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Abstract
We consider the problem of deliverable Pareto surface navigation for step-
and-shoot intensity-modulated radiation therapy. This problem amounts to
calculation of a collection of treatment plans with the property that convex
combinations of plans are directly deliverable. Previous methods for deliverable
navigation impose restrictions on the number of apertures of the individual
plans, or require that all treatment plans have identical apertures. We introduce
simultaneous direct step-and-shoot optimization of multiple plans subject to
constraints that some of the apertures must be identical across all plans. This
method generalizes previous methods for deliverable navigation to allow for
treatment plans with some apertures from a collective pool and some apertures
that are individual. The method can also be used as a post-processing step to
previous methods for deliverable navigation in order to improve upon their
plans. By applying the method to subsets of plans in the collection representing
the Pareto set, we show how it can enable convergence toward the unrestricted
(non-navigable) Pareto set where all apertures are individual.

(Some figures may appear in colour only in the online journal)

1. Introduction

A considerable fraction of the time required to generate intensity-modulated radiation therapy
(IMRT) treatment plans is often spent on balancing target coverage against sparing of normal
tissue. This time expense is related to the fact that manual tweaking of optimization parameters
such as importance weights and dose–volume levels is often a blunt tool for controlling the
shape of the planned dose distribution. Parameter-tuning moreover offers little overview of the
full set of possible treatment plans, leading to a risk that the best options are not explored. As
an aid in the decision making process, multicriteria optimization (MCO) methods that offer
continuous exploration of the possible planning options have been developed (Craft et al 2007,
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Craft et al 2012, Monz et al 2008, Thieke et al 2007). Ultimately, the goal of these methods is
to provide a comprehensive representation of all relevant treatment plans, along with the tools
for a structured search over this set. To this end, the referenced methods, which we refer to
as methods for Pareto surface navigation, typically use a database of precomputed treatment
plans to approximate the Pareto optimal set. The Pareto set consists of the nondominated
treatment plans, meaning the feasible plans such that there is no other feasible plan that is at
least as good in all criteria and strictly better in one. By forming convex combinations in dose
between the database plans, the treatment planner may continuously explore the tradeoffs of
the considered patient case in real-time. In this paper, we consider application of such methods
to treatment planning for step-and-shoot IMRT.

Pareto surface navigation was first developed with respect to treatment plans generated by
optimization with respect to freely modulated fluence distributions, without consideration
of the fact that an optimized fluence map requires conversion into multileaf collimator
(MLC) apertures to be deliverable. Performing this conversion after the navigation need
not degrade plan quality per se, but complicates decision making because the converted plan
is not guaranteed to be acceptable only because the navigated plan is. At worst, fluence-based
navigation may therefore result in an iterative process involving multiple rounds of adjustments
and conversions, i.e., a form of treatment planning that MCO was intended to avoid. Pareto
surface navigation where any navigated plan is deliverable would therefore greatly facilitate
the practical use of MCO.

Bokrantz (2012) considered deliverable Pareto surface navigation for volumetric-
modulated arc therapy. Following fluence-based navigation and conversion into a deliverable
plan, a surface of plans with identical apertures was generated in a neighborhood of the
deliverable plan, using segment weight optimization. Because all apertures are shared,
navigation on this surface yields deliverable plans. This method thus allows for fine-tuning of
the tradeoffs in the vicinity of the plan generated by the conversion algorithm.

The first step toward deliverable Pareto surface navigation for step-and-shoot IMRT was
taken by Craft and Richter (2013). They used a database of segmented plans to represent the
Pareto set. When convex combinations of such plans are taken, the resulting plan is deliverable,
but with an increased number of apertures. They showed that the navigable approximation
of the Pareto set does not deteriorate too much when the convex combinations of plans are
restricted to just a few nonzero coefficients. When their convex combinations were restricted
to two or three plans, they were still able to approximate a large number of points randomly
sampled from a representation of a Pareto set (in an eight-dimensional objective space) with
about respectively 10% and 5% deterioration in normalized objective value. Their approach to
deliverable Pareto surface navigation was thus to combine few plans and accept a restriction
of the navigation and an increase in the total number of apertures by a small integer factor
(∼3). It should be noted that there likely exists treatment plans of similar quality that can be
delivered within fewer apertures than the plans produced by this form of navigation.

Salari and Unkelbach (2013) also considered the problem of deliverable Pareto surface
navigation for step-and-shoot IMRT. Using column generation (Romeijn et al 2005), they cre-
ated a single set of apertures well-suited for multiple plans, thereby creating a Pareto set repre-
sentation where all treatment plans have identical apertures but different weightings of these.
Navigation of this representation corresponds to a modification of segment weights and does
therefore not increase the total number of apertures required for treatment plan delivery. Their
approach to deliverable Pareto surface navigation was thus to maintain delivery time but sacri-
fice plan quality. The sacrifice in quality is likely to increase both with the number of plans in the
Pareto set representation and with the number of objectives, because the restriction to identical
apertures is more limiting if the apertures represent increasingly disparate planning goals.
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The present paper concerns deliverable Pareto surface navigation by direct step-and-
shoot (DSS) optimization (Hårdemark et al 2003) of multiple plans simultaneously, subject to
constraints that enforce apertures to be shared among plans. The purpose of the simultaneous
optimization of multiple plans is threefold:

(i) To improve upon the Pareto set representations generated by the previous approaches
(Craft and Richter 2013, Salari and Unkelbach 2013) to deliverable Pareto surface
navigation.

(ii) To generalize the previous methods for deliverable Pareto surface navigation to the
situation where some apertures are shared between plans while others are individual.

(iii) To create Pareto set representations that converge to the unrestricted Pareto set as the
number of plans increases.

2. Methods

We generate Pareto set representations consisting of plans for which a subset of the apertures
is shared across the plans. If there are no shared apertures, then each plan in the Pareto set
representation may be optimized independently. This property does not hold when there are
shared apertures, because a change to the apertures of one plan may then affect the other plans.
We therefore give an optimization problem formulation that explicitly incorporates a possible
coupling between the plans. This optimization problem amounts to DSS optimization of all
plans in the Pareto set representation simultaneously, subject to the constraint that the leaf
position variables associated with some apertures must be identical across all plans.

2.1. Multicriteria direct step-and-shoot optimization

Direct step-and-shoot optimization is considered with respect to minimization of n conflicting
criteria f1, . . . , fn, with n � 2. All criteria are assumed to be functions of the dose distribution
d, which in turn is a function of the MLC leaf positions λ and the nonnegative segment weights
σ . The set of feasible leaf positions is denoted by �. Furthermore, the problem is subject to
m constraints given by the functions of dose c1, . . . , cm, which are assumed to be satisfied
whenever they evaluate to zero or less. The MCO problem is then formulated

minimize
λ,σ

[ f1(d(λ, σ )) · · · fn(d(λ, σ ))]T

subject to ci(d(λ, σ )) � 0, i = 1, . . . , m,

λ ∈ �,

σ � 0.

(2.1)

The vector-valued objective function of (2.1) has no unambiguously defined unique minimizer
in general. Instead, all elements in the entire set of Pareto optimal points to (2.1) are considered
to be equally valid minimizers. The Pareto set is typically composed of an infinite number
of points and can therefore not be easily determined. Instead, it may be approximated by a
finite number of points, each obtained by minimization of a scalar-valued substitute for the
vector-valued objective of problem (2.1) (Craft et al 2006, Rennen et al 2011, Bokrantz and
Forsgren 2013). Different scalarization methods can be used to find such points. Here, we
use the common technique of minimizing a weighted sum of the objective functions. Such
scalarization amounts to the problem

minimize
λ,σ

n∑
i=1

wi fi(d(λ, σ ))

subject to ci(d(λ, σ )) � 0, i = 1, . . . , m,

λ ∈ �,

σ � 0,

(2.2)
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where wi is the nonnegative weight for criterion i for i = 1, . . . , n. The set of optimal solutions
to a number of instances of problem (2.1) with different weights is then used to approximate
the Pareto set.

In the present paper, DSS optimization with respect to the problem (2.2) is performed
using gradient-based search with leaf positions and segment weights as variables, as described
by Hårdemark et al (2003). The segment weights must be nonnegative while the leaf positions
are subject to linear constraints that model the hardware limitations of the MLC system,
e.g., bounds on the minimum leaf tip gap and interdigitation limitations. Alternative methods
for optimization with respect to problem (2.2) include column generation methods where
deliverable apertures are created iteratively during the optimization and then kept fixed (see,
e.g., Romeijn et al (2005)), and stochastic search methods that change the shape of the
apertures during optimization (Shepard et al 2002). Methods that combine column generation
and gradient-based search have also been considered (Carlsson 2008, Cassioli and Unkelbach
2013). Because the dose distribution is a nonconvex function of the leaf positions, the
referenced methods are not guaranteed to converge to the global optimum in finite time.

2.2. Direct step-and-shoot optimization using shared apertures

When some apertures are to be shared across the plans that represent the Pareto set, changing
the apertures of one plan may affect the other plans. In order to take this coupling between
the plans into account, we optimize all plans simultaneously. Assume that the Pareto set is
approximated by np plans. For each plan p, let λp represent the leaf positions of all apertures
and let σp be the vector of all segment weights. The shared apertures of plan p are denoted
by λp,S . Note that S is an index set over the leaves of the shared apertures and that λp,S is a
subvector of λp. The multiple plan optimization problem may then be formulated as

minimize
λ, σ

np∑
p=1

n∑
i=1

wp,i fi(d(λp, σp))

subject to ci(d(λp, σp)) � 0, p = 1, . . . , np, i = 1, . . . , m,

λp ∈ �, p = 1, . . . , np,

λp,S = λp+1,S , p = 1, . . . , np − 1,

σp � 0, p = 1, . . . , np.

(2.3)

The coupling between the plans is comprised of the equality constraints, which enforce the
leaf positions of the shared apertures to be equal over all plans.

Formulation (2.3) yields the best mean approximation of the Pareto set. When starting
the optimization from a point in which plan p has objective value z̄p for p = 1, . . . , np, it is
therefore possible that the optimization makes some of the plans worse than their respective
values z̄p, provided the objective values of other plans improve more. A formulation that
yields the best approximation of the Pareto set in the worst case (and that ensures that no plan
deteriorates) is achieved by a change of the sum in (2.3) into a maximum operator applied to
the difference between the plan objectives and z̄p. The new objective function is given by

max
p=1,...,np

(
n∑

i=1

wp,i fi(d(λp, σp)) − z̄p

)
.

Because the standard DSS optimization problem is nonconvex, the simultaneous
optimization of multiple plans problem (2.3) is too. Since there may be multiple local optima,
the solutions found by gradient-based methods depend on the initial values of the variables.
Methods for initialization are elaborated in section 2.4.
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2.3. Convergence toward the unrestricted Pareto set

The quality of segmented IMRT plans depends on the number of apertures that the plans are
allowed to use. For each positive integer nI , there is a Pareto set consisting of plans with
nI apertures (which are individual to the plans). We call this set the nI-aperture Pareto set.
Because an increased number of apertures yields an increased number of degrees of freedom,
the (nI + 1)-aperture Pareto set dominates the nI-aperture Pareto set.

Navigation by the method of Craft and Richter (2013) uses convex combinations of k
plans with nI apertures each. When k � 2 plans from the nI-aperture Pareto set are combined,
the quality of the resulting plan is at best as good as the plans on the nI-aperture Pareto
set, but the plan requires knI apertures to be delivered. Because the knI-aperture Pareto set
dominates the nI-aperture Pareto set, there exists a plan on the knI-aperture Pareto set that
requires the same number of apertures to be delivered as the navigated plan, but that has as
good or better objective values. For a fixed number of apertures, the navigated plans therefore
never reach the unrestricted Pareto optimal set where all apertures are individual, no matter
how many plans that are included in the representation of the Pareto set.

The method of Salari and Unkelbach (2013) constrains the apertures to be identical
across all plans, which is a restriction of the feasible set to the treatment plan optimization
problem. A Pareto set representation composed of plans with nI shared apertures is therefore
dominated by the nI-aperture Pareto set, in which all plans have nI individual apertures. Also
for this method, the navigated plans may therefore never reach the unrestricted Pareto set
with all individual apertures, regardless of the number of plans in the representation. Because
formulation (2.3) is a form of interpolation between the method of Craft and Richter and the
method of Salari and Unkelbach, it also suffers from this shortcoming.

To obtain a method that yields representations that approach the unrestricted Pareto set,
we propose an extension of the method introduced in section 2.1. Note that we do not claim
convergence to the exact, globally optimal, Pareto set, but only to a set of locally optimal
solutions to instances of problem (2.2) with the weights sufficiently densely sampled over the
space of admissible weights. Convergence to the exact Pareto set requires a globally convergent
method for DSS optimization and a scalarization other than weights, which can find all Pareto
optimal solutions to a nonconvex problem. Nevertheless, we refer to the proposed extension
as the ‘convergent method.’

In the convergent method that we propose, we consider a representation where all apertures
are individual, and navigation is performed by convex combinations of k plans at the time.
So far, the convergent method is identical to the method of Craft and Richter, i.e., it gives a
representation of the nI-aperture Pareto set where a navigated plan in general requires knI
apertures to be delivered. Now suppose that formulation (2.3) is applied to each k-tuple of plans
that can be formed during navigation (the k-tuples that correspond to (k−1)-dimensional faces
of the Pareto set representation), and that all knI apertures of these plans are shared between
the plans (S is set to the index set over the leaves of all knI apertures). The simultaneous
optimization of multiple plans then yields a set of knI-aperture plans with knI shared apertures
that dominates the initial k-tuple of plans.

The convergent method is schematically illustrated in figure 1 with respect to a two-
dimensional tradeoff. The figure shows the ideal non-navigable 2nI-aperture Pareto set, a
navigable approximation of this set using plans with nI individual apertures, and an improved
navigable approximation composed of plans with 2nI shared apertures, obtained by further
optimization with respect to neighboring pairs of plans from the nI-aperture Pareto set. The
interpretation of the figure is as follows. Plans p1 and p2 have nI individual apertures each.
These plans are optimal among plans with nI apertures, and thus reside on the nI-aperture
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Figure 1. Dominance relations between ideal Pareto sets (solid), and navigable approximations of
these sets produced by the method of Craft and Richter (2013) (dashed) and the convergent method
(dotted).

Pareto set. A navigated plan that is a convex combination of p1 and p2 requires 2nI apertures
to be delivered, but its quality is as best as good as that of a plan on the nI-aperture Pareto set.
Further optimization of p1 and p2 according to (2.3), with 2nI shared apertures as variables
and starting from the apertures of plans p1 and p2, leads to the improved 2nI-aperture plans
p′

1 and p′
2. These plans have a quality that is intermediate to plans on the nI-aperture Pareto

set and plans on the 2nI-aperture Pareto set. A convex combination of p′
1 and p′

2 requires 2nI
apertures to be delivered.

As the number of plans in the initial representation of the nI-aperture set increases, the
weights associated with the plans in each k-tuple tend toward each other. In figure 1, this
corresponds to that the points p1 and p2 tend toward each other. This implies that the optimal
apertures for these plans approach a single set of apertures that define a plan on the knI -aperture
Pareto set. In figure 1, this would mean that points p′

1 and p′
2 would approach a single point on

the 2nI-aperture Pareto set. The convergent method thus produces representations that tend
toward the unrestricted Pareto set as the number of plans in the representations increases. The
disadvantage of the method is that it contains no requirement that different k-tuples of plans
should patch up smoothly. The optimization therefore transforms a continuous representation
of the Pareto set into a set of non-connected patches. Navigation of a representation generated
using the convergent method is therefore only piecewise continuous.

2.4. Computational study

We implemented multiple plan DSS optimization in a research version of RayStation
2.9 (RaySearch Laboratories, Stockholm, Sweden). The equality constraints in (2.3) were
eliminated by variable reduction. The DSS optimization of RayStation optimizes leaf positions
and segment weights (Hårdemark et al 2003), using a sequential quadratic programming
algorithm similar to that described by Gill et al (2005). The optimization is performed with
respect to dose calculated using a singular-value decomposition of pencil beam kernels, similar
to Bortfeld et al (1993).
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Figure 2. A transversal slice of the paraspinal case. The target is indicated by a white contour and
the spinal cord by a black contour.

Table 1. Optimization problem formulation for the paraspinal case. The two-dimensional
experiment considered the first two objectives only.

Objectives Constraints

Structure Function Dose level (Gy) Structure Function Dose level (Gy)

Target Uniform dose 60 Target Minimum dose 53
Spinal cord Maximum dose 0 Target Maximum dose 69
External Maximum dose 0 External Maximum dose 69

Spinal cord Maximum dose 55

The implementation of the proposed method was evaluated with respect to a single patient
case. Salari and Unkelbach (2013) applied their method to a paraspinal case with a bicriteria
tradeoff between target homogeneity and sparing of the spinal cord. Similarly, we applied our
method to a paraspinal case and planning criteria modeled by structure-specific least-squares
penalties between the planned dose and reference dose levels. A transversal slice of the
considered patient case is shown in figure 2. Treatment planning for this case was performed
with respect to nine equispaced coplanar beams, a dosegrid resolution of 3 × 3 × 3 mm3, and
a fluence grid resolution of 5 × 5 mm2. We first considered a two-dimensional tradeoff, for
which the results can be easily visualized. Second, we considered a three-dimensional tradeoff.

The optimization problem formulation used for the paraspinal case is presented in
table 1. The optimization functions penalize quadratic (semi)deviation of dose. A maximum
dose function with reference dose level d̂ applied to a subset V of the patient volume is
given by ∫

V
max{dv − d̂, 0}2 dv, (2.4)

where dv denotes the dose to the point v in V . Minimum dose and uniform dose functions
have respectively the minimum and the identity operator substituted for the maximum in (2.4).
Optimization functions posed as constraints are required to evaluate to zero or less. The vectors
of weights wp for the plans p = 1, . . . , np were throughout sampled from a grid of the set{
w ∈ R

n :
∑n

i=1 wi = 1, w � 0
}
.
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We characterize the effect of sharing different numbers of apertures qualitatively by
plotting the resulting approximations of the Pareto sets. The objective function values of the
plans with 60 individual segments are normalized to lie in the interval [0, 1], and the objective
function values of the other plans are modified using the same scaling. We also give quantitative
measures of how the Pareto sets deteriorate as the number of shared apertures increases. To
this end, we measure how well each Pareto set representation approximates the representations
consisting of plans with individual apertures only. As in Bokrantz and Forsgren (2013), how
well a set Z approximates a set Z′ is measured by the Hausdorff distance

dH (Z, Z′) = max
z′∈Z′

min
z∈Z

d(z, z′) (2.5)

with respect to the premetric

d(z, z′) = max
i=1,...,n

max{zi − z′
i, 0}.

Since we apply a local search method to a nonconvex optimization problem, the solution
will depend on the starting point. To facilitate a fair comparison of results, we therefore
use identical starting points for a given number of segments regardless of how many of the
apertures that are shared. The starting point used in the numerical experiments of this paper
is constituted of the leaf positions and segment weights obtained by FMO with respect to the
direct sum of all objectives, i.e., a plan representing all goals to some extent, followed by
leaf-sequencing using the conversion algorithm of RayStation, described by Hårdemark et al
(2003). We then separate the apertures into a set of shared apertures and a set of individual
apertures. To select the apertures to be shared, we loop over the beams and select the first
aperture for each considered beam until the desired number of shared apertures has been
selected. If a beam has only one aperture left, it is not selected, since we want at least one
individual aperture for each beam. The apertures resulting from the utilized leaf-sequencing
algorithm are typically ordered roughly in size, with larger apertures first.

The initialization outlined above is arguably a crude method. It is therefore likely that
better starting points can be obtained if a custom-made multicriteria leaf-sequencer is used
that explicitly takes all planning criteria into account, and that also accounts for the fact that
the plans have individual segment weights. The method for multicriteria column generation
presented by Salari and Unkelbach (2013) is a viable such method. As they point out, their
method can be used to generate a set of shared apertures, and in addition, some apertures
that are individual to the plans. Formulation (2.3) can then be directly applied to the resulting
Pareto set representation, as to further improve the quality of its constituent plans. For single-
criterion IMRT planning, local refinement by gradient-based optimization of leaf positions
and segment weights have been shown to improve the quality of plans generated by column
generation (Carlsson 2008, Cassioli and Unkelbach 2013).

3. Results

3.1. Two-dimensional tradeoff

We first studied the two-dimensional tradeoff between target homogeneity and sparing of the
spinal cord. Simultaneous optimization of multiple plans according to formulation (2.3) was
performed with the number of plans np set to 5.

Figure 3 depicts the resulting Pareto set representations as a function of number of
shared and number of individual apertures. Figure 4 depicts the dose–volume histograms
(DVHs) of the resulting plans with a fixed objective value for the criterion on the target.
Results are also shown for the convergent method. Note that delivery of the navigated plans
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Figure 3. Pareto set representations for the two-dimensional tradeoff, as a function of the number
of shared (sh.) and individual (ind.) apertures. The notation ‘x nav.’ means that x apertures are
required for a navigated plan to be deliverable.
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Figure 4. Dose–volume histograms for the two-dimensional tradeoff, of plans with a fixed objective
value for the criterion on the target and a variable number of shared (sh.) and individual (ind.)
apertures. The notation ‘x nav.’ means that x apertures are required for a navigated plan to be
deliverable.

from these representations require nS + 2nI apertures in general, where nS is the number
of shared apertures and nI is the number of individual apertures. When the total number of
segments is small (30 segments), constraints that all apertures must be equal leads to highly
deteriorated plan quality and a small Pareto set representation. When a few individual apertures
are allowed, most of this deterioration is counterbalanced. With a larger number of segments
(60 segments), the difference between the Pareto set representations decreases. Moreover, the
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Table 2. Approximation error according to (2.5) between Pareto set representations with variable
number of shared (sh.) and individual (ind.) apertures and unrestricted Pareto set representations
with 30 and 60 apertures for the two-dimensional tradeoff. The notation ‘x nav.’ means that x
apertures are required for a navigated plan to be deliverable.

Approximation error (%)

Representation 0 sh., 30 ind. 0 sh., 60 ind.

30 sh., 0 ind.; 30 nav. 16.1 20.1
20 sh., 10 ind.; 40 nav. 3.9 13.8
10 sh., 20 ind.; 50 nav. 1.6 13.2
0 sh., 30 ind.; 60 nav. 0.0 13.2

60 sh., 0 ind.; 60 nav. – 5.2
40 sh., 20 ind.; 80 nav. – 2.9
20 sh., 40 ind.; 100 nav. – 0.8
0 sh., 60 ind.; 120 nav. – 0.0

60 sh.a, 0 ind.; 60 nav. – 0.5
a shared between pairs of plans.

60-segment representation with all apertures shared dominates the 30-segment representation
with all apertures individual, which results in 60-segment plans as convex combinations are
taken. The convergent method with 60 apertures shared between pairs of plans results in
solutions very close to the Pareto set of plans of plans with 60 individual segments.

The approximation errors between the representations consisting of plans with different
numbers of shared and individual apertures and those with only individual apertures are
presented in table 2. The tabulated results show that when a few of the constraints enforcing
apertures to be equal are removed, there is a large increase in approximation quality (at the
cost of an increased number of segments), but as the number of individual apertures increases,
the benefit of increasing the fraction of individual apertures decreases. The convergent method
has only half a percent approximation error from the representation using only individual
apertures.

The representations with 30 individual apertures, 60 shared apertures, and 60 shared
apertures between plan pairs all result in navigated plans that are deliverable within 60
apertures. These representations approximate the unrestricted 60-segment Pareto set to within
respectively 13%, 5%, and 0.5%.

3.2. Three-dimensional tradeoff

To see how the different methods scale with an increased number of criteria, we studied
the three-dimensional tradeoff between target homogeneity, sparing of the spinal cord, and
integral dose. The multiple plan optimization according to formulation (2.3) was performed
with np = 15.

Since full three-dimensional Pareto sets cannot be easily visualized, we consider two-
dimensional cuts of these sets to illustrate how the constraints on different numbers of shared
apertures affect the solutions. Cuts are taken along the planes {x ∈ R

3 : xi = 0.4} for
i = 1, 2, 3. The resulting two-dimensional Pareto set representation slices are depicted in
figure 5. The DVHs of the resulting plans with fixed objective values for the criteria on the
target and external volume are shown in figure 6. Note that delivery of the navigated plans
from these representations require nS + 3nI , where nS is the number of shared apertures and
nI is the number of individual apertures. If the number of nonzero coefficients in the convex
combinations of plans is restricted to 2, the coefficient 3 may be reduced to 2. When a small
number of apertures is used (30 apertures), the constraints that all apertures must be equal
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Figure 5. Two-dimensional cuts of three-dimensional Pareto set representations for the three-
dimensional tradeoff, as a function of the number of shared (sh.) and individual (ind.) apertures.
The notation ‘x nav.’ means that x apertures are required for a navigated plan to be deliverable.
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Figure 6. Dose–volume histograms for the three-dimensional tradeoff, of plans with fixed objective
values for the criteria on the target and external volume and a variable number of shared (sh.) and
individual (ind.) apertures. The notation ‘x nav.’ means that x apertures are required for a navigated
plan to be deliverable.

Table 3. Approximation errors according to (2.5) between Pareto set representations with variable
number of shared (sh.) and individual (ind.) apertures and unrestricted Pareto set representations
with 30 and 60 apertures for the three-dimensional tradeoff. The notation ‘x nav.’ means that x
apertures are required for a navigated plan to be deliverable.

Approximation error (%)

Representation 0 sh., 30 ind. 0 sh., 60 ind.

30 sh., 0 ind.; 30 nav. 14.1 17.9
20 sh., 10 ind.; 50 nav. 8.5 15.9
10 sh., 20 ind.; 70 nav. 4.3 15.3
0 sh., 30 ind.; 90 nav. 0.0 13.3

60 sh., 0 ind.; 60 nav. – 8.8
40 sh., 20 ind.; 100 nav. – 4.1
20 sh., 40 ind.; 140 nav. – 2.9
0 sh., 60 ind.; 180 nav. – 0.0

60 sh.a, 0 ind.; 60 nav. – 2.6
a shared between triplets of plans.

are highly restrictive. The benefit of allowing for a few individual apertures is large for the
tradeoff between the two healthy structures (but results in an increased number of apertures),
but not as evident for the tradeoff between target uniformity and healthy structure sparing as
for the two-dimensional case. The differences are smaller when a larger number of segments is
used (60 apertures). The convergent method with 60 apertures shared between triplets of plans
results in solutions very close to the Pareto set representations of plans with 60 individual
apertures.

The approximation errors between the representations consisting of plans with different
numbers of shared and individual apertures and those with only individual apertures are
presented in table 3. As for the two-dimensional case, these approximation errors quantify the
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comparatively large benefit of including some individual apertures and moreover show that
as the fraction of individual apertures increases, the benefit of a further increase diminishes.
The distance between the representation with 60 shared apertures and that with 60 individual
apertures is larger than the corresponding distance for the two-dimensional case, and the
benefit of adding a few individual apertures is smaller. The convergent method yields the best
approximation of the representation consisting of plans with 60 individual apertures.

The representations with 30 individual apertures, 60 shared apertures, and 60 shared
apertures between plan pairs all result in navigated plans that are deliverable within 60
apertures (if convex combinations from the representation with 30 individual apertures are
restricted to two nonzero coefficients). These representations approximate the unrestricted
60-aperture Pareto set to within respectively 13% , 9%, and 3%.

4. Discussion

It has been hypothesized by Craft and Richter (2013) that the use of a few shared apertures can
be beneficial because some characteristics are shared among the different Pareto optimal plans.
Our numerical results support this hypothesis: there was a large benefit of including a few
individual apertures (however at the cost of an increased number of apertures). As the fraction
of individual apertures increased, the benefit of a further increase diminished; individual
apertures were of diminishing marginal utility. Our data shows that for the considered low-
dimensional case, it is better to share apertures than to use individual apertures, because the
representations with 60 shared apertures dominated those with 30 individual apertures. Both
of these representations result in deliverable plans with 60 apertures (if the latter method
is restricted to convex combinations of two plans). It is important to note that the optimal
partitioning is highly dependent on the optimization problem formulation. If the problem
is formulated using narrow constraints, then all treatment plans will be rather similar and
can therefore be well approximated by a single set of apertures. If the constraints are loose,
then the Pareto optimal set will contain very disparate plans and therefore require individual
apertures. Finally, as pointed out in section 2.4, to make the most out of any method that shares
apertures, the shared apertures should be taken into account already in the leaf-sequencing
or aperture generation. One method that accomplishes this is that of Salari and Unkelbach
(2013).

Neither the method with only individual apertures nor that with only shared apertures
came close to the unrestricted Pareto set. The method with only individual apertures resulted
in about 13% approximation error compared to the unrestricted Pareto set for both the two-
dimensional and the three-dimensional tradeoff, while the method with only shared apertures
resulted in 5% and 9% approximation error for the two- and three-dimensional tradeoffs,
respectively. The convergent method that we proposed cured this shortcoming by providing
solutions that came very close to the unrestricted Pareto set. In some points, it even dominated
the unrestricted Pareto set, a result that can be attributed to the fact that the optimization
problems are nonconvex and that the different optimizations can therefore find different local
minima. For the considered case, the convergent method yielded approximation errors of less
than 1% and 3% for the two- and three-dimensional tradeoffs, respectively. The restriction that
the apertures are shared between subsets of plans does not lead to any noticeable deterioration
in objective values compared to the plans with 60 individual apertures.

In the first method that we proposed, there is a global pool of shared apertures, which
are used by all plans. In the convergent method, there are local pools of shared apertures,
which are shared across the plans in a neighborhood. The use of local pools of shared
apertures is a significant drawback of the convergent method because it leads to discontinuities
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Figure 7. Navigation with respect to a Pareto set representation for a three-dimensional tradeoff.
In general, each point has six neighbors. The navigated plan p′ is a convex combination of p1,
p2, and p3, and requires 150 apertures to be delivered if each plan in the representation has
60 apertures and shares 10 apertures with each of its neighbors.

when the navigation shifts from one pool to another. A method that uses local pools of
shared apertures but enforces continuity between the neighborhoods would potentially enable
continuous navigation with high plan quality. The main obstacle of creating such a method
is that the number of neighboring plans rapidly becomes large with increasing dimension.
To exemplify, consider a three-dimensional tradeoff and a Pareto set representation that is
isomorphic to a uniform tiling of the plane with equilateral triangles. Then, a general plan in
the representation has six neighbors, as illustrated in figure 7. Suppose that each plan shares
ten apertures with each of its neighbors and that it has no individual apertures in addition to
these. Then, a general convex combination of three plans has 3 × 60 = 180 apertures, out of
which 3 × 10 = 30 have been counted twice. A navigated plan thus requires 150 apertures
to be delivered. Already in dimension 3, the saving in number of apertures is thus relatively
small compared to the unrestricted case where each plan has 60 individual apertures and a
navigated plan requires 180 apertures to be delivered.

5. Conclusion

The potential of deliverable Pareto surface navigation is clear: it not only allows the treatment
planner to interactively explore the possible tradeoffs between competing planning criteria,
but also keeps its promises in the sense that the plans that are seen during navigation can
actually be delivered. To accomplish deliverable navigation, we generalized DSS optimization
to a multicriteria setting in which all plans representing the Pareto set are simultaneously
optimized under constraints that a subset of the apertures must be identical across plans. Such
optimization can be used to improve upon the previous methods for deliverable Pareto surface
navigation. Furthermore, we used the simultaneous DSS optimization of multiple plans to
combine the benefits of the two previous approaches to deliverable navigation, which either
combined a small number of plans or combined plans with the same apertures, and thereby
created an improved approach with the possibility of converging to the unrestricted Pareto set,
however with the drawback of discontinuities in the navigation.
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