimization.

4. RESULTS

We applied the uncertainty set optimization method to a
prostate case. In our proof-of-concept, we considered simpli-
fied uncertainty sets consisting of error scenarios along one
axis only. To actually maximize the probability of satisfying
the clinical goals, additional directions and scenarios should
typically be included, see Appendix A for more details. We
began by solving Eq. (A1) to optimize the uncertainty set and
then solved Eq. (3.2) using the optimized uncertainty set and
the a priori uncertainty set.

The computations were performed under Windows 7 on a
64-bit desktop computer with 24 GB of RAM and an Intel
Xeon W3580 processor with four 3.33 GHz cores. Running
200 iterations of robust optimization with respect to clinical
goals on form (3.2) for the prostate case took 10 (photons)
and 140 (protons) min, while the increased number of dose
computations required for approximating the derivatives with
respect to α by finite differences leads to optimization times
of 20 (photons) and 230 (protons) min for 200 iterations of
uncertainty set optimization according to Eq. (A1).

4.A. Uncertainty set optimization

The prostate case was simplified to only include setup shifts
in the anterior and posterior directions. The clinical goals for
the target and the rectum of the prostate case were assumed
to require robustness. Other goals were included in the nom-
inal scenario only. The optimization problem was formulated
according to Eq. (A1), using the clinical goals presented in
Table I as constraints. The discretization included, in addition
to the nominal scenario, two scenarios each for the target and
the rectum (anterior and posterior isocenter shifts), each of
which was variable in the optimization.

The optimizations changed neither the posterior isocenter
shift for the target nor the anterior isocenter shift for the
rectum, but kept these at their initial (maximum) positions of
1 cm. Figure 3 displays the progress of the two other scenario
positions. The optimizations first retract the target anterior and
rectum posterior isocenter shifts rapidly in order to satisfy the

T I. Robust and nominal constraints representing the clinical goals for the prostate case.

Robust constraints Nominal constraints

Structure Function Dose level (Gy) Structure Function Dose level (Gy)

Target Min dose 70 Bladder Max 20% DVH 70
Target Min 98% DVH 74 L. femoral head Max dose 40
Rectum Max 45% DVH 40 R. femoral head Max dose 40
Rectum Max 20% DVH 60 External Max dose 82
Rectum Max 5% DVH 78
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F. 3. Displacement of the scenario positions as function of the optimization iteration. The “target anterior scenario” is the scenario in which only the target
is considered and the isocenter is shifted in the anterior direction, and the “rectum posterior scenario” the scenario where only the rectum is considered and the
isocenter is shifted in the posterior direction. (a) Scenario positions for IMRT and (b) scenario positions for IMPT.

constraints. Shortly after iteration 25, the isocenter shifts are
being pushed outward, which improves the objective value.
For IMRT, the uncertainty set optimization resulted in the
positions 0.67 and 0.68 cm for, respectively, the target anterior
and the rectum posterior isocenter shift scenarios. For IMPT,
it resulted in the positions 0.72 and 0.74 cm.

4.B. Robust plans with optimized scenarios

The optimized scenario positions were used as fixed posi-
tions in standard robust optimizations according to formula-
tion (3.2). This problem was solved also with the scenario
positions fixed at the a priori locations (1 cm in the poste-
rior and anterior directions). Since, with the a priori sce-
narios, the constraints could not be satisfied, the target and
rectum goals were relaxed into a robust objective constituent
maxi=0, ...,6


r ∈R fr(d(x;ᾱr, ipi)) with weight 100 for that opti-

mization. The resulting DVHs are shown in Fig. 4. For both
modalities, the plans with optimized scenarios neglect the 1 cm
anterior isocenter shift for the target but in return achieve
better target coverage under the other scenarios than the plans
optimized with a priori scenarios.

For each of the methods using optimized and a priori uncer-
tainty sets, each robust constraint of Table I (with volume level
tolerance 0.5% and dose level tolerance 0.5 Gy) was evaluated
under the optimized and the a priori scenarios. The number
of satisfied robust constraints over these scenarios is shown in
Table II.

5. DISCUSSION

Robust optimization aims for plans that are robust over
all error scenarios within some uncertainty set. When the
constraints cannot be satisfied under some scenarios, the plan
quality under all scenarios within the set may suffer. After a
slight reduction of the uncertainty set, it is sometimes possible
to achieve better plan quality with respect to the scenarios

within the smaller set. The results of this paper show that such
reduction can moreover enable better plan quality with respect
to the majority of the scenarios within the larger uncertainty
set.

For the simplified goals of the prostate case, uncertainty set
optimization resulted in the intuitively correct solution, which
furthermore coincides with a known practice for reducing
margins:8 The posterior isocenter shift scenario for the target
and the anterior isocenter shift scenario for the rectum did not
move from their maximum positions, as could be expected
because these scenarios were not in conflict with other sce-
narios. The other two scenarios moved to become compatible.
By retracting these scenarios, the uncertainty set optimization
enabled better solutions with respect to all other scenarios and
thereby achieved higher probability of satisfying the clinical
goals than optimization with the scenario positions fixed at the
a priori locations. Asking for a little less in the optimization
sometimes leads to better overall plan quality.

Uncertainty set optimization bears similarities to worst case
scenario optimization17 in the sense that constraints enforce
fulfillment of the clinical goals under all considered scenarios.
However, the objective to be maximized is the probability
that the setup error falls within a variable uncertainty set. The
optimization thus takes into account the probability distri-
bution and the fact that the probability of errors diminishes
with the magnitude of the errors. This is reminiscent of prob-
abilistic planning concepts,18,5 in which the expected value
of the objective function is optimized and the fact that the
probability of errors diminishes with the size of the errors is
directly reflected by that the objective contributions of such
error scenarios are weighted by the small probabilities. A
notable difference is that in probabilistic planning, all sce-
narios are considered in the objective, but weighted by the
probability of the scenario occurring, whereas in uncertainty
set optimization, scenarios not contained in the uncertainty
set are neglected while the clinical goals are required to
be fully satisfied for scenarios that are in the uncertainty
set.
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F. 4. DVHs for the plans optimized with respect to optimized scenario positions and the plans optimized with respect to a priori scenario positions. The setup
shifts in the anterior direction are annotated. Black curves correspond to the optimized scenario positions and gray curves correspond to the a priori scenario
positions (setup shifts of ±1 cm in the anterior direction). Gray triangles represent the robust constraints of Table I. (a) IMRT plan optimized with respect to
optimized scenario positions, (b) IMRT plan optimized with respect to a priori scenario positions, (c) IMPT plan optimized with respect to optimized scenario
positions, and (d) IMPT plan optimized with respect to a priori scenario positions.

A limitation of our approach is that we only take systematic
setup errors into account. Random errors could be incorpo-
rated by dose or fluence blurring (see, e.g., Refs. 11 and 12),

T II. The number of satisfied robust constraints for the prostate case
under the three optimized scenarios and under the three a priori scenarios
of each ROI. Five constraints and three scenarios make the maximum 15 for
each group of scenarios.

No. of satisfied constraints in evaluation

Method Optimized scenarios A priori scenarios Total

IMRT with respect to
optimized scenarios

14 11 25

IMRT with respect to
a priori scenarios

9 9 18

IMPT with respect to
optimized scenarios

15 12 27

IMPT with respect to
a priori scenarios

9 9 18

but this requires the biological assumption that overdosing an
OAR in one fraction can be compensated by a lower dose in
another fraction, which we are inclined not to make.

6. CONCLUSION

A method was introduced that maximizes the probability
of satisfying the clinical goals in the presence of setup uncer-
tainty. The method was applied to a prostate case and the
resulting plans were compared to plans optimized with respect
to errors within a priori defined uncertainty sets. The plans of
the proposed method fulfilled 1.4 (photons) and 1.5 (protons)
times as many clinical goals over the scenarios as the method
using a priori defined uncertainty sets.

APPENDIX A: PRACTICAL UNCERTAINTY SET
OPTIMIZATION

Because U(αr), as defined in Appendix B, contains infi-
nitely many points (unless αr = 0), formulation (3.1) has
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infinitely many constraints, which moreover change with α.
Thus, Eq. (3.1) cannot be easily solved. We therefore approx-
imate Eq. (3.1) by discretizing the uncertainty sets U(αr) into
scenarios.

The scenario discretization points are selected as the points
αr, ipi, as illustrated in Fig. 1, where pi for i = 1,. . .,6 are the
positive and negative axes unit directions. The point αr, ipi is
referred to as the “scenario position” of scenario i for ROI r .
The maximal error to be taken into account in the direction
pi for ROI r is denoted by ᾱr, ipi, where ᾱr, i is scalar. Hence,
αr, i must be less than ᾱr, i. If unrestricted maximization of the
probability is desired, then ᾱr, i can be set infinity. The nominal
scenario is also included: we let αr,0p0 be fixed and correspond
to the nominal scenario by setting αr,0 = 0 and ᾱr,0 = 0. The
optimization problem approximating Eq. (3.1) can now be
formulated as the uncertainty set optimization problem

maximize
α,x

P(S ∈U(αr) for all r ∈ R)
subject to fr(d(x;αr, ipi)) ≤ 0, r ∈ R, i = 0,. . .,6,

0 ≤ αr, i ≤ ᾱr, i, r ∈ R, i = 0,. . .,6,
fr(d(x;0)) ≤ 0, r ∈N ,

x ∈X, (A1)

where nominal constraints, requiring the clinical goals to be
satisfied under the nominal scenario only, have been added for
the ROIs enumerated by the set N . Computational details of
the objective function are given in Appendix C.

Formulation (A1) approximates Eq. (3.1) by considering
only setup error positions along the main axes. The approx-
imation thus includes the assumption that if the goals for ROI
r inR are satisfied in the nominal scenario and for a few points
on the boundary of U(αr) (along the main axes), they will
be satisfied in the full uncertainty set U(αr). Such approxi-
mations were empirically found to be adequate in previous
studies.19,20,17 However, when the magnitudes of the errors are
large, the approximation will not hold, and solving Eq. (A1)
will not correspond to maximizing the probability of satisfying
the clinical goals. In such cases, additional constraints for other
points in U(αr) should then be included.

When it is not possible to satisfy the clinical goals of all
ROIs simultaneously, it may still be beneficial to try to satisfy
the goals for as many ROIs as possible. To this end, an indi-
vidual term P(S ∈U(αr)) for each ROI r in R, weighted by a
small factor, can be added to the objective of Eq. (A1). The
factor should be small enough for these terms not to affect the
objective of Eq. (A1) substantially.

Note that the dose is generally nonconvex in the setup shift,
so problem (A1) is a nonconvex optimization problem. There-
fore, the uncertainty sets resulting after optimization cannot be
guaranteed to be globally optimal.

The computational cost of scenario-based robust optimi-
zation problems is dominated by the cost of scenario dose
calculation. In order to solve Eq. (A1), gradients with respect
to α must be calculated. These can be approximated by finite
differences, which leads to at most a doubling of the number of
dose calculations compared to robust optimization with fixed
scenarios according to Eq. (3.2).

APPENDIX B: INTERPOLATION OF UNCERTAINTY
SET

The vector αr ∈ R6
+ specifies the size of U(αr) in the

positive and negative axes directions. In nonaxis directions,
U(αr) is ellipsoidally interpolated. Formally, U(αr) is defined
by

U(αr) = {(x,y,z) ∈R3 : x2/α2
r,1+χ(x<0)+ y

2/α2
r,3+χ(y<0)

+ z2/α2
r,5+χ(z<0) ≤ 1},

where χ(a) is the indicator function that takes the value 1
when the expression a is true and 0 otherwise. A 2D illus-
tration of a set U(αr) according to this definition is given in
Fig. 1.

APPENDIX C: OBJECTIVE FUNCTION

The objective function of Eq. (A1) is the probability that
the setup error falls within U, the intersection of U(αr) for
all ROIs r in R. The setup errors are assumed to be normally
distributed with zero mean and covariance matrixΣ =σ2I. The
probability that the setup error S will fall within the set U is
therefore

P(S ∈U)= 1

σ3
(2π)3


U

e−∥s∥
2/2σ2

ds. (C1)

If there is only a single axis along which to move (n = 2,
p1 = −1,p2 = 1), the probability density function becomes
(σ√2π)−1e−t

2/2σ2
. The set U is then given by

U = [−min
r ∈R

αr,1,min
r ∈R

αr,2],
so the probability that the goals of all ROIs in R are satisfied
is

P(S ∈ [−min
r ∈R

αr,1,min
r ∈R

αr,2])

=
1

σ
√

2π

 minr∈Rαr,2

−minr∈Rαr,1

e−t
2/2σ2

dt.
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