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Purpose: To characterize a class of optimization formulations used to handle systematic and random
errors in radiation therapy, and to study the differences between the methods within this class.
Methods: The class of robust methods that can be formulated as minimax stochastic programs is
studied. This class generalizes many previously used methods, ranging between optimization of the
expected and the worst case objective value. The robust methods are used to plan intensity-modulated
proton therapy (IMPT) treatments for a case subject to systematic setup and range errors, random
setup errors with and without uncertain probability distribution, and combinations thereof. As refer-
ence, plans resulting from a conventional method that uses a margin to account for errors are shown.
Results: For all types of errors, target coverage robustness increased with the conservativeness of the
method. For systematic errors, best case organ at risk (OAR) doses increased and worst case doses
decreased with the conservativeness. Accounting for random errors of fixed probability distribution
resulted in heterogeneous dose. The heterogeneities were reduced when uncertainty in the probabil-
ity distribution was accounted for. Doing so, the OAR doses decreased with the conservativeness.
All robust methods studied resulted in more robust target coverage and lower OAR doses than the
conventional method.
Conclusions: Accounting for uncertainties is essential to ensure plan quality in complex radiation
therapy such as IMPT. The utilization of more information than conventional in the optimization
can lead to robust target coverage and low OAR doses. Increased target coverage robustness can be
achieved by more conservative methods. © 2012 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4737113]

Key words: robust planning, uncertainty, optimization, IMPT

I. INTRODUCTION

A key aspect of external beam radiation therapy is the collo-
cation of the patient anatomy and the treatment beams. If po-
tential maladjustments are not accounted for in the planning
process, the delivered treatment may degrade severely com-
pared to the planned. In conventional radiation therapy, region
of interest (ROI) margins are used to account for errors. How-
ever, the effectiveness of margins decreases as the complexity
of the treatment increases. Other means of handling the un-
certainties are therefore often preferable for modulated treat-
ments. Intensity-modulated radiation therapy (IMRT) is one
modality allowing for high modulation and thereby complex
treatments. Active scanning of ion beams—such as intensity-
modulated proton therapy (IMPT)—allows for even more
modulation and is thus highly susceptible to errors.1, 2

Different methods using additional information in the op-
timization have been proposed to overcome the shortcomings
of margins.3–5 Not surprisingly, such methods appear to en-
able better plans in general. Still, the resulting differences be-
tween the methods used for robustness remain principally un-
known. In this paper, the aim is to study the effects of a class
of robust methods for systematic and random errors, encom-
passing many of those presented in the literature. The methods
studied are those that can be formulated as minimax stochas-

tic optimization problems.6, 7 These range between expected
value and worst case optimization.

Many methods for robust radiation therapy are based on
expected value optimization.3, 4 For physical treatment plan-
ning criteria, such as quadratic dose deviations, optimization
of the expected value with respect to systematic, and random
errors was performed by Unkelbach and Oelfke.4 In a previ-
ous paper,5 we too used physical criteria, but minimized the
worst case penalty in a set of systematic error scenarios. Chen
et al.8 included worst case and expected value optimization of
physical functions with respect to systematic errors in a lin-
ear programming multicriteria optimization framework, thus
enabling interactive navigation between the optimum with re-
spect to robust optimization functions and the optimum with
respect to nominal functions.

In this paper, the minimax stochastic methods are used
with physical criteria that penalize dose deviations quadrati-
cally. To get a clear view of the different methods, their result-
ing dose distributions on a two-dimensional phantom treated
with IMPT are studied. It should, however, be noted that the
methods are applicable to any modality. First, the methods
are used to account for systematic and random errors indi-
vidually. In the case of random errors, the importance of tak-
ing uncertainty in the probability distribution into account is
highlighted, and the minimax stochastic methods are applied
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to do so. Putting things together, systematic errors and ran-
dom errors with uncertain standard deviation are simultane-
ously handled in the optimization, and the resulting plans are
studied.

Robust methods not belonging to the class considered here
have also been used previously. For instance, robust linear
programming9, 10 has been used to achieve robust IMRT plans:
Chu et al.11 accounted for organ motion of uncertain distribu-
tion to achieve high probability of sufficient dose to each tar-
get voxel considered individually. Chan et al.12 ensured that
all target voxels received sufficient expected dose for all prob-
ability distributions within a given set. Accounting for multi-
ple probability distributions is similar to the formulation for
random errors considered here. A difference lies in that the
method in this paper operates on general nonlinear penalty
functions and not directly on the voxel doses.

II. METHODS

II.A. Uncertainties

Systematic errors and random errors are considered. The
errors may originate from any source, such as setup uncer-
tainty, range uncertainty, or organ motion. The systematic
(treatment preparation) errors are the same in each treatment
fraction, whereas the random (treatment execution) errors are
randomly realized anew in each fraction. Intrafractional errors
are neglected. The random errors are assumed to be indepen-
dent and identically distributed (i.i.d.), but of uncertain dis-
tribution. It is assumed that the uncertain distributions can be
characterized by their standard deviations, which are random
variables.

The possible realizations of the uncertainties are dis-
cretized into scenarios. The notation for the scenario index
sets, the random variables picking scenarios from these sets,
and the probability distributions of the random variables for
the different types of uncertainties is specified in Table I.
A priori probability distributions are denoted by Latin letters
and uncertain probability distributions, which are variables in
the optimizations, are denoted by Greek letters. The random
error probability distribution q is conditioned on the standard
deviation σ . When there are n fractions, the set T of random
error scenarios is a set of n-tuples. In a given n-tuple, each
element is a random variable that picks a realization of the
fraction dose distribution. The elements are i.i.d. and referred
to as Tf. To each element u in the set U of standard deviation
scenarios corresponds a standard deviation σ u.

The expectation under the probability distribution x is de-
noted by Ex . When no subscript is used, the operation is taken
with respect to the a priori probability distribution p or q(σ ),
depending on the context.

TABLE I. Notation for the different types of uncertainties.

Uncertainty Scenario set Random variable Distribution

Systematic S S p or π

Random T T q(σ )
Standard deviation U U pσ or ρ

II.B. Notation

The set of feasible treatment parameters (spot weights,
bixel weights, or machine settings) is denoted by X . The total
dose vector d is a function of x ∈ X and, depending on the
uncertainties accounted for, s ∈ S or t ∈ T or both. It spec-
ifies the dose to each voxel v in the set V enumerating the
voxels, and is the sum of n fraction doses. For a given ROI,
the dose-to-volume Dy denotes the minimum dose level with
an isodose volume containing y% of the ROI.

The vector of ones with dimension given by the context is
denoted by e. Vector inequalities are to be understood compo-
nentwise. The shorthand y+ is used for max{y, 0}, the positive
part of y.

II.C. Optimization functions

The methods for systematic errors can be used with gen-
eral, nonlinear optimization functions. For a rigorous han-
dling of random errors in a finite number of fractions, not all
functions are computationally tractable. Many functions be-
come tractable when the number of fractions is infinite, but
this often leads to heterogeneous dose distributions.4, 12, 16 In
Secs. III and IV, it is shown how infinitely many fractions can
be assumed without dose heterogeneity as a result. Never-
theless, for rigor to be maintained, the functions used in the
present paper are restricted to uniform dose functions.

Given a set R of goals and for each goal r ∈ R an asso-
ciated importance weight wr > 0 and a prescribed dose level
d̂r , the composite optimization function f is formulated

f (d) =
∑

r∈R
wr

∑

v∈Vr

�v,r (dv − d̂r )2,

where Vr is the set of voxels of the ROI associated with goal
r ∈ R and �v,r is the relative volume of voxel v in ROI r,
such that

∑
v∈Vr

�v,r = 1 for each r ∈ R.

II.D. Accounting for systematic errors

Here, methods accounting for systematic errors only are
formulated. For clarity, three special cases of methods in the
considered class are formulated separately, followed by the
general formulation.

II.D.1. Expected value optimization

The expected value optimization method minimizes the
expected value of the objective and is the least conservative
method in the considered class. It is formulated as the stochas-
tic programming problem

minimize
x∈X

E[f (d(x, S))].

II.D.2. Worst case optimization

The worst case optimization (or “minimax”) method min-
imizes the penalty of the worst scenario, with no regard to
the probabilities of the scenarios. It is the most conservative
method in the considered class. It is formulated as the mini-
max problem

minimize
x∈X

max
s∈S

f (d(x, s)).

Medical Physics, Vol. 39, No. 8, August 2012



5171 Albin Fredriksson: A characterization of robust radiation therapy optimization methods 5171

II.D.3. Conditional value at risk optimization

The conditional value at risk (CVaR) is a coherent mea-
sure of risk introduced by Artzner et al.14 and shown to be
suitable for optimization by Rockafellar and Uryasev.15 The
CVaR function measures the mean tail loss, meaning the ex-
pected value of the fraction 0 < α ≤ 1 of the worst scenarios,
conditioned on that one of those scenarios will occur. It thus
generalizes the expected value and worst case optimizations
and allows for continuous scaling between the methods. The
optimization problem takes the form

minimize
λ, x

λ + 1
α
E[(f (d(x, S)) − λ)+]

subject to x ∈ X .
(1)

When α = 1, the problem corresponds to expected value opti-
mization, whereas when α ≤ mins∈S ps (assuming ps > 0 for
all s ∈ S), it corresponds to worst case optimization.

II.D.4. Minimax stochastic programming

The three methods described above are special cases of the
minimax stochastic formulation.6, 7 For our purposes, it can
be formulated as

minimize
x∈X

max
a ≤ π ≤ b

eT π = 1

Eπ [f (d(x, S))]
(2)

for vectors a and b satisfying 0 ≤ a ≤ b ≤ e and
eTa ≤ 1 ≤ eTb. Other linear restrictions on the probability
distribution π may also be imposed.

Given x, the max function in the objective is a linear pro-
gram in which f(d(x, s)) are known constants for s ∈ S. This
program is bounded and feasible, so, by strong duality for lin-
ear programming, its optimal value equals that of its dual.
Substituting the dual for the max problem yields the equiv-
alent formulation

minimize
λ, μ, ν, x

λ + bT μ − aT ν

subject to λ + μs − νs ≥ f (d(x, s)), s ∈ S,

μ, ν ≥ 0
x ∈ X ,

(3)

which is better suited for optimization since the reformulation
removes the discontinuities in the derivative of the objective.
The λ of the CVaR problem (1) corresponds to the λ in (3), as
explained in Appendix A.

Some special cases of parameters a and b are worth noting:

� a = p or b = p: expected value optimization
� a = 0, b = e: worst case optimization
� a = 0, b = 1

α
p: CVaR optimization with parameter α

II.E. Accounting for random errors

Because the number of scenarios in T grows exponentially
with the number of fractions, minimax stochastic formula-
tions for random errors are intractable in general. Still, they
are tractable in special cases: Unkelbach and Oelfke4 note
that under the assumption of i.i.d. random errors, the expected

value of the quadratically penalizing (uniform dose) optimiza-
tion function under random errors can be easily computed. For
a voxel v ∈ V with reference dose d̂ , the expected value of the
uniform dose function is given by

E[(dv(x, T ) − d̂)2] = (E[dv(x, T n
f )] − d̂)2

+1

n
Var(dv(x, T n

f )). (4)

Since the expectation and variance are taken with respect to
the random variable Tf instead of T, the computational effort
of evaluating this expression is independent of the number of
fractions.

For other functions, it is seldom possible to reduce the ex-
ponential dependency on the number of fractions, but Jensen’s
inequality yields that the expectation of a maximum (and
analogously for minimum) dose quadratic penalty to a voxel
v ∈ V with reference dose d̂ satisfies the inequalities

(E[dv(x, T n
f )] − d̂)2

+ ≤ E[(dv(x, T ) − d̂)2
+]

≤ (E[dv(x, T n
f )] − d̂)2

+

+1

n
Var(dv(x, T n

f )).

When the number of fractions is infinite, the expecta-
tion of uniform, minimum, and maximum dose functions
equal the respective functions applied to the expected dose.
This approximation is frequently used to handle random er-
rors. Without countermeasure, it is not always advisable,
since the resulting dose distributions tend to be highly
heterogeneous.4, 12, 16 If the probability distribution used dur-
ing the optimization is realized during treatment and the num-
ber of fractions is large, the alternating hot and cold spots in
the heterogeneous dose distribution are likely to cancel each
other out, but if the realized probability distribution is a differ-
ent one, or if the number of fractions is not large enough, the
hot and cold spots usually remain and the plan quality suffers.

One way of reducing the dose heterogeneity is to incorpo-
rate uncertainty in the probability distribution into the opti-
mization. Hårdemark et al.16 reduced the dose heterogeneity
by optimizing the sum of the expected value objective for the
standard deviation equal to zero and equal to its assumed max-
imum value. Unkelbach and Oelfke17 also optimized such an
expected value, but assumed that the random standard devia-
tion was normally distributed.

In this paper, the uncertain random error standard devia-
tion is accounted for by a minimax stochastic formulation,
which generalizes the expected value methods used by pre-
vious authors. This formulation takes its inspiration from the
method of Chan et al.,12 who enforced an expected target dose
greater than the prescription for all probability distributions
within a given set. Here, the set of probability distributions
is comprised of normal distributions for a number of differ-
ent standard deviations. Maximization is performed over the
probabilities of the different standard deviations before the
expectation with respect to standard deviations and random
errors is taken. Bounds on the probabilities for the different
standard deviation can be used to adjust the conservativeness
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of the method. The problem is formulated

(5)

where the vectors aσ and bσ satisfy 0 ≤ aσ ≤ bσ ≤ e and
eTaσ ≤ 1 ≤ eTbσ . This optimization problem can be refor-
mulated as the problem for systematic errors, yielding a for-
mulation much like (3). When aσ = bσ = pσ , the expected
value of the penalties under the different standard deviations
is minimized; when aσ = 0 and bσ = e, the penalty under the

worst standard deviation is minimized; and when aσ = 0 and
bσ = (1/α)pσ , the CVaR with parameter α with respect to the
standard deviations—i.e., the conditional expectation of the
penalty over the α worst standard deviations—is minimized.
As before, the dependency on T can be reduced to a depen-
dency on Tf when uniform dose functions are used.

II.F. Combining systematic and random errors

Here, the formulations (2) and (5) are combined to handle
the different types of uncertainty simultaneously. For each
systematic error scenario, the minimax stochastically worst
standard deviation is used in the expectation of the objective
with respect to the random errors. Given these values for the
systematic error scenarios, the minimax stochastically worst
value is minimized. The problem is formulated as

(6)

The outer minimax stochastic problem can be rewritten as be-
fore, yielding a formulation similar to (3) but with terms

max
aσ ≤ρ≤bσ

eT ρ=1

Eρ[Eq(σU )[f (d(x, s, T ))]]

substituted for f(d(x, s)) in the constraints. These maxima can
similarly be dualized, which introduces the additional auxil-
iary variables λ̄(s), μ̄(s), and ν̄(s) for s ∈ S, where λ̄(s) is
scalar whereas μ̄(s) and ν̄(s) are vectors of length |U |. The
problem turns into the two-level minimax stochastic problem

minimize
λ,μ, ν, x,

λ̄, μ̄, ν̄

λ + bT μ − aT ν

subject to λ + μs − νs ≥ λ̄(s) + bT
σ μ̄(s) − aT

σ ν̄(s),

s ∈ S,

λ̄(s) + μ̄u(s) − ν̄u(s) ≥ Eq(σu)[f (d(x, s, T ))],

u ∈ U , s ∈ S,

μ̄(s), ν̄(s) ≥ 0, s ∈ S,

μ, ν ≥ 0

x ∈ X . (7)

When all uncertainties are handled by expected value op-
timization, the formulation can be simplified into a problem
without constraints (besides x ∈ X ). When all uncertainties

are handled by worst case optimization, the formulation can
be simplified into a one-level problem with one constraint
per scenario through removal of all auxiliary variables but
λ. When all uncertainties are handled by CVaR optimization,
the auxiliary variables ν and ν̄(s) for s ∈ S can be removed.
The formulations with many nonlinear constraints may make
the problem more computationally demanding, depending on
the optimization algorithm used. However, the main compu-
tational cost for this type of problem is usually the dose and
the gradient calculations, which are required in equal number
for all of the methods.

II.G. Patient geometry

The robust methods of the considered class can be applied
to general clinical cases, as has been done previously for some
special cases of the methods.5, 18 For illustratory purposes, a
two-dimensional phantom geometry is studied here. The ge-
ometry is adapted as one slice of a C-shaped case modeled af-
ter that in the AAPM Task Group 119 Report19 (but of larger
outer target radius) and is shown in Fig. 1. Three beams with
gantry angles 315◦, 0◦, and 45◦ are used. The ROIs are the
C-shaped target, the circular organ at risk (OAR), and the cir-
cular external ROI. The case is discretized into 2 × 2 mm2

voxels.
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FIG. 1. The C-shaped geometry. The solid line indicates where the line
doses are taken and the dashed lines indicate the beam directions. The ra-
dius of the inner arc of the target is 1.5 cm and that of the outer arc is 5 cm.
The OAR has radius 1cm and the external ROI has radius 8 cm.

II.H. Computational study

A computational study in which IMPT was applied to the
two-dimensional geometry was performed. Plans were opti-
mized with the expected value, CVaR with parameter α = 0.5,
and worst case optimization methods. These methods handle
the uncertainties with increasing conservativeness. First, the
methods were applied for the case of only systematic errors;
second, for the case of only random errors; and third, for the
case of both systematic and random errors. As a reference,
a conventional plan with a 5 mm margin as sole means of
handling uncertainties was optimized. The results for the con-
ventional plan are shown in Appendix B.

For all optimizations, the optimization functions used
were the quadratic penalties on dose deviations described in
Sec. II.C. The target had a normalized prescribed dose of 1,
whereas the OAR and the external ROI had prescribed max-
imum doses of 0. The importance weights were 100, 10, and
1 for, respectively, the target, OAR, and external ROI. For
systematic errors and for the combination of systematic and
random errors, the effects of the importance weights were
assessed by additional optimizations for ten different target
weights, logarithmically spaced in [100, 1000].

The systematic errors were assumed to consist of range
and setup errors. The range errors were modeled as uniform
scalings of the patient densities with probability distribution
taken from a discretized normal distribution with standard
deviation 3.5%, corresponding to a shift of about 2.5 mm
at the depth of the OAR. Absolute deviations larger than
two standard deviations were cutoff and the distribution
was renormalized. The setup uncertainties were assumed to
be isotropic and with probability distribution in each axis
direction taken from a discretized normal distribution with
standard deviation 2.5 mm. A cutoff was applied such that
the 95% most probable scenarios in the joint distribution
were included and the distribution was renormalized.

Only setup errors were assumed to constitute the random
errors, since range errors are likely systematic.1 The random

FIG. 2. Color table indicating the dose levels for the dose distributions. The
tick labels denote percentage of the reference dose level, which is 1 for total
doses and 0.5 for beam doses.

setup error probability distribution in each fraction and axis
direction was taken from a discretized normal distribution but
with the standard deviation a random variable uniformly dis-
tributed in [0, 5] mm. A cutoff was applied such that the 99%
most probable scenarios in the joint distribution were included
and the distribution was renormalized.

Five density scalings and five random error standard devi-
ations were included. A grid of shifts with 2.5 mm spacing
was used as basis for the setup scenarios, and the most prob-
able scenarios within the cutoffs given above were included.
This resulted in 89 scenarios for systematic errors and 109
scenarios for random errors. Since this study deals with the
aims of the methods rather than the accuracy of the scenario
discretization, the same scenarios were used in the optimiza-
tion and in the evaluation.

Proton pencil beam kernels were calculated with the pen-
cil beam dose algorithm of the RayStation treatment plan-
ning system version 2.6 (RaySearch Laboratories, Stockholm,
Sweden). The line spacing was 2.5 mm and the energy spac-
ing was 2.5 mm in water. The optimizations were performed
in MATLAB version 7.9 using the sequential quadratic pro-
gramming solver SNOPT version 7.2.20

The methods are assessed by comparison of their total and
beam dose distributions, line doses, dose-volume histogram
(DVH) families over simulated realizations of errors, trade-off
curves, and dose-probability histograms (DPHs). The trade-
off curves show how the target D95 is traded for the OAR
D25 in the worst (lowest target D95, highest OAR D25), mean,
and best (highest target D95, lowest OAR D25) case over a
number of simulated treatments when the importance weight
of the target optimization function is changed. The DPHs
show the probability of achieving a given dose-to-volume
for a number of dose-to-volume levels (D95 and D95 for the
target, D5 and D2 for the OAR), where each level is repre-
sented by a curve. A DPH provides information such as “with
90% probability, D95 of the target will be 0.97 or higher.”
The DPHs and trade-off curves are based on 1000 simu-
lated treatments subject to the considered uncertainties, ex-
cept when only systematic errors are handled, in which case
the 89 systematic error scenarios are used. The color table
indicating the levels of the dose distributions is displayed in
Fig. 2.

III. RESULTS

III.A. Systematic errors

When considering only systematic range and setup er-
rors, the formulation (3) was applied. Total doses resulting
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from the robust methods are displayed in Fig. 3. As the con-
servativeness of the method increases, the high-dose region
outside the target is extended and the dose in a semicircle
around the OAR is escalated. The total doses in the perturbed
scenario display less underdosage for the worst case method
than for the other methods.

The beam doses in Fig. 4 show that the robust methods ac-
count for interplay between beams by using small beam dose
gradients. The oblique beams patch smoothly, which makes
for low sensitivity to relative mispositioning. The worst case
method uses the 0◦ beam less than the other methods and the
CVaR method uses that beam more.

The DVH families in Fig. 5 show that the target coverage
robustness increases with the conservativeness of the method.
For the worst case method, the best case OAR dose is slightly
worse than in the other methods.

Figure 6(a) displays the trade-off curves between target
coverage and OAR sparing, as resulting when the importance
weight of the target optimization function is increased.
It shows that the worst case trade-off improves with the
conservativeness of the method. The mean and best case
trade-off curves are more similar than the worst case curves,
but the worst case optimization leads to worse mean and best
case trade-off than the other methods. The difference in best
case trade-off is especially large for low target weights. It is
notable that the CVaR method leads to a better mean trade-off
than the other methods. The DPHs in Fig. 6(b) also show
that the target coverage increases with the conservativeness,
and that the worst case method often leads to higher
OAR doses than the other methods, although it has lower
probabilities for the highest OAR doses.

III.B. Random errors with fixed probability distribution

When only random errors with an assumedly known prob-
ability distribution were handled, an objective function con-
sisting of terms like (4) was used. The random error standard

deviation was assumed to be 5 mm. Figure 7 shows the re-
sulting total dose distributions for the number of fractions n
in {30, ∞} and the line doses for n in {1, 5, 30, ∞}. The dose
distributions become increasingly undulated as the number of
fractions increases.

III.C. Random errors with uncertain
standard deviation

To reduce dose variability, uncertainty in the standard de-
viation of the random errors was included in the optimiza-
tion. The methods were formulated according to (5). The stan-
dard deviation was assumed to be uniformly distributed in
[0, 5] mm. It was assumed that there were no systematic
errors.

For all methods, the resulting dose distributions for n = 30
and n = ∞ were very similar (root mean square differences
below 0.02). The case with n = ∞ has no variance terms that
penalize heterogeneity and is thus more likely to result in
a heterogeneous plan. This case is therefore the main focus
of the subsequent presentation. Total and beam doses of the
CVaR method for n = ∞ are displayed in Fig. 8. The doses
of the other robust methods were similar, with root mean
square differences from the CVaR doses below 0.02 for total
as well as beam doses. The corresponding values for the
conventional plan, shown in Appendix B, were an order of
magnitude larger. Accounting for uncertainty in the standard
deviation resulted in much reduced dose variance compared
to the case with fixed standard deviation.

DVH families for 100 realizations of random standard de-
viations and random errors in 30 fractions (but with n = ∞
during optimization) for the robust methods are shown in
Fig. 9. Like the dose distributions, the DVH families are quite
similar between the methods, but the target coverage robust-
ness increases with the conservativeness. This difference is
more readily seen in the DPHs, shown in Fig. 10. The DPHs,

(a) Expected value, total dose (b) CVaR, total dose (c) Worst case, total dose

(d) Expected value, total dose (e) CVaR, total dose (f) Worst case, total dose

FIG. 3. Total doses for the robust methods for systematic errors. (a)–(c) Nominal scenario; and (d)–(f) isocenters shifted 0.5 cm to the right and density two
standard deviations lower than measured.
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(a) Expected value, 0◦ beam (b) CVaR, 0◦ beam (c) Worst case, 0◦ beam

(d) Expected value, 45◦ beam (e) CVaR, 45◦ beam (f) Worst case, 45◦ beam

(g) Expected value, 0◦ beam (h) CVaR, 0◦ beam (i) Worst case, 0◦ beam

(j) Expected value, 45◦ beam (k) CVaR, 45◦ beam (l) Worst case, 45◦ beam

FIG. 4. Beam doses for the robust methods for systematic errors. (a)–(f) Nominal scenario; and (g)–(l) isocenters shifted 0.5 cm to the right and density two
standard deviations lower than measured.

moreover, show that the OAR doses decrease as the conserva-
tiveness increases.

Line doses are displayed in Fig. 11. All methods keep a
horn at the left-hand side for n > 1: while reducing the dose
variance, some dose escalation in a semicircle around the
OAR is kept. There is also a slight dose escalation along the

proximal target periphery. The height of the horn increases
slightly with the conservativeness of the method.

For the worst case method, only the constraints for the ex-
treme scenarios with standard deviations 0 and 5 mm were
satisfied with equality in the optimum. The impact of the sce-
nario with zero standard deviation increased with the number
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FIG. 5. DVH families for the robust methods for systematic errors over the 89 systematic error scenarios. The dashed lines correspond to the nominal scenario
DVHs.
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FIG. 6. (a) Worst (lowest target D95, highest OAR D25), mean, and best (highest target D95, lowest OAR D25) case trade-off curves for the target importance
weight in [100, 1000]; and (b) DPHs. Both figures are resulting from the robust methods for systematic errors evaluated over the 89 systematic error scenarios.
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FIG. 7. Total nominal scenario doses for the expected value optimization for random errors with fixed standard deviation for the number of fractions
(a) n = 30 and (b) n = ∞; and (c) line doses for n in {1, 5, 30, ∞} taken along the line shown in Fig. 1.
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FIG. 8. Nominal scenario total and beam doses for the CVaR optimization for random errors with uncertain standard deviation. The other robust methods
resulted in similar dose distributions (root mean square differences from CVaR below 0.02).
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FIG. 9. DVH families for the robust methods for random errors with uncertain standard deviation over 100 realizations of random standard deviations and
random errors in 30 fractions. The optimizations were performed with n = ∞. The dashed lines correspond to the nominal scenario DVHs.
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FIG. 10. DPHs for the robust methods for random errors with uncertain
standard deviation based on 1000 simulations of random standard deviations
and random errors in 30 fractions. The optimizations were performed with
n = ∞.

of fractions, which was determined from the marginal costs
(Lagrange multipliers) of the constraints.

III.D. Systematic errors and random errors with fixed
probability distribution

To account for systematic errors as well as random errors
with an assumedly known probability distribution, the formu-
lation (3) was applied to functions consisting of terms like
(4). The random error standard deviation was assumed to be 5
mm. Figure 12 shows the resulting total dose distribution and
line doses. As in the case with only random errors, the dose
distributions are highly undulated.

III.E. Systematic errors and random errors
with uncertain standard deviation

When accounting for systematic errors and random errors
with uncertain standard deviation, the formulation (7) was
used. The robust methods were applied to their full extents.
Thus, when the expected value was optimized, the systematic
errors as well as the uncertain standard deviation were
handled by expectation, and analogously for the CVaR and

(a) CVaR, total dose
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FIG. 12. (a) Total nominal scenario dose for the CVaR optimization for sys-
tematic errors and random errors with fixed standard deviation. The number
of fractions n = ∞. The other robust methods resulted in similar heteroge-
neous dose distributions, which is reflected in inset (b), the line doses taken
along the line shown in Fig. 1.

worst case methods. The random errors were always handled
by expectation under the approximation of infinitely many
fractions.

The resulting total and beam dose distributions are shown
in Figs. 13 and 14. Accounting for the random standard de-
viation reduces the undulations that were present for the case
with fixed standard deviation. The doses share most charac-
teristics with the case of only systematic errors: the high-dose
regions extend outside the target and there are dose escala-
tions in a semicircle around the OAR. There is, however, also
a small increase in dose along the proximal target periphery,
as when only random errors with uncertain probability distri-
bution were accounted for. All these effects increase with the
conservativeness of the method.

DVH families for 100 realizations of systematic errors,
random standard deviations, and random errors in 30 frac-
tions (but with n = ∞ during optimization) are displayed in
Fig. 15. The worst case method results in more robust target
coverage and, for most volumes, higher OAR doses than the
other methods.

Trade-off curves between target coverage and OAR spar-
ing for the different methods are shown in Fig. 16(a). The
characteristics are the same as when only systematic errors
were included: the worst case trade-off curves improve with
the conservativeness of the method, worst case optimization
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FIG. 11. Nominal scenario line doses taken along the line shown in Fig. 1 for the robust methods for random errors with uncertain standard deviation for the
number of fractions n in {1, 5, 30, ∞}.
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(a) Expected value, total dose (b) CVaR, total dose (c) Worst case, total dose

FIG. 13. Total nominal scenario doses for the robust methods for systematic errors and random errors with uncertain standard deviation. The number of fractions
n = ∞.

leads to worse mean and best case trade-off than the other
methods, and CVaR leads to the best mean trade-off.

Like the dose distributions, the DVH families are remi-
niscent of those resulting when only systematic errors were
accounted for. Therefore, DPHs with respect to systematic
errors, random standard deviations, and random errors were
computed not only for the methods accounting for these er-
rors, but also for the methods accounting for systematic er-
rors only. The DPHs are shown in Figs. 16(b) and 16(c). The
target coverage robustness is better for the methods account-
ing for the different types of uncertainty than for the methods
accounting for systematic errors only, as is the OAR sparing.
Aside from that, similar observations can be made in both in-
sets: the target coverage robustness increases with the con-
servativeness, and that the worst case method often leads to
higher OAR doses than the other methods, although it has
lower probabilities for the highest OAR doses.

Line doses for the robust methods are presented in Fig. 17.
They are more homogeneous than when the standard devia-
tion was assumed fixed, but small horns remain. The worst
case method results in larger horns than the other methods

and moreover, due to its prevalent use of the oblique beams,
slower fall-off at the right-hand side.

IV. DISCUSSION

For complex patient cases, the realization of errors often
drastically changes the dose distribution, which makes mar-
gins of any size and shape inadequate to achieve robustness.
The incorporation of information about the uncertainties into
the optimization together with the utilization of robust opti-
mization techniques enable the optimization algorithm to ac-
count for these changes.

For all types of uncertainties, the target coverage ro-
bustness increased with the conservativeness of the applied
method. When systematic errors were included, worst case
optimization generally resulted in worse OAR doses than
the other methods. CVaR resulted in better target coverage
than expected value minimization, and at the same time sim-
ilar OAR sparing. For random errors, both target coverage
and OAR sparing improved with the conservativeness of the
method. This shows that it can be worthwhile to use more

(a) Expected value, 0◦ beam (b) CVaR, 0◦ beam (c) Worst case, 0◦ beam

(d) Expected value, 45◦ beam (e) CVaR, 45◦ beam (f) Worst case, 45◦ beam

FIG. 14. Nominal scenario beam doses when random errors with uncertain standard deviation are handled by the robust methods. The number of fractions
n = ∞.
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FIG. 15. DVH families for the robust methods for systematic errors and random errors with uncertain standard deviation over 100 realizations of systematic
errors, random standard deviations, and random errors in 30 fractions. The optimizations were performed with n = ∞. The dashed lines correspond to the
nominal scenario DVHs.

conservative methods than the expected value method to ac-
count for errors in IMPT.

The robust methods for systematic errors all lead to smooth
beam doses. This makes the total dose robust with respect to
the beam doses shifting relative to each other, which is an ef-
fect of errors. For random errors, the multiple fractions make
smooth beam fraction doses less important than for system-
atic errors: when the random errors are small, large beam
dose gradients pose little problem and when the random errors
are large, the beam doses are smoothened over the multiple
fractions.

The trade-off curves for systematic errors showed that the
expected value method resulted in unnecessarily high worst
case OAR doses for a given worst case target dose. The un-
derlying reason is that when the errors are handled by ex-
pectation, the penalties of the different scenarios are multi-
plied by their respective probabilities. For some scenarios,
the probability-adjusted target penalty will be balanced by the
penalties of dose-reducing goals. For volumes outside the tar-
get, the aim of the expected value optimization is thus to de-
liver doses between the prescribed target dose level and zero
dose. These in-between doses contribute only marginally to
the target coverage when systematic errors are realized. It is
more appropriate to aim at either zero dose (for better OAR
sparing) or a dose closer to the target prescription (for more
robust target coverage). The more conservative methods do so
to a higher degree.

The common technique of handling random errors by ap-
plying the optimization functions to the expectation of the
dose was observed leading to alternating hot and cold spots.
Incorporating uncertainty in the probability distribution of the
random errors into the optimization resulted in more homo-
geneous dose distributions. Even if the standard deviations
of the random errors are known, it may still be beneficial to
incorporate other standard deviations in the optimization to
achieve homogeneous fraction doses.

When uncertainties in the probability distributions of the
random errors were accounted for (more specifically, when
the nominal scenario was included), the difference between
the number of fractions n = 30 and n = ∞ was reduced. This
indicates that the assumption of infinitely many fractions may
be viable provided uncertainty in the probability distribution
of the random errors is handled. Under the approximation of
infinitely many fractions, the common minimum and maxi-
mum dose and DVH functions can be used in a robust setting,
since they are then to be applied to the expected dose. Be-
cause expectation is a linear operation, the expected dose is
generally less costly to compute than the dose variance.

That only the constraints of the scenarios with extreme
standard deviations were tight in the optimum of the worst
case method for uncertain standard deviations suggests a
computationally inexpensive approximation of the worst case
method. For all cases studied here, the same solution would
be achieved if only the extreme scenarios were included.
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FIG. 16. (a) Worst (lowest target D95, highest OAR D25), mean, and best (highest target D95, lowest OAR D25) case trade-off curves of the methods accounting
for systematic errors and random errors with uncertain standard deviation and n = ∞, for the target importance weight in [100, 1000]; (b) DPHs of the methods
accounting for systematic errors and random errors with uncertain standard deviation and n = ∞; and (c) DPHs of the methods accounting for systematic errors
only. The three figures are resulting from the robust methods evaluated over 1000 simulated treatments of systematic errors, random standard deviations, and
random errors in 30 fractions.
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FIG. 17. Nominal scenario line doses taken along the line shown in Fig. 1
for the robust methods for systematic errors and random errors with uncertain
standard deviation. The number of fractions n = ∞.

Chan et al.13 showed this to be necessarily true for a one-
dimensional geometry.

A problem with worst case optimization is that it neglects
all scenarios but the ones with highest objective value. In opti-
mum, it may thus be possible to reduce the objective values of
other, inactive, scenarios without increasing the objective val-
ues of the worst scenarios. Similarly, CVaR optimization ne-
glects the 1 − α best scenarios. It may therefore be beneficial
to add low-weighted expected value terms to the objectives of
these methods, which would give the optimization incentive
to always reduce the objective values of all, and not just the
worst, scenarios.

It is worth noticing that another reason lies behind the dose
escalations around the OAR resulting when only systematic
errors were accounted for, shown in Fig. 3, than that when

only random errors were accounted for, shown in Fig. 8 and
also reported by other authors.3, 4, 12 For systematic errors, the
dose is escalated to build sharper penumbrae against the OAR
(utilizing that the fall-off rate of Gaussian functions increases
with the distance from the peak), whereas for random errors,
the dose is escalated to ensure that underdosage in one frac-
tion is likely to be compensated in another.

V. CONCLUSION

Accounting for uncertainties is essential to achieve robust
radiation therapy treatment plans for complex cases. A class
of robust optimization methods doing so by utilizing more in-
formation than conventional in the optimization was studied.
The class includes expected value, CVaR, and worst case op-
timization. These methods were used to optimize IMPT plans
for a two-dimensional C-shaped phantom subject to system-
atic errors and random errors with uncertain standard devia-
tion. The target coverage robustness increased with the con-
servativeness of the method. For systematic errors, the OAR
doses for most volumes increased with the conservativeness,
and for random errors with uncertain distribution, they de-
creased. The inadequacy of handling random errors by opti-
mizing the expected dose was highlighted, and it was shown
that accounting for uncertainties in the probability distribution
of the random errors provides a possible remedy.
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FIG. 18. Doses and DVH families for the conventional method with a 5 mm margin. (a) Total dose; (b) and (c) beam doses. (d) DVH family over the 89
systematic error scenarios; (e) over 100 realizations of random standard deviations and random errors in 30 fractions; and (f) over 100 realizations of systematic
error as well as random standard deviations and random errors in 30 fractions. The dashed lines correspond to the nominal scenario DVHs.
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APPENDIX A: CVAR AS A MINIMAX STOCHASTIC
PROGRAM

The variables λ of the CVaR formulation (1) and the mini-
max stochastic formulation (3) have the same meaning: When
the expectation of the positive part operator in (1) is handled
by the introduction of additional variables μ, an equivalent
CVaR formulation is yielded according to the following:

minimize
λ,μ,x

λ + 1
α
pT μ

subject to μs ≥ f (d(x, s)) − λ, s ∈ S,

μ ≥ 0
x ∈ X .

Here, λ and μ can be identified with λ and μ in (3) with
a = 0 and b = (1/α)p.

APPENDIX B: CONVENTIONAL PLANNING

The robust methods may be contrasted to conventional
planning with a 5 mm margin. Its total and beam doses as
well as DVH families are shown in Fig. 18.
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