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Abstract
We give a scenario-based treatment plan optimization formulation that 
is equivalent to planning with geometric margins if the scenario doses are 
calculated using the static dose cloud approximation. If the scenario doses 
are instead calculated more accurately, then our formulation provides a novel 
robust planning method that overcomes many of the difficulties associated with 
previous scenario-based robust planning methods. In particular, our method 
protects only against uncertainties that can occur in practice, it gives a sharp 
dose fall-off outside high dose regions, and it avoids underdosage of the target 
in ‘easy’ scenarios. The method shares the benefits of the previous scenario-
based robust planning methods over geometric margins for applications where 
the static dose cloud approximation is inaccurate, such as irradiation with few 
fields and irradiation with ion beams. These properties are demonstrated on 
a suite of phantom cases planned for treatment with scanned proton beams 
subject to systematic setup uncertainty.

Keywords: imrt, impt, robustness, uncertainties, optimization

(Some figures may appear in colour only in the online journal)

1.  Introduction

Safety margins are the most utilized means of generating radiation therapy treatment plans 
that are robust against errors. For instance, to mitigate the risk that the target is located dif-
ferently during the plan delivery than during the image acquisition, a planning target volume 
(PTV) is usually defined as a geometric expansion of the clinical target volume (CTV), and 
planning is performed to deliver high dose to the full PTV. Analogously, the uncertainty in the 
position of an organ at risk (OAR) can be mitigated by an expansion into a planning organ-
at-risk volume (PRV). Recipes for the calculation of margins on the basis of systematic and 
random uncertainties and the amplitude of respiration are surveyed in van Herk (2004).
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An underlying assumption when geometric margins are used is that the static dose cloud 
approximation is accurate. According to this approximation, the patient is moving (as an effect 
of the errors) inside a static dose distribution that is not affected by the motion (Unkelbach  
et al 2009). This approximation is often sufficiently accurate for tumors in regions of rela-
tively homogeneous density, such as cancers in the pelvic region (Craig et al 2003). The 
approximation is, however, inaccurate for sites of heterogeneous density, such as lung, which 
can lead to under- or overdosage if the colocation of the target and the treatment fields differs 
from what was planned (Craig et al 2003). The approximation is also inaccurate for treatments 
with few fields, because it does not model that a setup shift in parallel with a beam axis only 
affects the corresponding beam dose marginally (mainly by scaling according to the inverse-
square law), whereas perpendicular shifts affect the beam dose to a large extent (because 
the dose is displaced). The situation is aggravated for ion treatments, the depth-dose curves 
of which are more sensitive to the density distribution of the irradiated volume than those  
of photon treatments (Lomax 2008).

As alternatives to geometric margins, methods that take uncertainties into account explic-
itly in the optimization have been proposed (Unkelbach et al 2007, Pflugfelder et al 2008, 
Unkelbach et al 2009, Fredriksson et al 2011). In these methods, dose distributions for mul-
tiple error scenarios (e.g. setup shifts, scaled densities, or displaced organs) are computed 
and the treatment plans are optimized with respect to all of these doses simultaneously. The 
methods differ in how they take the dose distributions into account: expected value optim
ization (Unkelbach et al 2007, 2009) minimizes the expectation of the objective value over 
the scenario doses, composite worst case optimization (Fredriksson et al 2011) minimizes the 
objective value of the worst case scenario, and voxelwise worst case optimization (Unkelbach 
et al 2007, Pflugfelder et al 2008) minimizes the objective function applied to a worst case 
dose distribution defined as the worst scenario dose to each voxel considered independently. 
While these methods can produce robust plans also for sites of heterogeneous density, they 
result in qualitatively different plans than margin-based planning, even in situations where the 
static dose cloud approximation holds. The differences are not always desirable (Fredriksson 
2012, Fredriksson and Bokrantz 2014): expected value optimization protecting against sys-
tematic errors results in gradual dose fall-offs, something that only marginally increases the 
probability of tumor control but still results in highly increased integral dose; composite worst 
case optimization risks neglecting ‘easy’ scenarios; and voxelwise worst case optimization 
does not utilize that an increased dose at the periphery of the high-dose region leads to a 
steeper dose gradient against the non-involved tissue and is overly conservative when used in 
combination with dose-volume histogram (DVH) goals, because it considers an unphysical 
dose distribution.

In the present paper, we introduce a generalization of margin-based planning. The gen-
eralization is scenario-based, but does not suffer from the disadvantages mentioned above. 
When the static dose cloud approximation is exact, our method is equivalent to planning with 
geometric margins. However, the method can also be used to achieve robust plans when the 
static dose cloud approximation is inaccurate. Because the static dose cloud approximation is 
implicitly assumed with the use of geometric margins, this implies that our method is a gen-
eralization of treatment plan optimization with margins.

2.  Methods

We generalize the concept of treatment plan optimization with margins to the case when sce-
nario doses are computed for multiple scenarios. The following exposition concerns a single 
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CTV subject to setup errors, but the method can be readily applied to multiple regions of 
interest (ROIs), including OARs. For simplicity of the presentation, it is assumed that all 
setup error scenarios correspond to geometric shifts that can be represented by vectors with 
all components being multiples of the voxel dimensions, and that a voxel either belongs fully, 
or not at all, to a ROI.

The exposition is structured as follows: We first highlight that the use of margins entails 
the implicit assumption that the static dose cloud approximation holds. We then show how a 
voxel-separable plan evaluation criterion applied to a PTV can be reformulated as a criterion 
applied to the CTV under multiple scenarios with scenario doses given by the static dose cloud 
approximation. Using this reformulation, we define a scenario-based criterion that utilizes the 
true, non-approximate, scenario doses—this is the scenario-based generalization of margins. 
Finally, we give a number of possible refinements of this criterion and discuss how to adapt 
the method to other criteria than directly voxel-separable ones.

2.1.  Margins implicitly assume the static dose cloud approximation

Target margins are generally defined using a geometric expansion of the CTV, and planning 
is performed to deliver high dose to the PTV, which is the union of the CTV and the margin 
(International Commission on Radiation Units and Measurements (2010), section 4.5). The 
size of the PTV is selected so that the probability that the CTV will be within the PTV is high 
(van Herk et al 2000). For this to imply a high probability of the CTV receiving a high dose—
which is the ultimate goal of the use of a margin—the static dose cloud approximation must be 
reasonably accurate: if it is, then whenever the CTV displaced by the errors is geometrically 
within the PTV, it will receive a high dose. If the approximation on the other hand is inac-
curate, meaning that the dose distribution might deform as an effect of the displacement, then 
there are no guarantees regarding the dose received by the moving CTV. This is the reason 
behind the failure of geometric margins in highly modulated proton therapy (Lomax 2008, 
Fredriksson et al 2011).

2.2.  A scenario-based reformulation of margins

We consider an arbitrary plan evaluation criterion that is additively separable over the voxels. 
Let the voxelwise component of the criterion be given by the function φ. Applied to the PTV, 
the criterion takes the form

d ,
i

i( )∑ φ
∈P
� (2.1)

where di is the dose to voxel i and P is an index set over the PTV voxels. Common voxel-
separable criteria include minimum, maximum, and uniform dose penalties, see, e.g. Oelfke 
and Bortfeld (2001).

According to the static dose cloud approximation, the effect of a setup error is that the 
patient is shifted rigidly inside a static dose distribution (Unkelbach et al 2009). A rigid shift 
of the patient corresponds to the voxel indices being shifted by a fixed offset (assuming that 
the shift lines up with the dose grid). Let S denote the set of scenarios and let the offset 
corresponding to the shift s, for s in S, be denoted by j(s). The CTV voxels under scenario 
s are then given by the scenario-dependent set s i j s i: :( ) { ( ) }= + ∈C C , where C enumerates 
the CTV voxels in the nominal scenario (corresponding to no error). Because the PTV is an 
expansion of the CTV, it holds that ss ( )=∪ ∈P CS  if S is appropriately defined, as illustrated 
in figure 1. The criterion (2.1) can thus be equivalently stated as
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This expression, in turn, is equivalent to

p d ,
s i s

i i( )
( )

∑ ∑ φ
∈ ∈S C

where pi is the reciprocal of the number of scenarios s under which voxel i is in s( )C :

p s i s1/ : ,i { ( )}= ∈ ∈S C

where ⋅  denotes the cardinality of a set, see figure 2.
Offsetting the voxel indices within a fixed dose distribution is equivalent to keeping the 

voxel indices fixed but shifting the dose rigidly. The criterion can therefore also be formulated 
as

p d .
s i

i j s i j s( )( ) ( )∑∑ φ
∈ ∈

+ +
S C

Let d s d:i i j s
˜ ( ) ( )= +  denote the dose to voxel i under scenario s and p p:i s i j s, ( )= +  denote the 

corresponding weight. The criterion can then be written as

p d s ,
s i

i s i, ( ˜ ( ))∑∑ φ
∈ ∈S C

� (2.2)

which is our scenario-based reformulation of the PTV criterion.
In summary, we have derived the following identity:

d p d s ,
i

i
s i

i s i,( ) ( ˜ ( ))∑ ∑∑φ φ=
∈ ∈ ∈P S C
� (2.3)

where d s di i j s
˜ ( ) ( )= +  and

p s i j s j s1/ : ,i s, { ( ) ( ) }S C= ∈ + − ∈′ ′� (2.4)

and S has been selected such that i j s i s: ,{ ( ) }= + ∈ ∈P C S .

2.3. The scenario-based generalization of margins

The expression (2.2) provides a reformulation of the criterion (2.1) for the PTV to a sce-
nario-based criterion for the CTV. The static dose cloud approximation was used to define the 

Figure 1.  Construction of the PTV from translated copies of the CTV.

(a) A patient with a CTV
and a PTV.

(b) The dashed ellipses il-
lustrate C(s) = {i + j(s) :
i ∈ C} for two scenarios s.

(c) The set ∪s∈SC(s) ap-
proaches P as the number
of scenarios increases.
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weights pi,s and the dose distribution d s˜( ). We propose the use of the scenario-based criterion 
(2.2) together with the exact dose distribution (or a more accurate approximation than the 
static dose cloud approximation) of scenario s, denoted by d(s), in place of the dose distri-
bution d s˜( ) estimated by the static dose cloud approximation. In cases where the static dose 
cloud approximation holds, this means that our formulation will be equivalent to using a PTV; 
in cases where the static dose cloud approximation does not hold, our formulation provides a 
novel scenario-based robust planning method.

2.4.  Beam-specific effects

The static dose cloud approximation does not model that the effect of an error can vary with 
the beams, as in the case of setup shifts perpendicular to, or parallel with, the beam axes 
that was discussed in the introduction. Such variations can, however, be incorporated in the 

calculation of the weights pi,s by the definition of weights pi s
b
,

( ) for each beam b in the set B of 
all beams, for all voxels i and scenarios s. The weights pi s

b
,

( ) are under this refinement defined 
according to (2.4), but with j (b) substituted for j, where j (b)(s) is the offset in the dose grid 
corresponding to the shift of scenario s projected onto the beam plane of beam b. Thus, j (b)(s) 
neglects setup errors that are parallel to the beam axis, as illustrated in figure 3. The weights 
for different beams are combined into a single weight pi,s by interpolation that takes into 
account the dose contribution to voxel i under scenario s from each beam. Let d si

b ( )( )  denote 
the dose of beam b delivered to voxel i under scenario s. Then, the beam-specific counterpart 
of the criterion (2.2) takes the form

d s
d s

d s
p ,

s i
i

b

i
b

i
i s
b
,( ( ))

( )
( )

( )
( )∑∑ ∑φ

∈ ∈ ∈S C B
� (2.5)

where d s d s/i
b

i( ) ( )( )  is taken as 1/ B  whenever di(s)  =  0.

2.5.  Extensions to other types of criteria

The reformulation (and consequently generalization, when d is substituted for d̃) of margins 
can be extended to other types of criteria than additively voxel-separable functions, as the 
following examples show: For a criterion that is a function ψ of an additively voxel-separable 
function, such as equivalent uniform dose measures (Niemierko 1999), application of ψ to the 
left- and right-hand side of (2.3) yields the following reformulation:

d p d s .
i

i
s i

i s i,( ) ( ˜ ( ))
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟∑ ∑∑ψ φ ψ φ=

∈ ∈ ∈P S C

Figure 2.  Voxel i has weight pi  =  1/2 because it is contained in ( )C s  (dashed ellipses) 
under the two scenarios s that are indicated in blue.
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Another common form of criteria are multiplicatively voxel-separable functions. Criteria of 
this type include tumor control probabilities, because the overall probability of tumor control 
is the product of the probability for tumor control in each tumor voxel. Derivations analogous 
to those in section 2.2 yield the following reformulation for multiplicatively voxel-separable 
functions:

d d s .
i

i
s i

i
pi s,( ) ( ˜ ( ))∏ ∏ ∏φ φ=

∈ ∈ ∈P S C
� (2.6)

For a criterion of the form of a function ψ of a multiplicatively voxel-separable function, 
such as a normal tissue complication probability calculated using the relative seriality model 
(Källman et al 1992), a reformulation is possible by application of ψ to the left- and right-hand 
side of (2.6). Finally, a constraint for all voxels i in P is equivalent to a constraint for all voxels 
i in s( )C  and scenarios s in S.

2.6.  Experimental study

2.6.1.  Optimization formulations and phantom geometries.  We assessed the scenario-based 
generalization of margins by comparison against geometric margins and against previously 
published scenario-based robust planning methods. The scenario-based methods that we used 
for benchmark were (composite) worst case optimization and expected value optimization 
(Fredriksson (2012), sections II.D.1–2). The comparison was performed with respect to styl-
ized phantom geometries in either one dimension (1D) or two dimensions (2D), which con-
tained a CTV with voxels enumerated by the set C and, for a subset of the cases, an OAR 
with voxels enumerated by the set O. The geometries were planned for treatment with either 
a single orthogonal proton beam (incident from a dimension orthogonal to the patient geom-
etry) or two coplanar proton beams at a perpendicular angle to each other. Treatment plan 
optimization using the various methods to achieve robustness was performed with respect to 
an objective function f penalizing deviation from a uniform dose of one to the CTV and a dose 
of zero elsewhere, according to

f d w v d w v d w v d1 .
i

i i
i

i i
i

i i,
2

,
2

,
2( ) ( )∑ ∑ ∑= − + +

∈ ∈ ∈
C
C
C O

O
O E

E
E

Figure 3.  Projection of ( )C s  (dashed ellipses) onto the beam planes. The projected sets 
are used in the calculation of beam-specific weights, but φ is still evaluated using the 
scenario doses without projections.

(a) C(s) under the scenarios s in
S.

(b) C(s) projected onto the
beam plane of the beam along
the x-axis.

(c) C(s) projected onto
the beam plane of the
beam along the y-axis.
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Here, E enumerates all voxels inside the external contour while for a general structure R, 
vi,R is the fraction of the structure that is contained in voxel i (this weight is used to take into 
account that a voxel can belong only partially to a ROI), and wR is a scalar importance weight. 
Isotropic setup uncertainty of 1 cm was taken into account in the optimization. A total of four 
combinations of geometry, beam arrangement, and objective function were considered, which 
we labeled examples 1–4, see table 1.

The examples were selected to clearly exhibit the differences between the methods, and the 
methods are not necessarily intended to be used for such formulations: for example, the worst 
case optimization method is not intended to be applied to hopelessly conflicting scenarios, 
as in examples 3 and 4. In such cases, a different set of scenarios should ideally be selected 
for the method to yield the desired result. Moreover, as explained for worst case optimization 
methods in a previous study (Fredriksson and Bokrantz 2014), the methods are identical when 
there are no conflicts.

2.6.2.  Numerical optimization and dose calculation.  Proton beams were represented by 
scanning spots selected such that a Bragg peak position matched the voxel center for each 
voxel in the dose grid within 2 cm of the CTV. Spot doses for orthogonal beams were calcu-
lated using a Gaussian point-spread function with a standard deviation of 3 mm. Spot doses 
for coplanar beams were calculated using the analytic proton depth-dose curve in Bortfeld 
(1997). The dose calculations were performed in a grid with a voxel side length of 1 mm. 
The set of possible setup shifts S was represented by 19 uniformly distributed scenarios in 
1D (example 1) and by nine scenarios (the nominal scenario, all shifts of 1 cm in the posi-
tive and negative axis directions, and all pairwise combinations of the axis directions) in 2D 
(examples 2–4). A shift was modeled as a rigid translation of the beam isocenters relative 
to the patient coordinate system. The spot weights were optimized subject to nonnegativity 
bounds using the nonlinear programming solver SNOPT v7.2 (Stanford Business Software, 
Palo Alto, California).

Treatment plan optimization using scenario-based margins was implemented on the 
beam-specific form of section  2.4 for the beam arrangement with two fields (example 2). 
Optimization using geometric margins was implemented as minimization of the objective 
function value in the nominal scenario evaluated with respect geometrically expanded struc-
tures. The CTV was expanded to a PTV and the OAR expanded to a PRV by substitution of an 
expanded volume defined as i j s i s: ,{ ( ) }+ ∈ ∈R S  for the original structure R. The objec-
tive function weights were scaled with a factor equal to the fractional increase in volume due 
to the expansion in order to obtain comparable results with the scenario-based methods. The 
maximum operator used to compute the worst case objective function value in the worst case 
optimization was approximated by a smooth power mean according to

Table 1.  Beam arrangement, structure definition, and objective function weights for 
the example cases.

Example Beam(s) C O E Cw Ow Ew

1 Orthogonal [−2, 2] — [−6, 6] 10 — 1
2 Coplanar [ ]−3/2, 3/2 2 — [−6, 6]2 100 — 1
3 Orthogonal −3/2, 3/2 2[ ] [ ] [ ]− − × −5, 3 2, 2 [−6, 6]2 100 100 1
4 Orthogonal −3/2, 3/2 2[ ] [ ] [ ]− − × −4, 2 2, 2 [−6, 6]2 100 20 1

Notes: All intervals are specified in centimeters.
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f d s f d smax
1

s S s

10
1/10

( ( )) ( ( ))
⎛

⎝
⎜

⎞

⎠
⎟∑≈

| |∈ ∈S S

in order for the operator to be continuously differentiable. The expected objective function 
value used in the expected value optimization was calculated with respect to normally distrib-
uted errors with standard deviation selected such that 95% of all values were contained within 
1 cm, conditioned on that an error of at most 1 cm would occur.

3.  Results

Doses are quantified in percent of the prescription. We use the term ‘margins’ to refer both 
geometric and scenario-based margins when their results are similar.

3.1.  Example 1

This example compares the previous scenario-based methods against margins under very 
simple conditions: the static dose cloud approximation is exact and there is no OAR that com-
petes with target coverage. The results for geometric and scenario-based margins coincided 
precisely.

Figure 4 shows that all methods gave a uniform dose of about 97% to the innermost 2 cm of 
the CTV. Margins kept the planned dose uniform at this level inside the entire PTV, except for 
at the very edges where the dose was increased to form ‘shoulders.’ Worst case optimization 
created a mildly decreasing dose with increasing distance to the origin outside the innermost 
2 cm of the CTV. Like margins, it created shoulders at the edges of the high-dose region. 
Expected value minimization created a smooth and gradual fall-off to a dose of about 30% at 
the edges of the PTV, without any shoulder formations.

3.2.  Example 2

This example highlights the differences between the scenario-based methods and geometric 
margins if the static dose cloud approximation is inaccurate. The reason that the static dose 
cloud approximation gives a poor prediction of a perturbed dose is that the beam doses are 
unaffected by components of the shifts that are parallel to the beam axis (neglecting the small 
effect that the beam doses are scaled according to the inverse-square law).

Figure 5 depicts the nominal dose for scenario-based and geometric margins. Associated 
DVHs for all scenarios are shown in figure 6. Corresponding results are not shown for worst 
case and expected value optimization because of the close similarity with scenario-based mar-
gins. However, line doses for all methods are depicted in figure 7. Geometric margins covered 
the PTV with a uniform dose at the prescription level. The scenario-based methods instead 
created a linearly decreasing dose from 100% at the CTV edge to 90% at the proximal edge of 
the PTV and to about 70% at the distal edge of the PTV. The CTV dose of the scenario-based 
methods was despite the lower integral dose uniform around 100% in all scenarios, whereas 
the CTV dose varied in the range 90–135% for geometric margins. The beam doses in figure 8 
explain why the plan created by geometric margins is sensitive to perturbations: The saddle-
shaped doses (peaks on the lateral edges of the CTV and valleys on the proximal and distal 
edges) sum to a highly uniform total dose with a steep fall-off in the nominal scenario, but the 
total dose is irregular if the beams do not patch as intended. The scenario-based methods cre-
ated uniform beam doses that do not rely on that the beams patch accurately.
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Figure 4.  Nominal doses for example 1 in percent of the prescription. The height of the 
CTV and PTV indicates the prescription.
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Figure 5.  Nominal doses for example 2 in percent of the prescription. The CTV is 
indicated by a solid line and the PTV is indicated by a dashed line.

(a) Geometric margins (b) Scenario-based margins

Figure 6.  DVHs for example 2 in all scenarios.
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3.3.  Example 3

The purpose of this example is to investigate how scenario-based margins handle a situation 
when target coverage in some scenarios is incompatible with OAR sparing. The incompat-
ibility stems from that the PTV overlaps with the PRV. The static dose cloud approximation 
is close to exact: it would have been exact had it not been for shift scenarios in pairwise com-
binations of the axis direction that do not line up exactly with the dose grid. The results for 
geometric margins were, nevertheless, highly similar to the results for scenario-based margins 
(98% of the differences in voxel dose were less than 3% of the prescription) and are therefore 
not shown.

Figure 9 shows that margins and expected value optimization extended the high-dose region 
from the CTV to the edges of the PTV except for in the leftward direction that is in conflict 
with the OAR. The CTV coverage was therefore maintained under all shifts without rightward 
component. Coverage was lost almost completely for 20% of the CTV under rightward shifts, 
see figure 10. A minor difference for expected value optimization compared to margins was 
that the doses in the CTV-to-PTV margin were slightly lower and the dose fall-off was more 

Figure 7.  Nominal line dose profiles for example 2 for a trace along the x-axis through 
the isocenter. The height of the CTV and PTV indicates the prescription.
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Figure 8.  Nominal beam doses for example 2 for the beam along the x-axis, in percent 
of the prescription. The beam doses for the beam along the y-axis were identical except 
for a °90  rotation. The CTV is indicated by a solid line and the PTV is indicated by a 
dashed line.

(a) Geometric margins (b) Scenario-based margins
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gradual. Worst case optimization only extended the high-dose region to the right of the CTV. 
The CTV coverage was therefore poor not only under the rightward shifts that are in conflict 
with OAR sparing, but also under the relatively ‘easier’ up- and downward shifts. The line 
doses in figure 11 demonstrate how the high-dose region for worst case optimization was 
retracted in the up- and downward directions compared to the other methods.

Figure 9.  Nominal doses for example 3 in percent of the prescription. The CTV and 
OAR are indicated by solid lines and the PTV and PRV are indicated by dashed lines. 

(a) Scenario-based margins (b) Worst case optimization (c) Expected value optimization

Figure 10.  DVHs for example 3 in all scenarios.
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(a) Scenario-based margins (b) Worst case optimization (c) Expected value optimization

Figure 11.  Nominal line dose profiles for example 3 for a trace along the y-axis through 
the isocenter. The height of the CTV and PTV indicates the prescription.
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3.4.  Example 4

The difference between this example and example 3 is that the PRV overlaps with the CTV 
and the weight on the OAR objective is five times smaller than previously. The results for geo-
metric margins are not depicted because of close similarity with the results for scenario-based 
margins (98% of the differences in voxel dose were less than 3% of the prescription).

The lesser priority on OAR sparing compared to example 3 made margins accept a dose 
of about 80% in the overlap region between the PTV and PRV, see figure 12. The dose com-
promise in this region was controlled in the sense that the dose was uniform, except for peaks 
in the dose at the left edge of the PTV. Worst case optimization gave a uniform dose at the 
prescription level to the CTV in the left shift scenario, and underdosed the CTV to about 
70% in the region where it overlaps with the PRV. The CTV coverage was poor also under all 
shifts with an up- or downward component because there was little extension of the high-dose 
region outside the CTV in these directions, see figure 13. Expected value optimization covered 
almost the entire CTV with a dose of one in the nominal scenario, thereby accepting doses 
above 90% to more than 20% of the OAR if a leftward shift occurs. The CTV dose was highly 
non-robust to shifts in the right direction because the dose falls gradually towards zero left of 
the CTV edge, see figure 14. The CTV coverage under a shift with leftward component was 
comparable to margins.

4.  Discussion

4.1.  Advantages over geometric margins.

There is clear evidence that scenario-based optimization can provide better target coverage 
robustness than margins and also reduce the dose to healthy tissues if the static dose cloud 
approximation is inaccurate (Fredriksson et al 2011, Chen et al 2012, Fredriksson 2012, Liu  
et al 2012). Scenario-based optimization is therefore particularly advantageous for ion therapy, 
treatments of heterogeneous densities, and treatments with few fields. Our results for example 
2 reinforce this conclusion: geometric margins created nonuniform beam doses that were 
sensitive to perturbations and placed more dose inside the CTV-to-PTV margin than neces-
sary, while all scenario-based methods created highly robust plans. Furthermore, a potential 
advantage of scenario-based methods, even if scenario doses are calculated using the static 
dose cloud approximation, is that robustness can be implemented for nonuniform CTV pre-
scriptions, as in dose-painting guided by functional imaging (Bentzen 2005).

Figure 12.  Nominal dose distributions for example 4 in percent of the prescription. 
The CTV and OAR are indicated by solid lines and the PTV and PRV are indicated by 
dashed lines.

(a) Scenario-based margins (b) Worst case optimization (c) Expected value optimization
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4.2.  Advantages over other scenario-based models

4.2.1.  Dose gradients.  This study, alongside previous data (Fredriksson 2012), shows that 
expected value optimization with respect to systematic setup uncertainty can lead to doses 
that fall gradually from the prescription level to a dose of zero over a prolonged distance 
outside the CTV. Such a gradual fall-off was observed consistently in examples 1, 3, and 4. 
Margins and worst case optimization instead created dose shoulders at the PTV boundary 
that contributed to a steep fall-off. The gentle fall-off created by expected value optim
ization is a point of concern in view of the fact that the possibility to deliver dose-escalated 
treatments without compromising the dose to surrounding organs has been a key driver in 
the adoption of intensity-modulated over conformal radiation therapy (Sheets et al 2012): 
van Herk et al (2002) showed that steep dose gradients are necessary for such dose esca-
lation. Proponents of proton therapy also often point to the steep fall-off on the lateral 
and distal edge of the target as evidence of its superiority over photon treatments (Suit  
et al 2008).

Figure 13.  DVHs for example 4 in all scenarios.
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(a) Scenario-based margins (b) Worst case optimization (c) Expected value optimization

Figure 14.  Nominal line dose profiles for example 4 for a trace along the x-axis through 
the isocenter. The height of the CTV and PTV indicates the prescription. The OAR and 
PRV boundaries are indicated by vertical lines.
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4.3. Tradeoffs between conflicting criteria

In a previous study (Fredriksson and Bokrantz 2014), we showed that worst case optimization 
can be too conservative if target coverage to some extent is incompatible with sparing of 
an OAR. The optimization can then neglect coverage also in scenarios that are not in direct 
conflict with the OAR. This effect was also apparent in examples 3 and 4, where worst case 
optimization disregarded CTV coverage with respect to shifts with an up- or downward comp
onent. Margins and expected value optimization did not exhibit this shortcoming. These meth-
ods instead created robust CTV coverage for all shifts except those that required an extension 
of the high-dose region into the PRV. For the worst case optimization method to work as 
intended, the scenarios of non-resolvable conflict need to be retracted.

Margins and expected value optimization exhibited markedly different behaviors with 
respect to the dose compromise in the overlap region between the PTV and PRV in example 
4. Margins created a controlled underdosage of the CTV while expected value optimization 
sacrificed CTV coverage under a rightward shift and OAR sparing under a leftward shift. This 
is an effect of that the nominal scenario has a larger probability of occurring than the shift 
scenarios. Furthermore, the results for expected value optimization depend on the scenario 
discretization: The probability for the extreme shift scenarios become smaller if intermediate 
shifts are also incorporated in the uncertainty set S due to normalization of the discretized 
probabilities.

It is a clinical decision whether the characteristics of margins or expected value optim
ization are preferable. The current ICRU guidelines advocate that when the PTV and OAR or 
PRV overlap, priority rules should be used, or the regions should be subdivided into regions 
with different absorbed-dose constraints (International Commission on Radiation Units and 
Measurements (2010), section 4.5). This effect is achieved by margin-based planning with 
importance weights for the PTV and the OAR or PRV used in the optimization. Several clini-
cal protocols, however, prescribe a smaller margin in the interface against some radiation 
sensitive structures, for example a retracted CTV-to-PTV margin for prostate in the posterior 
direction to promote rectal sparing (Zelefsky et al 1999, Dearnaley et al 2012). It is our view 
that if a retraction is to be made in a scenario-based model, it should be incorporated in the 
selection of scenarios rather than in their probabilities, in order to maintain steep dose gradi-
ents. Optimization of the definition of the uncertainty set S subject to constraints that a set of 
clinical goals is satisfied for all scenarios in S is described in Fredriksson et al (2015).

4.4.  Potential disadvantages

4.4.1.  Nonconvexity.  The scenario-based margins lead to a nonconvex optimization model 
if beam-specific effects are taken into account, as shown in the appendix. Nonconvex optim
ization problem can have multiple local minima, meaning that optimization algorithms cannot 
guarantee convergence to the global optimum. While a nonconvex formulation allows the 
existence of multiple local optima, however, it does not assure that such optima exist. The 
local optima may also be of negligible clinical difference even if they do exist.

4.4.2.  Limitation to setup errors in homogeneous media.  The beam-specific form of the sce-
nario-based margins does not take the mass density of the treatment volume into account in 
the calculation of the beam-, scenario- and voxel-specific weights. The model is therefore 
appropriate for treatments with few fields, as demonstrated by example 2, but although the 
correct scenario doses are used, the weights may be inappropriate for irradiation of heteroge-
neous media. The scenario-based margins as presented here are also not designed for handling 
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of ion beam range errors, and cannot utilize multiple patient images for handling of inter- 
and intra-fraction organ motion. Extension to these types of uncertainty requires taking the 
radiological depths of the CTV voxels into account in the calculation of the beam-, scenario-, 
and voxel-specific weights, similar to how previous investigators have derived beam-specific 
margins on the basis of radiological depth changes resulting from, e.g. setup errors or intra- 
fraction organ motion (Park et al 2012, Knopf et al 2103). However, such beam-specific 
margins are typically used for treatment plan optimization using only the nominal dose  
distribution, whereas our method takes scenario doses into account during optimization. The 
extension of our method to other types of uncertainty than setup errors in homogeneous media 
will be explicated in a separate publication.

5.  Conclusions

We have introduced a scenario-based generalization of treatment plan optimization with mar-
gins to handle setup uncertainties. When the static dose cloud approximation is exact, the 
generalization is equivalent to margins, but when the approximation is inaccurate, the gener-
alization exhibits the benefits of scenario-based optimization. Comparative planning on phan-
tom geometries demonstrated that the scenario-based margins can provide robustness where 
geometric margins fail and at the same time avoid some disadvantages of previous methods 
for robust planning, such as the unnecessarily gentle dose fall-off of expected value optim
ization and the neglection of ‘easy’ scenarios of worst case optimization.

Appendix.  Proof of nonconvexity

The following example shows that a beam-weighted criterion f defined according to (2.5) 
can be nonconvex even when φ is convex. Consider a 2D geometry where a single target 
voxel is irradiated by a first beam along the x-axis and a second beam along the y-axis. Let 

d d 3/2( )φ =  and let S be an uncertainty set composed of the nominal scenario and a 1-voxel 

shift along the y-axis. The beam- and scenario-specific weights take on the values p 1s
1( ) =  and 

p 1/2s
2( ) =  for all s in S, because the dose of the first beam is shifted entirely outside of the 

target voxel in the error scenario while the dose of the second beam is unaffected. Consider 
two plans A and B with beam doses according to

= = = = ∀ ∈ Sd s b d s b s2 if 1
0 otherwise

and 4 if 2
0 otherwise

, .b b
A B{ {( )   ( )  ( ) ( )

Convexity of f requires that the function value of the average dose is less than or equal to the 
average function value. The inequality

f d d f d f d/2 4 3 /2 2 2 2 ,A B A B(( ) ) ( ( ) ( )) ( )+ = > + = +

therefore, proves the nonconvexity of f.
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