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Abstract
A method is presented that automatically improves upon previous treatment
plans by optimization under reference dose constraints. In such an optimization,
a previous plan is taken as reference and a new optimization is performed toward
some goal, such as minimization of the doses to healthy structures under the
constraint that no structure can become worse off than in the reference plan.
Two types of constraints that enforce this are discussed: either each voxel
or each dose–volume histogram of the improved plan must be at least as
good as in the reference plan. These constraints ensure that the quality of the
dose distribution cannot deteriorate, something that constraints on conventional
physical penalty functions do not. To avoid discontinuous gradients, which may
restrain gradient-based optimization algorithms, the positive part operators that
constitute the optimization functions are regularized. The method was applied
to a previously optimized plan for a C-shaped phantom and the effects of
the choice of regularization parameter were studied. The method resulted in
reduced integral dose and reduced doses to the organ at risk while maintaining
target homogeneity. It could be used to improve upon treatment plans directly
or as a means of quality control of plans.

1. Introduction

Studies show that the quality of intensity-modulated radiation therapy (IMRT) treatment plans
is closely linked to the experience of the treatment planner (Bohsung et al 2005, Chung
et al 2008). This suggests that many treatment plans have room for improvement. Other
causes of suboptimal plans include the use of inadequate planning methods, termination of the
optimization process prior to optimality or the measurement of plan quality with improper or
blunt fitness functions. Examples of the latter are the semideviation penalties, which penalize
voxels with doses above or below some threshold, that are often utilized in treatment plan
optimization. When just voxels that receive doses higher than a prescribed dose level are
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penalized, the only incentive for the optimization algorithm is to reduce the dose to that very
level, even though lower doses may well be attainable without any sacrifice of other treatment
goals. Consequently, even plans that are optimal with respect to such penalty functions can be
improved upon. Attempts to solve this by maximum dose prescriptions of zero dose to organs
at risk (OARs) tend to exacerbate the conflict between target coverage and low OAR doses,
thereby making the treatment planning process more challenging and reducing the prospect
of achieving satisfactory target coverage.

In this paper, tailored optimization problems that exploit the possible leeway left by other
treatment planning methods are formulated. To this end, the dose distribution of a previous
plan is taken as a reference and an optimization is performed toward some goal while either
the dose to each voxel or the dose–volume histogram (DVH) of each region of interest (ROI)
is constrained to be at least as good as in the previous plan. The output from the optimization
is a deliverable treatment plan. With this method, the aim is to automatically create better
treatment plans and to find the criteria of a given plan that may be more strictly enforced.
Thus, the method could be used in a clinical setting to improve upon plans and to assess plan
quality as well as in the education of treatment planners to determine where their plans could
be improved.

The potential suboptimality of IMRT treatment plans has inspired methods for plan quality
assessment and improvement previously. Wu et al (2009) introduced a method for quality
control of plans. In that method, the patient geometry of a newly optimized plan is matched
against those in a database of previous plans. Structures for which the doses in the new plan
are worse than the doses in previous plans with similar geometries are flagged as potential
subjects for improvements. The plans are then reoptimized with stricter dose requirements
for the flagged structures. The method improved the OAR sparing without sacrificing target
coverage for a number of head-and-neck cases. Subsequently, Wu et al (2011) used the
geometrical matching and the database of previous plans to generate suitable DVH objectives
for new plans, which resulted in much improved planning efficiency. Moore et al (2011) used
historical patient data to define a model to predict the achievable mean OAR dose as a function
of the prescribed target dose and the overlap between the OAR and the planning target volume
(PTV). Using the predictions, clinicians were able to improve on the normal tissue sparing, and
the variability of plans between clinicians was reduced. For a review of quantitative metrics
used in treatment planning, see Moore et al (2012).

Other methods are aimed at refining the optimization problem formulations in order to
improve the quality of treatment plans. Cotrutz and Xing (2002, 2003) used voxel-specific
penalty weighting factors to convey the importance of different volumes in the patient geometry
to the optimization algorithm. They performed optimizations iteratively to carefully balance the
trade-offs between planning criteria. Wu et al (2003) also performed optimizations iteratively,
in which they updated the weighting factors or the prescribed doses to each voxel. They
found that the two types of updates are equivalent under certain conditions. In a similar
vein, Lougovski et al (2010) constructed a scheme in which the prescribed dose levels
were iteratively updated for voxels not satisfying the ideal dose prescriptions of uniform
target dose and no dose to healthy structures. Holdsworth et al (2012) used a multiobjective
evolutionary algorithm to explore the search space resulting when importance weights as well
as prescribed dose levels were allowed to vary for each voxel independently. They found
that an enlarged search space can lead to higher quality plans, implying that too simplistic
optimization functions may restrict the plan quality unnecessarily.

Similar to the methods discussed above, the method proposed in this paper can determine
whether plans can be improved upon (and also improves on the plans) and increases the
flexibility of the optimization by applying an individual prescribed dose level to each voxel.
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However, it is designed to be applied only once, without any user input, and does not require
multiple optimizations, nor does it require a database of previously optimized plans. The main
contribution of this paper is the idea of improving plans by using constraints that enforce the
dose to each voxel or the DVH of each ROI to be at least as good as in the reference plan
while some other goal is optimized. An additional contribution is the use of a regularization
that enables warm starting of the optimization from a solution that satisfies such constraints.

2. Methods

Given the dose distribution dref of a treatment plan, an optimization is performed aiming at
minimizing the dose under the constraint that no ROI be worse off than under dref, using either
the dose distribution or the DVH curves as a measure.

2.1. Optimization formulation

Assume that a treatment plan with a corresponding dose distribution dref is given. The ROIs
of the treatment plan are indexed by the set R, which is partitioned into the sets O and T
for, respectively, OARs and target ROIs, with O including the external ROI. The optimization
variables (e.g., the machine parameters) are denoted by the vector x, which is a member of the
set X of feasible variables. One way to improve upon the given treatment plan is to optimize
some criterion f (x) while all dose criteria, including criteria that were not part of the previous
plan, are enforced to be no worse than in the given plan. The latter can be administered by
constraints that no voxel can receive a dose that is worse than in dref. Under the assumption
that a uniform dose denoted by d̂r is desired for each target ROI r ∈ T , the optimization
problem takes the form

minimize
x∈X f (x) (2.1a)

subject to
∑
i∈Vr

�r
i

(
di(x) − dref

i

)
+ � 0, r ∈ O, (2.1b)

∑
i∈Vr

�r
i

(
min

{
dref

i , d̂r
} − di(x)

)
+ � 0, r ∈ T , (2.1c)

∑
i∈Vr

�r
i

(
di(x) − max

{
dref

i , d̂r
})

+ � 0, r ∈ T , (2.1d)

where Vr enumerates the voxels of ROI r, di(x) is the dose to voxel i as a function of
the variables x and �r

i is the relative volume of voxel i that lies within ROI r, such that∑
i∈Vr

�r
i = 1. The shorthand y+ denotes the positive part max{y, 0} of y. To avoid increasing

plan complexity, constraints on the number of monitor units and, for volumetric-modulated
arc therapy, the delivery time could additionally be enforced.

All the constraint functions of problem (2.1) are convex functions of dose. As in the case
of conventional treatment plan optimization problems, the problem may still be nonconvex if
the set X or the mapping x �→ d is, such as when direct machine parameter optimization is
performed. The constraints can be interpreted according to the following.

• (2.1b): no voxel of any OAR can receive higher dose than in the reference dose distribution.
• (2.1c): no voxel of any target can receive lower dose than the lowest of the reference dose

in the voxel and the prescribed dose to the target.
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Figure 1. Examples of the areas enclosing the admissible DVHs for an OAR (dark gray) and a
target (light gray) with prescribed dose level d̂.

• (2.1d): no voxel of any target can receive higher dose than the highest of the reference
dose in the voxel and the prescribed dose to the target.

Constraints (2.1c) and (2.1d) thus enforce the dose of each voxel i ∈ Vr of each target ROI
r ∈ T to lie within the interval [min{dref

i , d̂r}, max{dref
i , d̂r}]. The admissible DVH curves for

an OAR and a target under a given reference dose distribution are illustrated by, respectively,
the dark gray and light gray areas in figure 1.

The objective function f in (2.1a) could be chosen to improve upon any feature, such
as integral dose, target coverage, sparing of a subset of the OARs, number of monitor units,
delivery time or a combination thereof. In this paper, f will be aimed at reducing the OAR
doses. For OARs, common dose prescriptions correspond to semideviation penalties, which
are likely to evaluate to zero for some voxels, whereas for targets, all deviations from a narrow
band of acceptable dose levels are usually penalized (Ezzell et al 2009). It can therefore be
hypothesized that there is often more to be gained for OARs than for targets.

To ensure that the reference dose optimization does not leave room for improvement, the
objective f should always provide incentive to approach better solutions. A sufficient condition
for this is the strict convexity of f , which implies a unique optimal solution. When the goal
is to minimize the OAR doses, the most important property of f is that it always provides
incentive to reduce the doses, i.e. always has a strictly positive gradient with respect to dose.
This can be accomplished by a function f that is the sum of the equivalent uniform doses
(EUDs) of the OARs:

f (x) =
∑
r∈O

( ∑
i∈Vr

�r
i di(x)ar

)1/ar

(2.2)

for parameters ar � 1 for r ∈ O, which is a convex function of dose but, like the constraints,
may be a nonconvex function of the optimization variables if the mapping x �→ d is.

In theory, there is no need to aggregate the constraints of (2.1) per ROI: satisfying the
aggregate constraints is equivalent to satisfying constraints di(x) � dref

i for each voxel i ∈ Vr in
each OAR r ∈ O, and analogously for target voxels. Since, in general, nonlinear optimization
solvers are necessary for this type of problem (because of the nonlinear relationship between
machine parameters and dose unless pencil beam scanning is performed, in which case linear
programming could be used), the large number of voxels makes such individual handling too
time consuming to be practical.
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For many nonlinear programming solvers, it is advantageous to square the optimization
functions in (2.1), or their summands, in order to introduce curvature into the problem. For
the objective function (2.2), squaring each individual EUD changes the optimal solution of the
optimization problem into one that emphasizes the importance of reducing higher EUDs. If
instead the entire objective is squared and at the same time either the summands or the entire
sums of the constraints are squared, the optimal solution remains the same as the one to (2.1)
with objective (2.2).

2.2. Reference DVH constraints

Problem (2.1) enforces each voxel to be no worse off than in the reference dose distribution.
This might be an overly restrictive request since in reality, the DVHs may be of more interest
than the individual voxels. One can thus modify the constraints as not to penalize the deviation
of each voxel from the reference dose, but the deviation of each DVH from the corresponding
DVH of the reference dose distribution. The optimization functions then become nonconvex
(since not even the common minimum and maximum DVH functions are convex). The DVH
constraints depend on the functions Dr(v; x) and Dref

r (v), which parameterize, respectively, the
planning DVH, given the optimization variables x ∈ X , and the reference DVH as functions
of the volume v ∈ (0, 1]. The function Dr(v; x) is defined as the highest dose level d̂ in the
planning dose distribution such that a fraction v of the volume of ROI r ∈ R receives a dose
greater than or equal to d̂. The function Dref

r (v) is similar but for the reference dose distribution
dref. Instead of the maximum reference dose constraint (2.1b), a maximum reference DVH
constraint is now used, which does not allow any part of the DVH to exceed the reference DVH,
and analogously for the target constraints (2.1c) and (2.1d). The reference DVH constraints
are formulated as∫ 1

0

(
Dr(v; x) − Dref

r (v)
)
+ dv � 0, r ∈ O, (2.3a)

∫ 1

max{v:Dref
r (v)=d̂r}

(
Dref

r (v) − Dr(v; x)
)
+ dv � 0, r ∈ T , (2.3b)

∫ min{v:Dref
r (v)=d̂r}

0

(
Dr(v; x) − Dref

r (v)
)
+ dv � 0, r ∈ T . (2.3c)

Note that the limits of integration for the target constraints (2.3b) and (2.3c) are modified
to exclude part of the interval (0, 1] and that the min and max operators of the target
constraints (2.1c) and (2.1d) are not needed. Provided that the above constraints are satisfied,
the monotonicity of the DVH functions ensures that similar constraints, but with respectively
min{Dref

r (v), d̂r} and max{Dref
r (v), d̂r} substituted for Dref

r (v), are satisfied for the full interval.
An alternative to the reference DVH-based optimization functions, which still is less

restrictive than the voxel-specific requirements but preserves convexity, is to enforce the
reference dose distribution in voxel clusters. The mean doses of the clusters are then constrained
to be no worse than the corresponding mean doses of the reference dose distribution.

2.3. Regularization of positive part functions

A difficulty with optimization functions like those in the constraints in (2.1) and (2.3) is that
the gradients vanish for feasible solutions. For all points satisfying the constraints, all the
positive part functions evaluate to zero, which implies that the gradients are zero in the interior
of the feasible region. Moreover, since positive part functions have discontinuous derivatives
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Figure 2. The log-sum-exp function (solid line) and the positive part function (dashed line).

at zero, the gradients of the constraints have discontinuities. Given a feasible point, a gradient-
based optimization algorithm thus has a hard time predicting how large a step can be made.
For the considered optimization problem, this is mainly troublesome for the target, since the
target constraints provide the only incentive to maintain target coverage, while the objective
and all other constraints provide incentive to reduce the dose. The vanishing gradients can be
circumvented through regularization of the positive part functions into smooth functions with
everywhere nonzero gradients. A common smooth and convex regularization of max functions
is the log-sum-exp function (Huyer and Neumaier 2002), which is given by

lseε (x1, . . . , xn) = ε log

(
n∑

i=1

exp (xi/ε)

)
,

where ε > 0 is a parameter that can be used to determine the exactness of the regularization.
As ε → 0, the regularized function converges uniformly to the corresponding max function.
To avoid overflow, the function is implemented as

lseε (x1, . . . , xn) = xmax + ε log

(
n∑

i=1

exp ((xi − xmax)/ε)

)
,

where xmax = max{xi : i = 1, . . . , n}. In this paper, it is always the case that n = 2 with one
of the arguments being 0; the regularization of the positive part function is given by

x+ ≈ lseε (x, 0). (2.4)

This approximation satisfies the inequalities x+ < lseε (x, 0) � x+ + ε log 2 for all x ∈ R.
The positive part function and the regularized positive part function are illustrated in figure 2.
The maximum error of ε log 2 is attained at x = 0. Therefore, when all constraints of the
optimization problem (2.1) or a similar problem with constraints of the type (2.3) have been
regularized, the corresponding upper bounds must be adjusted to match the errors of the
regularizations. For an OAR r ∈ O, the regularized constraint corresponding to (2.1b) takes
the form ∑

i∈Vr

�r
i lseε

(
di(x) − dref

i , 0
)

� ε log 2. (2.5)

For target ROIs, the constraints can be defined analogously, but the right-hand sides must be
modified to correspond to the regularized functions evaluated in the reference dose distribution.
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For a target ROI r ∈ T , the regularized constraints corresponding to (2.1c) and (2.1d) require
upper bounds that are respectively given by∑

i∈Vr

�r
i lseε

(−(
dref

i − d̂r
)
+, 0

)
and

∑
i∈Vr

�r
i lseε

(−(
d̂r − dref

i

)
+, 0

)
.

When the regularization (2.4) is applied to the positive part functions of a reference DVH
constraint of the type (2.3), the resulting constraint corresponding to (2.3a) takes the form∫ 1

0
lseε

(
Dr(v; x) − Dref

r (v), 0
)

dv � ε log 2. (2.6)

For the target ROIs with regularized reference DVH constraints corresponding to (2.3b) and
(2.3c), the upper bounds are respectively given by

(ε log 2)
(
1 − max

{
v : Dref

r (v) = d̂r
})

and (ε log 2) min
{
v : Dref

r (v) = d̂r
}
.

It should be noted that a dose distribution satisfying the regularized constraints does
not necessarily satisfy the constraints in (2.1) or (2.3). Since the regularized positive part
function is everywhere strictly increasing in the argument, it is possible to remain feasible
while delivering higher dose than the reference dose to a voxel provided the dose to another
voxel is lower than its reference dose. However, the exchange rate for doing so is bad: the
deficiency must be considerably larger than the excess. One way to reduce the risk of exceeding
the reference dose is to separate the voxels of each ROI into a number of subsets, for each
of which a constraint is added to the optimization problem. If the voxels of the OAR r ∈ O
are separated into subsets Vr(s) for s indexed by Sr, the new constraints corresponding to
constraint (2.5) for OAR r take the form∑

i∈Vr (s)

�r
i lseε

(
di(x) − dref

i , 0
)

� ε
∑

i∈Vr (s)

�r
i log 2, s ∈ Sr, (2.7)

and analogously for the target ROIs and DVH constraints. The separation into subsets can
be performed in a number of ways. For instance, proximate voxels or voxels with reference
doses within some given interval can be chosen to belong to the same set. As the separation
into subsets is refined, the feasible region of the regularized problem converges to that of the
original problem. When the separation is so fine that there is one singleton subset for each
voxel, the feasible regions coincide.

As in the non-regularized case, it is often advantageous to square the regularized
optimization functions or their summands in order to introduce curvature to the problem.
In the regularized case, the choice results in optimization problems with different optima
because of the nonzero right-hand sides.

For many other types of optimization problems, it is not suitable to use the log-sum-exp
regularization, since it does not guarantee that accumulated max constraints are satisfied. If
it is crucial that no constraint is violated, the regularization is thus not advisable. For the
IMRT problem considered here, small constraint violations may however be tolerated in some
regions, especially when they are compensated by slack in other regions.

When ε is incorporated into the optimization and suitable changes to the penalty function
are made so that the minimum occurs for ε = 0, the minimum of the original problem (2.1)
can be found, see Huyer and Neumaier (2002). In this paper, the value of ε is fixed during the
optimizations for the ease of using the method with existing software.

3. Results

The proposed method is applied to a reference plan for a phantom case and the resulting plan
is compared to the reference. Further, the effects of the regularization are studied.
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Figure 3. A transversal slice of the C-shaped phantom geometry.

Table 1. Optimization functions of the reference plan. The weight ∞ indicates a constraint.

Structure Function Dose level (Gy) Weight

External−PTV Max dose 15 1
OAR Max dose 25 10
OAR Max 5% dose 25 ∞
PTV Max 10% dose 55 ∞
PTV Max dose 55 100
PTV Min 95% dose 50 ∞
PTV Min dose 50 100

3.1. Computational study

The proposed method was implemented in the RayStation 2.4 treatment planning system
(RaySearch Laboratories, Stockholm, Sweden). The reference dose-based and reference DVH-
based optimization functions of this system, which have been previously used to convert plans
between different treatment modalities, were modified with the log-sum-exp regularization
discussed in the present paper. Plans were optimized using direct step-and-shoot optimization.
The optimization algorithm of RayStation is a quasi-Newton sequential quadratic programming
algorithm that uses Broyden–Fletcher–Goldfarb–Shanno updates of the approximation of the
Hessian of the Lagrangian. During the optimization, a fast dose computation algorithm based
on singular value decomposition of pencil beam kernels (Bortfeld et al 1993) was used for
dose computation. At intermediate iterations, accurate dose was computed using a collapsed
cone dose computation algorithm (Ahnesjö 1989), which was also used to compute final dose
for the plan comparisons. The optimization was performed on the dose computed using the
fast algorithm incremental from that of the accurate algorithm.

The proposed plan improvement method was evaluated on a nine-field IMRT plan for the
C-shaped phantom described by the AAPM Task Group 119 (Ezzell et al 2009). A slice of the
geometry is shown in figure 3. The considered structures of the geometry were the PTV, the
OAR and the external ROI. Since one of the problems the proposed method is intended to solve
is that associated with semideviation penalties (i.e. that voxels with doses below the prescribed
dose level provide no incentive for the optimization algorithm to reduce doses further), the
optimization problem for the reference plan was formulated with such penalties. The goals
of the optimization were derived from Ezzell et al (2009) and a standard optimization of a
weighted sum of functions representing the treatment goals subject to constraints on other
goals was pursued; the optimization problem is given in table 1 and the optimization functions
are formulated mathematically in appendix.
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Table 2. Dose statistics for the reference plan, the improved dose plan and the improved DVH
plan. For each given ROI, D̄ denotes the mean dose.

Structure Statistic (Gy) Reference Improved dose Improved DVH

External D̄ 5.9 5.7 5.4
OAR D̄ 15.1 13.7 10.7
PTV D̄ 52.7 52.8 52.7
PTV D1 55.8 55.9 55.8
PTV D2 55.6 55.6 55.5
PTV D98 49.5 49.5 49.5
PTV D99 49.0 48.9 48.9

The optimization was allowed to run for 80 iterations, the first 7 of which optimized
the fluence maps, which were then converted into segments. After that, direct step-and-shoot
optimization was performed. Accurate dose was computed after iterations 7, 40 and 80.

For the proposed improvement optimizations, the optimization problem was similar to
(2.1) using the EUD objective (2.2) with ar = 1 for all r ∈ O: to minimize the sum of the mean
doses to the OAR and the external ROI with the PTV subtracted under constraints preventing
the dose distribution from becoming worse than in the reference plan. Alternatively, DVH
constraints according to (2.3) were used. All constraints were regularized using the log-sum-
exp regularization, and thus formulated respectively like (2.5) and (2.6) and analogously for
the target constraints. The target reference dose level d̂ was set to D50 of the reference dose
distribution, where Dx of a ROI denotes the minimum dose level with an isodose volume
containing x% of the ROI. The summands and integrands of the reference dose and DVH
functions were squared, as were the individual EUDs of the OARs in the objective. Since the
improvement optimizations were warm started from the reference plan, they used the same
beam directions and number of segments as the reference plan.

The target constraints were split up according to (2.7). When reference dose constraints
were used, the regions of the split constraints were selected as equally large subintervals
[D99.25, D0.75] of the target in the reference dose distribution. When reference DVH constraints
were used, the regions of min reference DVH constraints were selected as subintervals of
[D99.25, d̂] and those of max reference DVH constraints were selected as subintervals of
[d̂, D0.75]. The subinterval containing D99.25 was extended to 0 and that containing D0.75 was
extended to ∞. Each new constraint took into account the voxels with reference doses in one
of the resulting intervals.

3.2. Plan comparison

The proposed method was applied to the reference plan of the phantom case to create improved
plans with clinical doses. The improvement optimizations were allowed to run for 40 iterations
with accurate dose computations after iterations 20 and 40. The regularization parameter was
set to 1/8 (with doses in Gy) and each target constraint was split into three constraints.

DVHs for the reference plan and the improved plans are shown in figure 4. The proposed
method leads to decreased OAR and external ROI doses for both considered types of
constraints. Since the reference DVH constraints are less restrictive than the reference dose
constraints, the plan with reference DVH constraints achieves lower healthy structure doses.
The target coverage and homogeneity are similar in the three plans. These effects are also
reflected in the dose statistics, shown in table 2.
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Figure 4. DVHs of the reference plan (solid line), the improved dose plan (dashed line) and the
improved DVH plan (dot–dashed line).

3.3. Regularization error

The error introduced by the regularization was studied for improvement optimizations with
regularization parameter ε = 2−k for k = 0, . . . , 4 (with doses in Gy) and with each target
constraint split into one, three or five constraints. With reference dose constraints, numerical
difficulties prevented the optimization from proceeding when k � 8, and with reference DVH
constraints, when k � 6. Since the goal was to determine the effect of the regularization alone,
accurate dose was not computed during or after these optimizations, and they were allowed to
run for 80 iterations.

The mean violation and D99 of the target for the resulting plans are shown in figure 5. For
the plan with reference dose constraints, the mean dose distribution violation was considered,
which is the sum of the left-hand sides of constraints (2.1c) and (2.1d). For the plan with
reference DVH constraints, the mean DVH violation was considered, which is the sum of the
left-hand sides of constraints (2.3b) and (2.3c).

The mean violation decreases as the regularization parameter decreases and as the number
of constraints increases. For the plans with each target constraint split into five constraints, the
mean violations of the optimizations with reference dose and reference DVH constraints are
less than, respectively, 0.05 and 0.01 Gy for all considered values of ε, and their D99 levels
are at most, respectively, 0.12 and 0.01 Gy below the level of the reference plan.

4. Discussion

The results show that the reference plan had not been optimized to its full potential and that the
proposed method could reduce the doses to the OAR and the external ROI while maintaining
target coverage. While there are criteria that can be used to evaluate plan fitness other than the
dose distribution and the DVHs (e.g., plan complexity measures such as number of monitor
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Figure 5. The effects on the target dose distribution and DVH of the choice of regularization
parameter ε = 2−k for k = 0, . . . , 4 and the number of constraints nc = 1, 3, 5 that each target
constraint was split into. Plans using reference dose constraints are indicated by ‘dose’ and those
using reference DVH constraints by ‘dvh’ in the legends. (a) Mean violation. (b) Target D99.

units), the large magnitudes of the dose decrements make it probable that there was room left
for improvements on some of the criteria of the plan. The main cause of this is that the reference
plan was created using semideviation penalty functions that the optimization algorithm could
satisfy in many voxels for the OAR and the external ROI, leaving little incentive to reduce
the doses further, even though it was possible without sacrificing target coverage. Introducing
penalties on the mean doses to the healthy structures often leads to deteriorated target coverage.
Most likely, there exist weights for mean dose penalties that lead to a solution similar to the one
found by the proposed method, but these weights are a priori unknown. The proposed method
avoids the problem of selecting these weights by optimizing the goals in a post-processing
step.

The regularization parameter ε should be chosen as small as possible—otherwise, it is
possible that the ‘improved’ plan does not really improve on the reference plan. However,
too small values can lead to numerical difficulties for gradient-based optimizers. When the
constraints are separated into multiple constraints, the choice of the regularization parameter
becomes less crucial. Since the objective favors dose decrements, the regularization is
likely of less importance for the OARs than for the target. Reducing ε—or dropping the
regularization altogether—for the OAR constraints could make additional constraints for the
OARs unnecessary.

Optimizing with constraints dependent on a reference plan is related to the multicriteria
optimization concept of lexicographic ordering (LO) (Miettinen 1999, Löf 2000, Jee et al
2007, Wilkens et al 2007, Breedveld et al 2007). In LO, the treatment goals are ordered into a
number of priority levels. The goals of highest priority are first optimized with the other goals
neglected. The attained function values of these first goals are then introduced as constraints for
the corresponding functions (possibly with some slack), and a new optimization of the goals
of second highest priority is performed under these constraints. This procedure is repeated for
the goals of all priority levels.

The constraints of the proposed method differ from those used in LO. In the proposed
method, the functions that were used to acquire the reference plan are neglected, and the
subsequent optimization enforces the individual voxel doses or the DVHs to become no worse
than in the reference plan. The new dose distribution is thereby constrained to be at least as



7810 A Fredriksson

good as the previous one. In LO, the only guarantee is that the values of the functions used to
acquire the reference plan do not deteriorate. Since different dose distributions can yield the
same function values, this does not guarantee maintained dose distribution quality. It is thus
feasible in LO to move hot spots, or even create new ones when constraints on DVH points are
used. However, if in the last step of LO the doses to all OARs are minimized under constraints
on all previous goals, this last step can be seen as a relaxation of the proposed method. (To see
that it is a relaxation, note that a function satisfying the constraints of the proposed method
will also satisfy the DVH and EUD constraints typically used in LO, but not the other way
around.) Conversely, the proposed method can be seen as providing a new and more stringent
means of preserving the plan quality in LO.

In theory, the problem of plans that can be improved upon could also be solved by
multicriteria optimization with Pareto surface navigation (Monz et al 2008), provided mean
dose objectives are introduced for the OARs. In practice, the Pareto surface is approximated
by a discrete set of points and a navigated IMRT plan must be converted before it becomes
deliverable (Craft et al 2008). The approximation and conversion errors may lead to plans that
can still be improved upon.

Studying the proposed method applied to clinical cases is a delicate issue. If the method
is able to improve upon the plans, it indicates that patients are suboptimally treated. This may
be interpreted as resulting from a treatment planner performing poorly or as an indication of
an unintuitive treatment planning system. Nevertheless, the method provides a means to solve
these possible issues. In future studies, the method should be used to determine the quality of
clinical plans.

5. Conclusion

A method for automatically improving upon any given treatment plan was presented. It takes
a reference plan as input and optimizes some criterion, such as the doses to healthy structures,
while enforcing that no ROI becomes worse off than in the reference—either in the sense of
voxel doses or in the sense of DVH curves. Numerical problems associated with the enforcing
constraints are dealt with by regularization. Due to the regularization, the constraints are not
always as strictly enforced as desired. With an appropriately low regularization parameter or
with each constraint split into multiple constraints, this problem is alleviated. The proposed
method was applied to a phantom case with a previously optimized plan, for which it resulted
in substantial decrements in the doses to healthy tissues while preserving the target coverage
and homogeneity of the original plan. This indicates that the method could be used in a
clinical setting to improve upon plans prior to delivery or as a quality control of plans, and
for educational purposes, since it shows where the treatment planner could enforce stricter
requirements in the optimization.
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Appendix. Optimization functions

With D(v; x) parameterizing the DVH of some ROI as a function of the volume v ∈ (0, 1]
given the optimization variables x ∈ X , a max DVH function with dose level d̂ and volume
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parameter v̂ is given by∫ 1

v̂

(D(v; x) − d̂)2
+ dv.

Min DVH functions are similar, but with the signs of D(v; x) and d̂ reversed and the integration
taken over (0, v̂]. Max and min dose functions are derived from the corresponding DVH
functions with v̂ set to, respectively, 0 and 1.
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