
Minimax optimization for handling range and setup uncertainties
in proton therapy

Albin Fredrikssona�

Department of Mathematics, Optimization and Systems Theory, Royal Institute of Technology (KTH),
SE-100 44 Stockholm, Sweden and RaySearch Laboratories, Sveavägen 25, SE-111 34 Stockholm, Sweden

Anders Forsgren
Department of Mathematics, Optimization and Systems Theory, Royal Institute of Technology (KTH),
SE-100 44 Stockholm, Sweden

Björn Hårdemark
RaySearch Laboratories, Sveavägen 25, SE-111 34 Stockholm, Sweden

�Received 30 August 2010; revised 27 January 2011; accepted for publication 27 January 2011;
published 1 March 2011�

Purpose: Intensity modulated proton therapy �IMPT� is sensitive to errors, mainly due to high
stopping power dependency and steep beam dose gradients. Conventional margins are often insuf-
ficient to ensure robustness of treatment plans. In this article, a method is developed that takes the
uncertainties into account during the plan optimization.
Methods: Dose contributions for a number of range and setup errors are calculated and a minimax
optimization is performed. The minimax optimization aims at minimizing the penalty of the worst
case scenario. Any optimization function from conventional treatment planning can be utilized by
the method. By considering only scenarios that are physically realizable, the unnecessary conser-
vativeness of other robust optimization methods is avoided. Minimax optimization is related to
stochastic programming by the more general minimax stochastic programming formulation, which
enables accounting for uncertainties in the probability distributions of the errors.
Results: The minimax optimization method is applied to a lung case, a paraspinal case with
titanium implants, and a prostate case. It is compared to conventional methods that use margins,
single field uniform dose �SFUD�, and material override �MO� to handle the uncertainties. For the
lung case, the minimax method and the SFUD with MO method yield robust target coverage. The
minimax method yields better sparing of the lung than the other methods. For the paraspinal case,
the minimax method yields more robust target coverage and better sparing of the spinal cord than
the other methods. For the prostate case, the minimax method and the SFUD method yield robust
target coverage and the minimax method yields better sparing of the rectum than the other methods.
Conclusions: Minimax optimization provides robust target coverage without sacrificing the sparing
of healthy tissues, even in the presence of low density lung tissue and high density titanium
implants. Conventional methods using margins, SFUD, and MO do not utilize the full potential of
IMPT and deliver unnecessarily high doses to healthy tissues. © 2011 American Association of
Physicists in Medicine. �DOI: 10.1118/1.3556559�
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I. INTRODUCTION

By enabling control of the depths at which the dose deposi-
tions peak, intensity modulated proton therapy �IMPT� al-
lows for planned dose distributions that conform closely to
the target volume while limiting the dose to surrounding
healthy tissue. The Bragg peak positions are, however,
highly affected by the densities and materials of the volume
traversed by the incident protons. In combination with steep
beam dose gradients, this makes IMPT susceptible to errors.

Two influential error sources in proton therapy are range
and setup uncertainties. Range uncertainty may arise from
inaccuracies in the computed tomography �CT� imaging and
in the conversion from Hounsfield units to stopping power.1,2

Setup uncertainty is due to such factors as errors in the po-

sitioning of the patient and mechanical inaccuracies in the
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delivery unit.3 Failing to account for the uncertainties may
result in a delivered dose inferior to the planned one.2,4

Commonly, uncertainties are handled by using margins:
The clinical target volume �CTV� is expanded into a plan-
ning target volume �PTV� and planning is performed to irra-
diate the latter.3 An underlying assumption when using mar-
gins to account for uncertainties is that the effects of the
errors are well approximated by rigid shifts of the dose dis-
tribution. This assumption is inadequate for volumes of het-
erogeneous density, for which errors may drastically distort
the dose distribution due to the high density dependency of
proton beams. The modulated fluence that often results from
IMPT optimization is especially affected. Motivated by this
shortcoming, a method is developed to locate where to de-
posit dose in order to ensure robustness of the plan and thus

make the expansion of the CTV to account for range and

1672/1672/13/$30.00 © 2011 Am. Assoc. Phys. Med.

http://dx.doi.org/10.1118/1.3556559
http://dx.doi.org/10.1118/1.3556559
http://dx.doi.org/10.1118/1.3556559


1673 Fredriksson, Forsgren, and Hårdemark: Minimax optimization for handling uncertainties in proton therapy 1673
setup uncertainties unnecessary. In this method, information
about the uncertainties is incorporated in the problem formu-
lation and a minimax optimization is performed. The mini-
max optimization minimizes the objective function in the
worst case scenario and thus provides a bound on how much
the plan quality can deteriorate due to the errors. The prob-
ability distributions of the uncertainties need not be known,
but intervals of possible deviations must be specified.

Stochastic programming and robust optimization in IMPT
have been previously used by Unkelbach et al.,5 Chan,6 and
Unkelbach et al.7 They use two formulations: A nonlinear
optimization approach in which the expected value of the
objective function is minimized and a linear programming
approach in which the worst case dose deviation for each
voxel considered independently is minimized. Pflugfelder et
al.8 add a term using lower and upper bound dose estimates,
corresponding to delivering the worst case dose to each
voxel independently, to the objective function to account for
uncertainties in IMPT.

Building on linear programming formulations of the in-
tensity modulated radiation therapy �IMRT� optimization
problem, Chu et al.,9 Chan et al.,10 and Ólafsson and
Wright11 present robust approaches to account for geometric
uncertainty. Chan et al. use the robust formulation of Bertsi-
mas and Sim12 to account for errors in the probability distri-
bution of the motion. The other authors use the robust for-
mulation of Ben-Tal and Nemirovski13 to achieve a high
probability of sufficient dose in each voxel considered inde-
pendently.

Stochastic programming has been used to account for or-
gan motion and setup errors in IMRT optimization by, e.g.,
Löf et al.14,15 and Unkelbach and Oelfke.16 More recently,
Sobotta et al.17 suggested a method to maximize the prob-
ability of finding the penalty function values within given
intervals.

The minimax formulation presented in this paper is based
on the general nonlinear treatment plan optimization prob-
lem. For instance, quadratic penalties to deviations from
dose-volume criteria can be used, as described in Sec. II D.
Since different voxels may receive their worst doses in dif-
ferent scenarios, taking the worst dose for each voxel inde-
pendently leads to an overly conservative approximation of
the true worst case scenario. In the minimax approach, this
conservativeness is avoided by considering only physically
realizable scenarios, i.e., evaluating the full objective func-
tion in a number of scenarios and considering the worst of
these. Correlation between voxels is thereby taken into ac-
count. A minimax formulation for treatment plan optimiza-
tion using linear programming is mentioned by Chan6 as an
alternative to his formulation with independent voxels. In the
linear minimax formulation, several constraints are intro-
duced for each voxel in each scenario, which makes the pro-
gram intractable for clinically relevant cases. Our nonlinear
programming minimax approach enables a reduction of the
number of auxiliary constraints to the number of scenarios
and we have a tractable program. It also allows for the non-
linear optimization functions typically used in treatment

planning. We discuss how the minimax optimization method
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is related to the stochastic programming method and how the
minimax stochastic programming formulation generalizes
the methods and enables accounting for uncertainties in the
probability distributions of the errors.

II. METHODS

II.A. Uncertainty models

Range and setup uncertainties are considered, while un-
certainties due to organ motion are neglected in the present
paper. The uncertainties are assumed to be mutually indepen-
dent.

II.A.1. Range uncertainty

We model range errors by scaling the mass density of the
treatment volume uniformly. Such scaling may result from
measurement errors or errors in the conversion from Houn-
sfield units to stopping power. In effect, the range shifts of all
spots are correlated in the considered uncertainty model. The
model could be refined by taking into account that the un-
certainty in the stopping powers is a function of the Houn-
sfield unit values.

Assuming a uniform density change in the volume tra-
versed by a given spot, the radiological length of its shift will
be proportional to its radiological depth. Its depth dose curve
will consequently be stretched or contracted. The geometri-
cal distance that the spot is shifted will depend on the mate-
rial of the traversed volume. A small scaling of the density
might move the spot several centimeters: If it is planned to
hit the boundary of a lung tumor, a small scaling of the
density might move it to the lung wall.

II.A.2. Setup uncertainty

Setup errors are modeled as shifts of the beam isocenters.
The isocenters of all beams are assumed to be shifted
equally. Such errors correspond to misalignments of the pa-
tient relative to the gantry.

In general, a shift of the beam isocenters leads to a non-
rigid shift of the dose distribution. If a spot is shifted later-
ally so that it traverses a volume of different density than
planned, it will also be shifted longitudinally and its dose
distribution will be deformed. Small setup errors might thus
lead to large displacements of spots that travel close to and in
parallel with steep density gradients, such as along bone
edges.

II.A.3. Assessing the effects of the errors

To estimate the effects of the errors, the set of possible
scenarios is discretized and dose distributions are calculated
for each of the scenarios. In the plan evaluation, the plans
resulting from the optimization are evaluated by moving the
beam isocenters, scaling the mass density, and recomputing
the dose. So as not to bias the results, the evaluation encom-
passes scenarios other than those used in the optimization:
Finer sampling grids are used both for the density errors and

for the setup errors.
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During the minimax optimization, the effects of density
errors are computed by calculating dose for a number of
density scalings. The effects of setup errors are approximated
by moving the spot weights: The weights for all spots of a
given beam are represented in a three-dimensional spot
weight grid where the x- and y-coordinates specify the lateral
position in the beam eye’s view and the z-coordinate speci-
fies the energy. All weights in a given layer along the z-axis
consequently correspond to spots of the same energy, which
might be located at different physical depths in the patient.
Setup errors are approximated by moving the spot weights to
adjacent positions within the energy layers in the spot weight
grid and calculating the dose for the new weights using the
same dose contribution matrix as in the nominal scenario. A
shift of the beam isocenter at a distance equal to the spot
spacing along the x-axis of the grid can thus be approximated
by moving all spot weights one step along the x-axis in the
grid. If the isocenter is shifted in the beam direction, the dose
distribution is unchanged in this approximation. Since the
same dose contribution matrix can be used for several shifts,
only one matrix for each density error is required during the
optimization.

When accounting for setup errors smaller than the spot
line spacing, spots are precalculated on a finer grid than the
one intended for delivery �see Unkelbach et al.7�. If there are
no spot positions corresponding to precisely the same iso-
center shift for all beams, the positions are approximated by
the nearest neighbors. A hexagonal scanning pattern is used,
implying that each spot has six neighbors.

II.B. Nominal optimization formulation

Let x�Rn denote the vector of spot weights and let P
�Rm�n denote the matrix mapping spot weights to dose, so
that each row of P corresponds to a voxel and contains ele-
ments that specify the dose contribution from each spot to
the voxel under unit weight. Let d�x��Rm denote the dose
distribution vector as a linear function of the spot weights,
given by d�x�= Px. This will be used implicitly in the prob-
lem formulations below. The nominal treatment plan optimi-
zation problem is given by

minimize
x

f�d�x�� �1a�

subject to x � 0, �1b�

where, typically, f is a sum of optimization functions
weighted by importance factors. This bound constrained pro-

TABLE I. Sizes of the patient cases.

Patient case No. of contributing voxels
Spot spacing

�mm� No. of spots

Lung 152 060 5 4 733
Paraspinal 183 913 5 17 721
Prostate 325 836 6 8 846
gram is convex whenever the objective function f is �since d
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is linear in x� and can be solved by gradient based methods.
Using dose-volume optimization functions leads to a non-
convex problem, but in practice, there seems to be little dif-
ficulty with local minima.18

II.C. Robust methods

II.C.1. Conventional methods

In order to obtain robustness in conventional treatment
planning, the CTV is expanded into a PTV and the optimiz-
ing is performed toward irradiation of the whole PTV. This
can be combined with the single field uniform dose �SFUD�
technique, in which the dose for each beam is enforced to be
uniform. For tumors in low density regions such as the lung,
a conventional PTV amounts to just a slight margin in radio-
logical depth. By overriding the material of the low density
volume surrounding the tumor and thereby planning as if this
volume were made of normal tissue, a more effective PTV
can be constructed. We refer to this as “material override”
�MO�.

II.C.2. Minimax optimization formulation

We propose using minimax optimization for handling un-
certainties in proton therapy. The optimization then aims at
minimizing the penalty of the worst scenario. By considering
only physically realizable scenarios, correlations between
voxels are preserved and the extra conservativeness that re-
sults from independent handling of voxels is avoided. Since
the worst case scenario is considered, there is no need to
specify probabilities for the different scenarios. Defining in-
tervals of the deviations for which robustness is demanded is
similar to the desired effects of margins. However, since the
effects of errors are accounted for in the minimax optimiza-
tion, there is no need to add explicit margins to compensate
for setup and density errors: The optimization settles where
to deposit dose in order to compensate for the possible er-
rors.

Since the minimax method optimizes the worst case sce-
nario, including too improbable scenarios can compromise
the plan quality. Therefore, the interval of the uncertain vari-
able variations to include must be selected with caution,
preferably to cohere with the errors that margins are used to
take into account. Thus, the minimax method does not mini-

FIG. 1. A transversal slice of the lung case. The shaded structure is the CTV.
The beam directions are indicated by dashed lines.
mize the worst of all possible scenarios, but the worst sce-
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nario within some interval. The set S indexing the scenarios
included in the optimization is constructed accordingly. Dif-
ferent scenarios lead to different dose contributions, so let
P�s� denote the matrix mapping spot weights to dose in sce-
nario s�S and let d�x ,s� be the corresponding dose distri-
bution given by d�x ,s�= P�s�x. The minimax problem is for-
mulated as

minimize
x

max
s�S

�f�d�x,s���

subject to x � 0.

The max-function preserves convexity, so this is a convex
problem whenever the function f is. Since the maximization
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(a) Nominal scenario isodose curves

(c) Nominal scenario line doses

FIG. 2. ��a� and �c�� Isodose curves and line doses in the nominal and ��b� an
scenario, the density is 3% higher than planned and the isocenters are shifte
of the prescribed target dose. The curves correspond to minimax �red�, IMPT
CTV �magenta�. The white line displays the trace of the line doses. ��c� and
is taken over a finite number of scenarios, by introducing the
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auxiliary variable t�R, the problem can be equivalently for-
mulated as

minimize
x,t

t �2a�

subject to t � f�d�x,s�� ∀ s � S , �2b�

x � 0, �2c�

which is a nonlinearly constrained program, but still convex
whenever f is. The constraints increase the problem size as
compared to the nominal formulation �B� and require an op-
timization solver that can handle nonlinear constraints. As in
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(b) Perturbed scenario isodose curves

(d) Perturbed scenario line doses

a perturbed scenario in a transversal slice of the lung case. In the perturbed
m inferiorly. ��a� and �b�� Isodose curves for 98% �solid� and 55% �dotted�

e�, SFUD �green�, and SFUD with MO �yellow�. The shaded structure is the
Line doses. The height of the CTV is the prescribed dose level.
d �d��
d 5 m
�blu
the case of the nominal formulation, dose-volume optimiza-
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tion functions are applicable in the minimax formulation al-
though they make the problem nonconvex. Compared to a
stochastic programming formulation, the minimax optimiza-
tion is more computationally demanding due to the nonlinear
constraints. Since both methods require dose distributions in
the same scenarios, their memory requirements are similar.
The memory requirement for the nonlinear constraints, one
entry for each spot in each scenario, is small in comparison.
The memory requirements for the dose contribution matrices
are, however, similar for the methods, since both require cal-
culating dose distributions for the same scenarios. The gra-
dients of the nonlinear constraints of the minimax method
increase the memory requirement slightly, but this increase is
small compared to the requirement for the dose contribution
matrices.

Note that the max-function in the minimax formulation
can be applied to a subset of all ROIs, while the other ROIs
are treated nominally. Moreover, one max-function can be
introduced for each ROI as a heuristic method to introduce
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FIG. 3. DVHs for the lung case in the nominal scenario �dashed� and in 45
of nine equispaced shifts in �0.97, 1.03� of the planned density. The 2 cm wa
more independency into the model. This increases the num-
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ber of constraints by a factor of the number of independent
volumes, but is often computationally cheaper than introduc-
ing more independency in the uncertainty model.

The minimax formulation relates closely to the stochastic
programming formulation. In fact, the two formulations are
special cases of the more general minimax stochastic pro-
gramming formulation, in which the probability distributions
of the uncertain factors are themselves subject to uncertainty.
The optimization then aims at minimizing the expected value
of the worst case realization of the probability distributions,
i.e., solving the problem

minimize
x

max
p�P��

s�S
psf�d�x,s��	

subject to x � 0,

where ps is the probability of scenario s�S occurring and P
is the set of probability distributions for which as� ps�bs

for the given parameters 0�as�bs�1 for s�S. When as
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rios sampled from the surface of the sphere of radius 5 mm: Five for each
I surrounds the PTV and gives an indicative measure of target conformance.
(

(

scena
=0 and bs=1 for all s�S, this problem is equivalent to the
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minimax problem and when as=bs for all s�S, it is equiva-
lent to the stochastic programming problem. Adjusting these
parameters enables continuous scaling between minimizing
the objective function in the worst case scenario and mini-
mizing its expected value. As the problem is formulated
above, it is difficult to solve, but linear programming duality
can be used to avoid the difficulty. This yields an equivalent
minimax stochastic programming formulation of the same
computational size as the minimax formulation �2�. For com-
pleteness, the derivation of the minimax stochastic program-
ming formulation is included in Appendix A.

The optimization algorithms used in radiation therapy
treatment planning typically strive toward satisfying the
Karush–Kuhn–Tucker �KKT� conditions that are necessary
for optimality, provided some regularity conditions are satis-
fied. Considering the KKT conditions for the stochastic pro-
gramming problem and the minimax stochastic programming
problem, one can verify that the Lagrange multipliers of the
minimax stochastic programming problem �or, as a special
case, of the minimax optimization problem� correspond pre-
cisely to a probability distribution in P. This means that the
solution to the minimax stochastic programming problem is
equivalent to the solution to a stochastic programming prob-
lem with a specific probability distribution �see Shapiro and
Ahmed21�. This worst case probability distribution is un-
known prior to solving the minimax problem, but after small
parameter changes, it could be used for approximative re-
planning using a computationally cheaper stochastic pro-
gramming formulation.

II.D. Computational study

We apply the minimax method to three patient cases: A
lung case, a paraspinal case, and a prostate case. The voxel
sizes are set to 3�3�3 mm3 for all cases. The total number
of nonzero elements in the dose contribution matrices of all
scenarios was 108–109 for the cases studied. Sizes of the
patient cases are summarized in Table I. These cases present
different obstacles for robustness: The lung case tumor is
surrounded by a low density volume, the paraspinal case
CTV surrounds the spinal cord and holds metal implants that
cause density heterogeneities, while the prostate case is more
homely. Resulting plans are compared to plans reached by

TABLE II. Dose statistics for the lung case. The doses

volume, d̄ denotes the nominal scenario mean dose l

worst scenario �i.e., minimum for d̂98 and maximum
external ROI that receive 0.5 Gy or more and v is it
minimax plan. Values that differ from those of the m

CTV

d̂98 d̂2 d̄

Minimax 72.5 76.2 74.
IMPT 66.7 78.8 74.
SFUD 65.3 75.9 74.

SFUD with MO 71.5 75.4 75.
conventional methods, in which margins, SFUD, and MO are
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used to account for uncertainties. In the presentation of the
results, the conventional method using only margins to ac-
count for uncertainties is referred to as “IMPT,” the method
in which uniform beam doses are enforced is referred to as
“SFUD,” and the method using both SFUD and MO is re-
ferred to as “SFUD with MO.” Margins are used in all con-
ventional approaches.

Dose kernels are calculated using the pencil beam dose
algorithm of the treatment planning system RayStation ver-
sion 1.2 �RaySearch Laboratories, Stockholm, Sweden�,
which takes heterogeneities into account also within the
cross sections of the spots. The optimization problems are
solved in MATLAB version 7.9 �The MathWorks, Natick, MA�
using SNOPT version 7.2,22 which uses a sparse sequential
quadratic programming method with limited-memory
Broyden–Fletcher–Goldfarb–Shanno quasi-Newton updates
of the approximation to the Hessian of the Lagrangian. The
computations are performed on a single Intel Xeon 3 GHz
processor core with multithreading disabled and with 32 GB
of memory under 64-bit Linux. Resulting plans are imported
into RayStation, where evaluation is performed by calculat-
ing dose distributions for perturbations of the density and the
beam isocenters.

In all cases, the density uncertainty is assumed to be up to
�3%, which is similar to the uncertainty used by Lomax2 to
include the effects of conversion errors and CT data acquisi-
tion errors and also to the uncertainty Moyers et al.23 use
when calculating compensators for passive scattering. In the
minimax optimization, three density scalings are included
�nominal density and �3%�, whereas nine scalings are in-

n Gy. Here, dx denotes minimum dose to x % of the

in the volume, and a circumflex denotes dose in the

erwise�. External0.5 is composed the voxels of the
me normalized to that of the External0.5 ROI in the

ax plan by 2 Gy or more are in bold.

Lung External0.5

d10 d̂10 d̄ d̄ ·v

48.3 50.5 13.8 21.7
50.5 52.9 13.9 22.1
53.3 56.3 13.8 21.6
59.4 60.6 15.6 24.8

FIG. 4. A transversal slice of the paraspinal case. The shades structures are
the CTV, the spinal cord and the titanium implants. The beam directions are
are i

evel
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inim

2
1
0
4

indicated by dashed lines.
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cluded in the plan evaluation. The setup uncertainty is as-
sumed to be isotropic. Due to the hexagonal scanning pat-
tern, each spot has six neighbors, implying that each beam
has seven possible setup shift positions �including staying
stationary� that can be used in the optimization.

The combinations of beam shifts used to approximate a
setup shift in the optimization are chosen to cohere with
physically realizable shifts. The number of coherent combi-
nations depends on the beam directions: There are 17 com-
binations for the lung case, 21 combinations for the paraspi-
nal case, and 7 combinations for the prostate case �see

(a) Nominal scenario isodose curves

(c) Nominal scenario line doses
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FIG. 5. ��a� and �c�� Isodose curves and line doses in the nominal and ��b�
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Appendix B for details�. Each of these shifts is evaluated for
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all density shifts. In the plan evaluation, isocenter shifts are
sampled from the sphere with a radius corresponding to the
size of the setup uncertainty.

The optimization functions used are the minimum and
maximum dose-volume histogram �DVH� functions com-
monly used in radiation therapy. A maximum DVH optimi-
zation function is applied to a ROI and has two parameters:

A dose level d̂ and a volume fraction v̂. It can be interpreted
as “at most a fraction v̂ of the ROI volume should receive a

dose exceeding d̂ Gy.” Let �vi be the relative volume of
voxel i. For a given voxel j, the penalty of the maximum

(b) Perturbed scenario isodose curves

(d) Perturbed scenario line doses
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gj�d, v̂��v jmax�dj − d̂,0�2,

where

gj�d, v̂� =

0 if �

i:di�dj

�vi � v̂

1 if �
i:di�dj

�vi � v̂

�v̂ − �
i:di�dj

�vi�/� �
i:di=dj

�vi� otherwise.


The third option in the definition of the function gj ensures
that the dose to precisely the volume v̂ of voxels that receive
the highest dose is allowed go without penalty by partly
penalizing the voxel j if �i:di�dj

�vi� v̂��i:di�dj
�vi. If v̂

=0, then gj�d , v̂�=1 and the maximum DVH function be-
comes a maximum dose function. The definitions of mini-
mum DVH and minimum dose functions are analogous to
those of maximum DVH and maximum dose functions. By
combining a minimum and a maximum dose function, a uni-
form dose function is obtained.

III. RESULTS

A supplementary material is provided for transversal
slices of the beam dose distributions of all cases.26

III.A. Lung case

For the lung case, two perpendicular beams �0° and 90°�
were used. The prescribed dose to the target was 74 Gy.
Setup errors of up to 5 mm were accounted for, which cor-
responds to the margins of 5–10 mm recommended for lung
cases in WPE protocol.24 The margin used in the conven-
tional approaches was constructed as a 5 mm expansion of
the CTV, since the radiological depth of the tumor was so
small that this encompassed also the effects of the density
errors. A transversal slice of the lung case is shown in Fig. 1.

The minimax optimization took 1 h to run. Isodose curves
for the nominal scenario dose distributions in a transversal
slice, obtained using the minimax method, IMPT, SFUD, and
SFUD with MO, are shown in Fig. 2�a�. Line doses from the
same slice are shown in Fig. 2�c�. The figures show that the
dose distribution of SFUD with MO is notably more spread
out than those of the other methods. Isodose curves for the
dose distributions in a perturbed scenario are displayed in
Fig. 2�b� and the corresponding line doses are shown in Fig.
2�d�. The perturbed 98% isodose curves of IMPT and SFUD
are distorted and enclose less than half the CTV, while the
curve of SFUD with MO is slightly distorted but encloses
most of the CTV. The curve of the minimax method encloses
almost the whole CTV. The line dose plots show how the
perturbation results in underdosage for the IMPT and SFUD
plans. DVHs are displayed in Fig. 3. The DVHs confirm that
the plans of IMPT and SFUD are less robust than the plans
of the minimax method and SFUD with MO, which display
equivalent robustness with respect to target coverage. The
figure also shows that the SFUD with MO plan delivers

higher dose to healthy tissues than the plans of the other
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methods. Dose statistics are presented in Table II. Similar to
the DVHs, they reflect that the minimax method provides
robust target coverage and better sparing of healthy tissues
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FIG. 6. DVHs for the paraspinal case in the nominal scenario �dashed� and
in 45 scenarios sampled from the surface of the sphere of radius 2.5 mm:
Five for each of nine equispaced shifts in �0.97, 1.03� of the planned density.
The 2 cm wall ROI surrounds the PTV and gives an indicative measure of
target conformance.
than the other methods.
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III.B. Paraspinal case

To study the effects of different approaches when the tar-
get volume surrounds an OAR and when density heteroge-
neities are present, a paraspinal case was constructed. A tar-
get surrounding the spinal cord was drawn on a patient case.
Titanium implants were added with material override. The
paraspinal case was designed to be similar to that studied by
Unkelbach et al.7 Three beams were used, located at 0°, 45°,
and 315°. The prescribed dose to the target was 68.4 Gy.
Setup errors of up to 2.5 mm were accounted for, which is
the setup error used in the plan evaluation by Unkelbach et
al. Since the spot spacing was 5 mm, additional spots were
precalculated on a grid of 2.5 mm to enable the approxima-
tion of the effects of setup errors in the minimax optimiza-
tion. The margin in the conventional approaches was 2.5 mm
in the inferior, posterior, and superior directions and 5 mm in
the anterior, left, and right directions to account for setup
errors in combination with density errors. A transversal slice
of the paraspinal case is shown in Fig. 4.

The minimax optimization took 8 h to run. Isodose curves
for the nominal scenario dose distributions in a transversal
slice, obtained using the minimax method, IMPT, and SFUD,
are shown in Fig. 5�a�. Line doses from the same slice are
shown in Fig. 5�c�. The 95% isodose curve of SFUD does
not enclose the parts of the CTV that are behind the titanium
implants. That of IMPT does not conform to the CTV pos-
teriorly. The curves of the minimax method conform closer
to the CTV than those of the other methods. Isodose curves
for the dose distributions in a perturbed scenario are dis-
played in Fig. 5�b� and the line doses of the same scenario
are displayed in Fig. 5�d�. The perturbed 95% isodose curves
of IMPT and SFUD leave gaps over the CTV behind the
spinal cord. This is also notable in the line dose plots. The
perturbed 95% isodose curve of the minimax method leaves
a larger hole around the spinal cord than in the nominal
scenario, but still encloses most of the CTV, also behind the
spinal cord. DVHs are displayed in Fig. 6. It can be seen that
the plans of IMPT and SFUD are less robust than the plan of
the minimax method. For sparing of the spinal cord to be
possible, the dose to the CTV in the SFUD plan declines
earlier than in the minimax plan. Moreover, the DVHs show
that the spinal cord generally receives higher maximum
doses in the IMPT and SFUD plans than in the minimax

TABLE III. Dose statistics for the paraspinal case. The

of the volume, d̄ denotes the nominal scenario mean d

the worst scenario �i.e., minimum for d̂98 and maxim
external ROI that receive 0.5 Gy or more and v is it
minimax plan. Values that differ from those of the m

CTV

d̂98 d̂2 d̄

Minimax 60.7 75.1 68.9
IMPT 55.4 77.9 68.8
SFUD 58.7 73.4 68.2
plan. Dose statistics are presented in Table III. They confirm
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that the minimax method provides more robust target cover-
age and less dose to healthy tissues than the other methods.
The SFUD plan yields higher dose to the spinal cord than the
other methods, but is more robust than the IMPT plan.

III.C. Prostate case

Two opposed fields �90° and 270°� were used for the pros-
tate case. This is similar to the beam configuration used by
Meyer et al.25 The prescribed dose to the target was 70 Gy.
Setup errors were assumed to be up to 6 mm, which is simi-
lar to the errors in the anteroposterior direction used by
Meyer et al. The conventional methods therefore had a 6 mm
margin surrounding the CTV. Effects of setup errors in the
left-right direction are minor since it is parallel to both
beams, but we still used a 6 mm margin to account for den-
sity errors in these directions, calculated as 3% of 20 cm. A
transversal slice of the prostate case is shown in Fig. 7.

The minimax optimization took 4 h to run. Isodose curves
for the nominal scenario dose distributions in a transversal
slice, obtained using the minimax method, IMPT, and SFUD
are shown in Fig. 8�a�. Line doses from the same slice are
shown in Fig. 8�c�. The 98% isodose curves are similar in all
methods, but that of the minimax method is slightly narrower
than the others. The 55% isodose curve of the minimax
method extends farther in the left and right directions but
less in the anterior and posterior directions. Isodose curves
for the dose distributions in a perturbed scenario are dis-
played in Fig. 8�b� and the corresponding line doses are
shown in Fig. 8�d�. Since the treatment volume has rather

s are in Gy. Here, dx denotes minimum dose to x %

evel in the volume, and a circumflex denotes dose in

therwise�. External0.5 is composed the voxels of the
me normalized to that of the External0.5 ROI in the
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FIG. 7. A transversal slice of the prostate case. The shaded structures are the
bladder, the CTV, and the rectum. The beam directions are indicated by
dose
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um o
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homogeneous density, the dose distribution of the SFUD
plan is robust to the perturbation. The perturbed 98% isodose
curves of SFUD and minimax both enclose almost the entire
CTV. The dose distribution of the IMPT plan is distorted and
its curve no longer encloses the whole CTV. Also, its line
dose shows that underdosage results. DVHs are displayed in
Fig. 9. The DVHs show that the IMPT plan is less robust
than the plans of the minimax method and SFUD, which
display equivalent robustness with respect to target coverage.
It is also seen that IMPT and SFUD delivers higher dose to
the prostate than the minimax method. Dose statistics are
presented in Table IV. They show that the robustness of the
minimax method and SFUD are equivalent, but that the

(a) Nominal scenario isodose curves

(c) Nominal scenario line doses
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FIG. 8. ��a� and �c�� Isodose curves and line doses in the nominal and ��b�
perturbed scenario, the density is 3% higher than planned and the isocenters
�dotted� of the prescribed target dose. The curves correspond to minimax
�yellow�, the CTV �magenta�, and the rectum �brown�. The white line displa
the prescribed target dose level.
minimax method plan leads to better sparing of the OARs.
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IV. DISCUSSION

For all examined cases, the minimax method provided
more robustness than IMPT with a margin to account for
uncertainties, both with respect to target coverage and to the
sparing of healthy tissues. For the lung case and the prostate
case, methods using margins in combination with SFUD
with MO and SFUD, respectively, provided similar target
coverage robustness as the minimax method, but did so at the
cost of higher doses to healthy tissues. For the paraspinal
case, which was the most challenging case studied due to its
geometry and density heterogeneities, methods using mar-
gins were insufficient to achieve the same target coverage

(b) Perturbed scenario isodose curves

(d) Perturbed scenario line doses
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The use of margins may lead to an unnecessary increase
in integral dose and in the dose to OARs close to the target.
In many cases, margins alone do not render the robustness
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FIG. 9. DVHs for the prostate case in the nominal scenario �dashed� and in
45 scenarios sampled from the surface of the sphere of radius 6 mm: Five
for each of nine equispaced shifts in �0.97, 1.03� of the planned density. The
2 cm wall ROI surrounds the PTV and gives an indicative measure of target
conformance.
that they are designed for, but must be supplemented by

Medical Physics, Vol. 38, No. 3, March 2011
other techniques, such as SFUD and MO. Since these tech-
niques impose dispensable restrictions on the optimization,
they compromise the plan quality unnecessarily. Incorporat-
ing more information in the problem formulation allows the
optimizer to determine where to deposit dose in order to
achieve robust plans. The dose to healthy tissues can thereby
be reduced and the necessary dose depositions can be local-
ized in a way that avoids OARs better than heuristic meth-
ods.

The minimax formulation is general in that it is neither
restricted to certain types of uncertainties nor to certain op-
timization functions used in the treatment planning. In this
paper, optimization functions penalizing deviations from
dose-volume criteria were used, but biological optimization
functions can also be managed using this method. Since the
method accounts only for scenarios that are physically real-
izable, the correlation between voxels is preserved and un-
necessary conservativeness is avoided.

Since the minimax method requires one nonlinear con-
straint per scenario, its optimization is more computationally
demanding than that of the stochastic programming method.
To get a time comparison between the minimax method and
stochastic programming, we solved stochastic programming
problems with the scenario probabilities taken as the
Lagrange multipliers of the minimax method solutions, im-
plying that the optimizations of both methods aimed for the
same solution. We observed that the minimax optimization
required a factor of 1–3 of the stochastic programming opti-
mization times for the patient cases studied in this paper.

The paraspinal case studied in this paper is similar to the
cases studied by Pflugfelder et al.8 and Unkelbach et al.7 As
their methods, the minimax method avoids steep lateral dose
gradients alongside the target and steep distal dose gradients
in front of the target. This is to be expected from a robust
method. The different approaches result in different plans,
but since there are yet no generally accepted evaluation cri-
teria for robustness, it is not clear how the differences should
be measured. In this paper, we compare the minimax method
to clinical practice using DVH families and dose statistics.
Further studies should be employed before guidelines regard-
ing which method to choose for which cases can be given.

V. CONCLUSION

We have proposed using minimax optimization for han-
dling uncertainties in IMPT. By incorporating information
about the uncertainties into the optimization, the method en-
ables the optimizer to determine where to deposit dose in
order to achieve robust plans. This leads to better utilization
of the modality and eliminates some of the problems associ-
ated with margins in IMPT. For three patient cases, it has
been shown to provide more robust target coverage and bet-
ter sparing of healthy tissues than methods using margins,

SFUD, and MO to account for uncertainties.
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APPENDIX A: MINIMAX STOCHASTIC
FORMULATION

The minimax optimization and the stochastic program-
ming formulations are special cases of the more general
minimax stochastic programming formulation �see, e.g., Sha-
piro and Ahmed21 and references therein�. In this approach,
the expected value of the objective function is minimized,
but the probability distributions of the uncertain factors are
unknown or, as in Chan et al.,10 are themselves subject to
uncertainty. For completeness, we include the derivation for
our problem. Thus, assume that the probability ps of scenario
s�S occurring is uncertain, but is known to lie within the
interval �as ,bs�, where 0�as�bs. Let P denote the set of all
probability distributions obeying the bounds, given by

P = �p � R�S�: ps � �as,bs� ∀ s � S, �
s�S

ps = 1	 .

We want to solve the minimax stochastic programming prob-
lem

minimize
x

max
p�P��

s�S
psf�d�x,s��	 �A1a�

subject to x � 0. �A1b�

Since the set P is infinite, the max-function in the objective
is hard to evaluate as stated. However, using linear program-
ming duality, it can be readily solved.19,20 The max-function
is then viewed as a linear program in which f�d�x ,s�� and
s�S, can be considered as known constants. The dual of this
linear program is given by

minimize
�,	,


� − �
s�S

�	sas − 
sbs�

TABLE IV. Dose statistics for the prostate case. The d

the volume, d̄ denotes the nominal scenario mean dos

worst scenario �i.e., minimum for d̂98 and maximum
external ROI that receive 0.5 Gy or more and v is it

minimax plan. Values that differ from those of the m
dose levels for the bladder of the different plans diffe
at least 1 Gy below those of the other plans.

CTV

d̂98 d̂2 d̄

Minimax 68.3 71.6 70.1
IMPT 64.0 73.5 70.0
SFUD 67.4 71.7 70.0
subject to f�d�x,s�� − � + 	s − 
s � 0 ∀ s � S ,
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	,
 � 0,

By substituting this for the max-function in Eq. �A1�, the
minimax stochastic program can be equivalently written as

minimize
x,�,	,


� − �
s�S

�	sas − 
sbs�

subject to f�d�x,s�� − � + 	s − 
s � 0 ∀ s � S ,

x,	,
 � 0,

which is a nonlinear program with the same number of non-
linear constraints as the minimax formulation �2�. It too is
convex whenever the function f is.

APPENDIX B: SETUP SHIFTS USED IN THE
OPTIMIZATION

Since each beam has seven possible setup shifts, there are
7b possible combinations of beam shifts, where b is the num-
ber of beams. Not all of these are physically realizable. The
shift positions for each beam are arranged in three rows of,
respectively, two, three, and two positions forming the cor-
ners of a hexagon and its central point. For two parallel
opposed beams, exactly seven of the combinations may be
physically realized since both beams must shift in the same
direction; for two orthogonal beams, for each row of shifts,
each shift of the first beam can be combined with each shift
of the second beam, yielding 4+9+4=17 shifts; and for
three beams with 45° gantry spacing, introducing nearest
neighbor approximation, the upper and lower row combina-
tions of the orthogonal beams can be combined with the
central beam positions to yield six possible combinations
each, whereas each of the nine middle combinations can be
approximated, totaling to 6+9+6=21 shifts.
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