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Chapter 26

Robust optimization in
radiation therapy
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tion with Engineering Applications, T. Terlaky, M. F. Anjos, and S. Ahmed (editors), MOS-SIAM
Book Series on Optimization, SIAM, Philadelphia, 2017.

26.1 Introduction
Radiation therapy is the medical use of ionizing radiation. It is used to treat nearly two-thirds of the
cancer patients in the US [1], either alone or in combination with surgery or chemotherapy. Radiation
kills cells by damaging the cellular DNA. A curative treatment requires administration of a sufficiently
high dose to the tumor to eradicate the clonogenic cancer cells to an extent that results in permanent
tumor control. The amount of dose delivered to the surrounding healthy tissues must at the same time
be restricted for the treatment not to result in adverse effects. Radiation therapy treatment planning
aims to strike the right balance between the probability of tumor control and the probability of com-
plications due to the treatment.

In intensity-modulated radiation therapy (IMRT), the dose is delivered by external beams that are
incident to the patient from multiple directions. The fluences over the cross-sections of the beams are
modulated. This enables the superposition of the beam doses to conform close to the target while
avoiding the nearby healthy organs. The most common form of IMRT is delivered in the form of
high-energy photon beams. An illustration of a photon-mediated IMRT plan is shown in Figure 26.1.
For a review of IMRT treatment planning, see Bortfeld [4]. An alternate treatment modality using
external beams is intensity-modulated proton therapy (IMPT). A key difference between proton and
photon beams is that proton beams have a finite and controllable range with a sharp increase in the
dose deposition at the end of the range—the Bragg peak. The possibility to control the range of the
protons provides an additional degree of freedom compared to photon beams. Disadvantages are that
the proton equipment is more costly, and that protons are more sensitive to errors. The sensitivity
to errors makes robustness an especially important topic for IMPT. For a review of IMPT treatment
planning, see Schwarz [26].

Because the DNA of healthy cells is repaired to a higher degree than that of malignant cells, dividing
the radiation therapy treatment into treatment fractions increases the chances of achieving complication-
free tumor control. Thus, treatments are typically divided into 30–40 fractions. When the patient is
positioned for a treatment, there is an inevitable risk that the patient position relative to the beams
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2 Chapter 26. Robust optimization in radiation therapy

Figure 26.1. An IMRT plan for a head and neck case. Each beam is delivered as a sequence of beam profiles
shaped by a multi-leaf collimator made of a blocking material, see (a). The superposition of beam profiles enables modula-
tion of the fluence from a single direction, see (b). The superposition of doses from multiple beams yields a 3D modulated
dose, see (c). Illustration adapted from Fredriksson [14].

differs from what was planned. The conventional way of handling this uncertainty is to deliver high
dose to an enlarged target volume, while trying to protect enlarged regions encompassing the sensitive
organs. Such a use of margins of course aggravates the conflicts between the high and low dose regions.
More elaborate methods that explicitly take the effects of the possible errors into account during the
planning of radiation therapy treatments can yield plans that are robust to errors while delivering lower
doses than margin-based plans. Many of these methods are based on robust optimization.

For photon-mediated IMRT, robust optimization methods are usually employed in order to dispense
with margins and instead better exploit the fact that the patient geometry changes under and between
treatment fractions: if the target doses in some fractions become too low, this can be compensated by
higher doses in other fractions. This can lead to solutions that are almost as robust as margin-based
plans, but that deliver lower total dose.

Proton beams are highly dependent on the density of the traversed medium. If the patient is slightly
misaligned or the patient anatomy has changed between planning and delivery of the treatment, the
delivered dose distribution might be deformed compared to the planned one. Because errors can result in
deformed dose distributions, margins do not provide the intended robustness for IMPT plans. Methods
for robust IMPT planning have therefore generally been oriented towards compensating for the lack of
functioning margins by ensuring that the worst case outcome becomes as beneficial as possible. This can
lead to solutions that are more robust than margin-based IMPT plans while at the same time delivering
lower doses to healthy structures.

26.2 Treatment planning and optimization
The goal of radiation therapy treatment planning is to find a treatment plan that has as high a probability
as possible of curing the disease. Computed tomography (CT) images provide a 3D representation of the
patient geometry that guides the treatment planning process. The clinician delineates the boundaries
of the regions of interest (ROIs) on the CT images. The ROIs are typically the cancerous regions that
are to be irradiated and the healthy organs—the organs at risk (OARs)—that are to be spared during the
treatment.

An IMRT treatment depends on tens of thousands of variables representing the settings of the treat-
ment machine, such as settings for the collimating leaves that shape the beam profile, shown as (a) in
Figure 26.1. Determining all of these manually would be impractical. Therefore, optimization is used
to find settings that result in a high-quality treatment. From the optimization variables, the resulting
dose absorbed by the patient, measured in Gray, is calculated. The dose is scored on the basis of an
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26.3. Uncertainties 3

objective function that measures the quality of the dose. For dose computation and optimization to be
made possible, the patient geometry is discretized into a grid of volume-elements called voxels. For a
survey of IMRT treatment plan optimization, see Romeijn et al. [24].

For brevity, the following exposition will be concerned with a patient that has one target with
voxels indexed by the set T and one OAR with voxels indexed by the set O . The set of all voxels in the
irradiated region is denoted by V . The inclusion of additional structures is straight-forward.

26.3 Uncertainties
Among the many sources of uncertainty that can affect a radiation therapy treatment are errors in
the alignment of the patient during the CT image acquisition [29], erroneously delineated ROIs [12],
changes in the ROI geometries [6], and errors in the positioning of the patient relative to the beams [16].
The effects of motion on photon-mediated IMRT plans have been reviewed by Webb [31], and the effects
on IMPT plans by Lomax [19].

To great generality, the uncertainties can be modeled as a random variable S picking an error scenario
from the set S of possible scenarios. The scenario set must generally be discretized to become fit for
use in tractable optimization problems, and it will henceforth be assumed that the number of elements
in S , denoted by |S |, is finite.

The expected value of a random variable Y under a probability measure π is denoted by Eπ[Y ] and
is given by

Eπ[Y ] =
∑

s∈S
πs ys ,

where ys is the value that Y takes under scenario s (in the present case of finitely many scenarios, π is a
probability mass function). The a priori probability measure, prescribing the historically measured or
assumed probability to each scenario, is denoted by p. The standard deviation is only considered under
p and is denoted by

σ(Y ) =
√

√

√

∑

s∈S
ps

�

ys −Ep[Y ]
�

.

26.4 Scenario doses
The dose distribution d (x; s), illustrated by (c) in Figure 26.1, is a function of the optimization variable
vector x and of the scenario s . All methods that are reviewed in the following section rely on a linear
relationship between the dose distribution and the optimization variables, i.e.,

d (x; s) =D(s)x

for some matrix D(s). The dose di (x; s) to voxel i is then given by di (x; s) =Di (s)x, where Di (s) is the
i th row of D(s). A common setting in which linearity holds is when the variable vector x represents
a discretization of the beam fluences into area elements, illustrated by (b) in Figure 26.1. Each column
of the matrix D(s) is then the vector of voxel dose depositions that results when the fluence is set to
unity in one of the beam fluence area elements. In IMPT, such a linear representation corresponds to
deliverable machine settings, whereas in photon-mediated IMRT, the beam fluences are only indirectly
controllable via superposition of multi-leaf collimator shapes, see (a) in Figure 26.1. A conversion step
from beam fluences into deliverable machine settings is thus required when the linear representation is
used.
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4 Chapter 26. Robust optimization in radiation therapy

26.5 Robust optimization methods used in treatment planning
This section provides a survey of robust optimization methods that have been used to generate robust
treatment plans. The robust optimization methods are presented in a distilled form that highlights their
distinguishing features. Several natural variations and extensions of the methods are possible (and have
been used): e.g., all considered methods can be modified in order to emphasize the nominal scenario,
corresponding to no error, by the addition of terms penalizing nominal dose deviations to the objective,
or to emphasize the reduction of the total dose by the addition of terms penalizing any dose to V . Note
that methods such as stochastic programming have also been used to achieve robustness [28].

26.5.1 Distributional robustness via linear programming

Lung cancer treatments are affected by intrafraction motion—that patient motions occur during the
delivery of the treatment [17]. The effect on the dose of intrafraction motion is an averaging of the
doses d (x; s) delivered during different phases of the motion, modeled by the scenario s , weighted by
the proportion of time, ps , spent in each phase. The use of a margin that covers the position of the
target over all phases can yield fully robust target coverage. However, some phases can be less favorable
than others. If the optimization algorithm is informed about how the patient geometry changes over
the phases, it may be able to deliver a sufficient dose to the target while reducing the dose to healthy
tissues.

Because intrafraction motion results in an averaging of the phase doses, optimizing an averaged dose
distribution may seem like the path forward. Doing so, however, results in heterogeneous dose distri-
butions, the robustness of which is highly dependent on that the averaging realized during the delivery
of the treatment is the same as that applied during planning. This sensitivity to model uncertainty has
been found under various alterations of the treatment plan optimization problem [8, 13, 28].

Chan et al. [8] address the problem that the time spent in each phase can differ from the times
assumed during the treatment planning. They introduce a method in which the fraction of time spent
in each phase is considered uncertain and only known to lie within some bounds. The fraction of time
πs that is spent in phase s is bound by as ≤πs ≤ bs , where the bounds are such that 0≤ as ≤ ps ≤ bs ≤ 1
holds for the a priori distribution p. An illustration of this is shown in Figure 26.2. The uncertainty

Figure 26.2. An illustration of the a priori distribution p of times spent in each phase s from the set S and
the bounds a and b on the true distribution π.
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26.5. Robust optimization methods used in treatment planning 5

setU of possible fractions of time spent in the phases is then defined by

U =
¨

π ∈R|S | : a ≤π≤ b ,
∑

s∈S
πs = 1

«

. (26.1)

They minimize the total dose delivered under the a priori distribution p subject to constraints requiring
the dose to each target voxel to exceed a reference dose level under all distributions π fromU . This is
formulated mathematically as

minimize
x≥0

∑

i∈V
Ep [di (x; S)]

subject to Eπ [di (x; S)]≥ δi ∀π ∈U , ∀i ∈ T .
(26.2)

Note that optimization of expectations is the fundamental formulation of the intrafraction motion
problem, and that (26.2) introduces robustness by the constraints for allπ inU . When a 6= b , this prob-
lem has infinitely many constraints becauseU contains infinitely many points. However, the objective
and the constraints are linear, and the uncertainty setU is polyhedral, so there exists a robust counter-
part to (26.2) that is a linear program with finitely many constraints (see Ben-Tal and Nemirovski [2]
and Bertsimas and Sim [3]). To derive the robust counterpart, the first observation to make is that for
each i ∈ T , if the constraint holds for the worst π inU , then it holds for all of them. This yields the
equivalence

Eπ [di (x; S)]≥ δi ∀π ∈U ⇔ min
π∈U

¨

∑

s∈S
πs di (x; s)

«

≥ δi (26.3)

where it has been used that Eπ [di (x; S)] =
∑

s∈S πs di (x; s). By strong duality of linear programming,
the value of the minimum in (26.3) equals the value of its dual

max
λi ,µi ,νi







λi + aTµi − b T νi :
λi +µi ,s − νi ,s ≤ di (x; s) ∀s ∈S
µi , νi ≥ 0







, (26.4)

where λi is a scalar whereas µi and νi are vectors of length |S |. The value of any λi + aTµi − b T νi
satisfying the constraints in (26.4) is bounded from above by the minimum in (26.3), so the maximum
operation can be discarded and the robust counterpart of (26.2) can be formulated as

minimize
x,λ,µ,ν

∑

i∈V
Ep [di (x; S)]

subject to λi + aTµi − b T νi ≥ δi ∀i ∈ T
λi +µi ,s − νi ,s ≤ di (x; s) ∀s ∈S , ∀i ∈ T
x,µ, ν ≥ 0,

(26.5)

which is a linear programming problem with finitely many constraints.
The plans resulting from this method provide target coverage under all distributionsπ inU of times

spent in each phase. At the same time, they have been found to deliver substantially lower total dose
than plans planned with margins [8].

26.5.2 Probabilistic robustness via second-order cone programming

During the course of a radiation therapy treatment, the patient geometry changes. The interfraction
motion—the changes to the geometry occurring between the treatment fractions—is due to that the
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6 Chapter 26. Robust optimization in radiation therapy

patient may be positioned differently during each treatment fraction, and that the patient anatomy
changes due to organ motion, tumor shrinkage, and weight loss.

The total dose delivered to the patient is the sum of n fraction doses d (x; S j ) for j = 1, . . . , n, where
the random variable S j selects the scenario in fraction j . Under the assumption that S1, . . . , Sn are in-
dependent and identically distributed, distributed like S, and using that the number of fractions n is
fairly large (typically 30–40), the central limit theorem implies that the total dose to a given voxel is
approximately normally distributed.

An approach that has been used to find plans that are robust to interfraction motion and setup errors
is to optimize towards achieving high probability that the dose to each voxel, considered individually, is
above or below the desired dose level. For an OAR voxel i , achieving a low probability ε that the total
dose exceeds some dose level δO can be formulated as the constraint

P

 

n
∑

j=1

di (x; S j )>δ
O

!

≤ ε. (26.6)

When the total dose
∑n

j=1 di (x; S j ) is assumed to be normally distributed, it is fully characterized by its
expected value µ= nEp[di (x; S)] and standard deviation σ =

p
nσ(di (x; S)), and (26.6) is equivalent to

P
�

Z > (δO −µ)/σ
�

≤ ε ⇔ (δO −µ)/σ ≥ z1−ε,

where Z denotes a standard normal deviate and z1−ε is chosen such that P(Z > z1−ε) = ε. This expres-
sion can be rewritten as

µ+ z1−εσ ≤ δ
O . (26.7)

Similarly, requiring a target voxel i to achieve a lower probability than ε of falling below the level δT low

is equivalent to requiring that
µ− z1−εσ ≥ δ

T low. (26.8)

The left-hand sides of (26.8) and (26.7) can be used to define modified dose distributions

d low
i (x) =

�

nEp[di (x; S)]− z1−ε
p

nσ(di (x; S))
�

+
,

d high
i (x) = nEp[di (x; S)]+ z1−ε

p
nσ(di (x; S)),

(26.9)

where nEp[di (x; S)] and
p

nσ(di (x; S)) have been substituted for respectivelyµ and σ , and the positive
part is taken of d low

i (x) because dose cannot be negative.
Chu et al. [11] relax the constraints (26.7) and (26.8) into objectives by penalizing the worst violation

of these constraints over the voxels for each structure. They solve the optimization problem

minimize
x≥0

wT low max
i∈T

n

�

δT low− d low
i (x)

�

+

o

+

wT high max
i∈T

n

�

d high
i (x)−δT high

�

+

o

+
∑

s∈S
wTs max

i∈T

¦

�

δTs − di (x; s)
�

+

©

+

wO max
i∈O

n

�

d high
i (x)−δO

�

+

o

,

(26.10)

where wT low, wT high, wTs , and wO are penalty weights for failing to reach the minimum target dose
level δT low, for exceeding the maximum target dose level δT high, for failing to reach the minimum
target dose level δTs in scenario s , and for exceeding the maximum OAR dose level δO , respectively.
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26.5. Robust optimization methods used in treatment planning 7

The nonlinear program (26.10) can be rearranged into a second-order cone problem, which is more
practical to solve: The maxima and positive parts in (26.10) can be avoided by the introduction of
auxiliary linear variables and constraints (see, e.g., Vanderbei [30]). The modified dose distributions
contain standard deviation terms that require second-order cone constraints. The objective in (26.10)
becomes reducible to a linear function when auxiliary linear variables y low and yhigh are substituted for
d low

i (x) and d high
i (x), and constraints on the form y low

i ≤ d low
i (x) and yhigh

i ≥ d high
i (x) are introduced.

These constraints are equivalent to

z1−ε
p

n‖RAi x‖2 ≤ nEp [di (x; S)]− y low
i and z1−ε

p
n‖RAi x‖2 ≤ yhigh

i − nEp [di (x; S)] ,

where the matrix Ai consists of the rows Di (s) of the dose matrix for all scenarios s in S and R =
P 1/2(I − e pT ), in which P = diag(p), I ∈ R|S |×|S | is the identity matrix, and e ∈ R|S | is the vector
of all ones. After the introduction of auxiliary variables and constraints, problem (26.10) can thus be
equivalently formulated as a second-order cone programming problem, see Chu et al. [11] for details.

The formulation of the second-order cone constraints indicates a relationship to robust program-
ming with ellipsoidal uncertainty sets (see Ben-Tal and Nemirovski [2]). Indeed, the program may be
interpreted in terms of robust linear programming. The dose to voxel i is then modeled to be given by
aT

i x for some uncertain vector ai from the ellipsoidal uncertainty setUi , given by

Ui =
¦

nEp[Di (S)]+Wi ui : uT
i ui ≤ 1

©

.

For each voxel i from the set O of OAR voxels, the optimization problem is subject to constraints

aT
i x ≤ δO ∀ai ∈Ui ⇔ nEp[d (x; S)]+ max

u:uT u≤1

�

uT W T
i x

	

≤ δO .

The maximum over u equals ‖W T
i x‖2. Thus, when z1−ε

p
nRAi has been substituted for W T

i , this
constraint is seen to be equivalent to (26.7).

Ólafsson and Wright [22] use a model similar to the model (26.10) of Chu et al. [11], but take into
account uncertainty due to Monte Carlo dose matrix computation in addition to organ motion. They
solve the problem

minimize
x≥0

∑

i∈T
wT low

i

�

δTi − nEp[di (x; S)]
�

+
+

∑

i∈T
wT high

i

�

nEp[di (x; S)]−δTi
�

+
+

∑

i∈O
wOi

�

d high
i (x)−δOi

�

+

subject to d low
i (x)≥ δ

T low
i , ∀i ∈ T

d high
i (x)≤ δT high

i , ∀i ∈ T .

(26.11)

Like (26.10), this program can be equivalently formulated as a second-order cone program.
The plans optimized with probabilistic robustness requirements were found to provide similar ro-

bustness with respect to target coverage as planning with margins (when evaluated against the assumed
probability distribution p), while reducing the total dose and the doses to the OARs [11, 22].

26.5.3 Worst case robustness via nonlinear programming

For margins to provide robustness against errors, the effects of the errors must be well approximated by
rigid translations of the dose distribution. If not, there is no guarantee that the dose distribution will
cover the target after an error has occurred. The beam doses of IMPT treatments are often drastically
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8 Chapter 26. Robust optimization in radiation therapy

(a) Margin-based, planned setup (b) Margin-based, shifted setup

Figure 26.3. Plan optimized to deliver dose to an enlarged target region. (a): the planned dose distribution
covers the target; (b): the dose distribution resulting when the patient is misaligned yields too low dose to the target.

deformed as a result of errors. Figure 26.3 shows the effects of a setup error on the dose distribution of
a plan reached by margin-based planning. The sensitivity to errors of IMPT has motivated the devel-
opment of methods that generate plans that are robust in the sense intended by margin-based planning.
Such methods do not exploit that the target may be located differently in different treatment fractions,
such as the methods described in Sections 26.5.1 and 26.5.2. Instead, these methods try to achieve tar-
get coverage and OAR sparing under the, say, 95 % most probable error scenarios that can occur, even
if the same scenario occurs in each fraction. This is similar to how margins are specified to provide a
given probability of target coverage. Thus, this type of method can be thought of as performing inverse
planning of margins, because instead of specifying margins in order to achieve robustness against uncer-
tainties, the treatment planner specifies the uncertainties and leaves it to the optimization algorithm to
determine where to deposit dose in order to achieve robust plans.

To this end, Fredriksson et al. [15] consider a nonlinear treatment plan optimization problem and
minimize the penalty of the objective function under the worst case scenario. The problem is formu-
lated as

minimize
x≥0

max
s∈S

�

wT f T (d (x; s))+wO f O (d (x; s))
	

, (26.12)

where f T and f O are nonlinear functions penalizing deviation from the planning goals of the target and
OAR doses, respectively, such as those described by Oelfke and Bortfeld [21]. Because of the maximum
in the objective, this problem is not continuously differentiable, which can result in problems with
convergence for gradient-based optimization solvers. This disadvantage is alleviated when the problem
is posed on epigraph form, i.e., when an auxiliary variable λ is substituted for the objective, and this
variable is constrained by λ≥ wT f T (d (x; s))+wO f O (d (x; s)) for all scenarios s inS . Chen et al. [10]
use a similar method in a multiobjective optimization framework, but apply the maximum over S to
each objective constituent f T and f O individually.

It has been empirically found that the worst scenarios are typically at the boundary of the un-
certainty region [7, 9, 13], i.e., that the worst scenarios are those corresponding to the largest devi-
ations from the planning image. This observation can be used to reduce the computational cost of
solving (26.12), by removing non-boundary scenarios from S .

Minimizing the worst case penalty has been found to result in more robust target coverage than
heuristic methods using margins, uniform beam doses, and planning with the densities in the target
region overridden, while at the same time yielding lower doses to healthy structures [15]. Figure 26.4
shows the effects of a setup error on the dose distribution of a plan reached by worst case optimization
according to (26.12).
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(a) Worst case optimized, planned setup (b) Worst case optimized, shifted setup

Figure 26.4. Plan optimized to deliver dose to the target in the worst case scenario. (a): the planned dose
distribution covers the target; (b): the dose distribution resulting when the patient is misaligned still covers the target.

26.5.4 Voxel-wise worst case robustness via linear and nonlinear programming

The concept of worst case dose distributions was introduced by Lomax et al. [20] as a tool to evaluate
the robustness of IMPT plans. They define modified dose distributions d low and d high according to

d low
i (x) =min

s∈S
{di (x; s)} and d high

i (x) =max
s∈S
{di (x; s)} .

How much a treatment plan can deteriorate is bounded by how well d low meets the minimum target
dose goals and how well d high meets the maximum OAR dose goals. Note the similarity to the modified
dose distributions (26.9) used to bound the probability of over- and underdosage.

Optimization of the worst case dose distributions was first considered by Unkelbach et al. [27] and
later by Pflugfelder et al. [23]. The optimization problem using the worst case dose distribution takes
the form

minimize
x≥0

wT low f T low(d low(x))+wT high f T high(d high(x))+wO f O (d high(x)), (26.13)

where f T low penalizes deviations from the planning goals specifying what the target dose should exceed,
while f T high and f O penalize deviations from the goals specifying what respectively the target and OAR
doses should fall below. For the program to be convex, f T low should be non-increasing and convex
whereas f T high and f O should be non-decreasing and convex (see, e.g., Boyd and Vandenberghe [5,
Section 3.2.4]).

Unkelbach et al. [27] solve (26.13) on the form of a robust linear programming problem. They
consider errors that are independent per beam, which results in a scenario set S of exponential size in
the number of beams. By using linear programming duality in a way similar to that transforming (26.2)
into (26.5), they reduce the number of constraints used to specify d low and d high from an exponential
into a polynomial number.

Pflugfelder et al. [23] optimize the worst case dose distributions in a nonlinear programming setting.
They apply the penalty functions to d low and d high directly, without introducing auxiliary variables and
constraints to alleviate the discontinuous gradients that result from the minima and maxima. These
discontinuities have not been observed to pose any practical problems. A plausible explanation is that
the number of voxels is generally large so when one voxel is affected by a discontinuity, many others
are not.

The nonlinear functions f T high, f T low, and f O that have been employed in the literature often
penalize dose deviations linearly or quadratically, i.e., are on the form

f T low(d low) =
∑

i∈T

�

δT low− d low
i

�q

+
and f O (d high) =

∑

i∈O

�

d high
i −δO high

�q

+
,
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10 Chapter 26. Robust optimization in radiation therapy

where q is 1 or 2 (and with f T high on the same form as f O , but for the target region). This hints at
the close relationship between the voxel-wise worst case formulation (26.13) and the probabilistic for-
mulations (26.10) and (26.11) of Chu et al. [11] and Ólafsson and Wright [22]. The main difference
between these formulations lies in the choice of risk measure used to define the modified dose distri-
butions d low and d high: the probabilistic formulations use mean-deviation risk measures, whereas the
voxel-wise worst case formulation uses a max-norm risk measure. See Ruszczyński and Shapiro [25] for
details concerning general optimization of risk measures.

Optimization of the worst case dose distributions has been found to result in more robust target
coverage and higher doses to healthy structures than optimization of the nominal dose distribution
(without a margin) [23, 27]. When compared to conventional planning with margins, it not only re-
sulted in more robust target coverage, but also in lower doses to healthy structures [18]. The worst case
dose distribution has, however, been found to be overly conservative for evaluation compared to the
worst case scenario [7].

26.6 Conclusion
Robust optimization has great potential for improving radiation therapy treatments. For photon-mediated
IMRT, robust optimization methods like those in Sections 26.5.1 and 26.5.2 can yield treatment plans
that exploit the fact that the patient geometry changes during the course of the treatment. Although
margin-based plans can provide more robust target coverage, they do so by extending the high-dose re-
gion, which is arguably a crude means of increasing the robustness. The cost of doing so is exhibited by
the plans generated by robust optimization methods, which provide almost as robust target coverage,
but reduce the doses to the OARs as well as the total dose substantially.

For IMPT, where margins are often insufficient to generate robust plans, more advanced methods are
indispensable. Here, robust optimization not only provides lower doses to the healthy structures, but
moreover provides more robust target coverage than conventional methods. The robust optimization
methods that have been applied to IMPT planning, including those in Sections 26.5.3 and 26.5.4, have
been constructed to provide the type robustness intended by margins. There is likely even more to be
gained by methods that take into account that the patient anatomy changes during the treatment.

In conclusion, the success of robust optimization methods in radiation therapy points to the benefits
of (a) including additional information during the optimization, and (b) utilizing the information in
relevant ways. Still, robust optimization of radiation therapy treatment plans remains an active area of
research; there is more information to be utilized and further ways to do so.
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