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I. INTRODUCTION

The time integration of a particle motion due to elec-
tric and magnetic fields is a common task in several fields
of science, from molecular dynamics to plasma physics
and astrophysics. Various integration methods have been
established within different scientific areas. A prominent
example is the leap frog method, which is also called Boris
pusher in the context of particle-in-cell (PIC) codes.
We consider here time-independent magnetic fields

which, however, may be nonuniform in space. The elec-
tric field on the other hand is not subject to any con-
straints. A classical Coulomb system subject to a mag-
netic field serves as an example. If the particles within
this system are moving sufficiently slow, the pairwise in-
teraction can be described purely electrostatically and
only the time invariant external magnetic field has to be
taken into account.
In this article we review some second-order methods

from the literature under a unifying framework: the
methods are interpreted as splitting methods and the so-
lutions of the subflows are given in terms of the so-called
φ functions. This offers an economic way of stating, ana-
lyzing and implementing the methods. We also present a
new second-order method based on the symmetric split-
ting of the Hamiltonian of the system. Further we discuss
the structure preserving character of the methods regard-
ing time symmetry, volume preservation and preservation
of the system’s underlying Poisson structure.

∗ The work was financially supported by the FWF doctoral pro-
gram ‘Computational Interdisciplinary Modelling’ W1227. The
first author was additionally supported by the FWF project
Y398.

The article is organized as follows. In Section II we
formulate the equations of motion of a particle subject
to an electric and a static magnetic field as a Poisson
system, and we state some important properties of the
exact flow of the system. In Section III we shortly discuss
the corresponding properties we desire from the discrete
flow given by the numerical integrator. In Section IV we
give formulas for the maps corresponding to the subflows
of different terms of the Poisson system and shortly dis-
cuss their structural properties. In Section V we present
four time integrators, which are constructed using the
formulas of Section IV and certain φ functions. In Sec-
tion VI we give numerical results in which the integrators
are compared on four different cases. The needed formu-
las for the matrix functions are given in the appendix
(Section VIII).

II. EQUATIONS OF MOTION AND THEIR

DESCRIPTION AS A POISSON SYSTEM

The equations of motion for a particle with massm and
charge c subject to an electromagnetic field are given by
the Lorentz force

mq̈ = c(e + q̇ × b), (1)

where the electric field e and the magnetic field b are
determined by a scalar potential Φ and a vector potential
A, respectively, as

b = ∇×A,

e = −∇Φ− ∂
∂tA.

In the Lagrangian formalism the Lorentz force (1) can be
derived from the Lagrangian

L = 1
2m‖q̇‖2 + c q̇ ·A− cΦ, (2)
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which leads to the usual Hamiltonian formulation

H = 1
2m‖p− cA‖2 + cΦ,

p = mq̇ + cA.

However, we use a different formulation of the equations
of motion, which exhibits both the Hamiltonian structure
of the system and the splitting of the right-hand side into
efficiently computable subflows. We use p = mq̇ for the
momentum and state the equations of motion as

d

dt
q =

p

m
,

d

dt
p = F (q) + Ω(q)p,

(3)

where F (q) = c e(q) = −c∇Φ(q) is the electric force and

Ω(q) =




0 ω3(q) −ω2(q)
−ω3(q) 0 ω1(q)
ω2(q) −ω1(q) 0


 (4)

corresponds to the cross product of the magnetic force as

Ω(q)p = p× ω(q) = c q̇ × b(q).

We use the matrix formulation of the cross product as
it will simplify the analysis and derivation of the time
integration methods.
The system (3) can be described as a Poisson system [4,

Ch. 7]. Recall that a system of ordinary differential equa-
tions (ODEs) in Rn with a given initial value y0 at 0,

d

dt
y = B(y)∇yH(y), y(0) = y0, (5)

is called a Poisson system, if B(y) is a skew-symmetric
matrix which satisfies the identity

n∑

ℓ=1

(∂Bij(y)

∂yℓ
Bℓk(y) +

∂Bjk(y)

∂yℓ
Bℓi(y)

+
∂Bki(y)

∂yℓ
Bℓj(y)

)
= 0 for i, j, k = 1, ..., n.

(6)

In this case, B(y) is also called a Poisson tensor. The ex-
act flow ϕt : y(0) 7→ y(t) of any Poisson system is a Pois-
son map (also called noncanonically symplectic map),
i.e., the Jacobian matrix of the flow satisfies

(
∂ϕt(y)

∂y

)
B(y)

(
∂ϕt(y)

∂y

)T

= B
(
ϕt(y)

)
. (7)

Moreover, it is time symmetric, i.e. ϕ−h = ϕ−1
h .

The ODE (3) can be written formally in the form (5)
with the Hamiltonian

H(p, q) =
1

2m
‖p‖2 + cΦ(q) (8)

and the skew-symmetric structure matrix

B(y) =

[
0 I
−I mΩ(q)

]
(9)

by setting y =

[
q
p

]
. We will denote from now on the

conjugate variables as y or

[
q
p

]
, whichever is more con-

venient.
For the system matrix (9) we have the following. Let

b : R3 → R3, q 7→ b(q) =
[
b1(q) b2(q) b3(q)

]T
be a

differentiable function, and let the 3 × 3 matrix (4) be
defined by ω(q) = cm−1b(q). Then a direct calculation
using the relation (6) shows that B(y) as in (9) defines a
Poisson tensor if and only if ∇·b(q) = 0. This is satisfied
as Maxwell’s laws are assumed to hold for the magnetic
field (e.g., we do not consider magnetic monopoles). Thus
the ODE (3) can be written as a Poisson system (5).
The flow of a Hamiltonian system is volume preserving,

i.e., it holds that

det
∂ϕt(y)

∂y
= 1. (10)

The same is true for the exact flow of the system (5) with
the structure matrix (9) as can be seen as follows. From
the relation (7) it follows that

∣∣∣∣det
∂ϕt(y)

∂y

∣∣∣∣ = 1,

as det B(y) = 1. Since det ∂ϕt(y)
∂y is a continuous func-

tion of t, and since ∂ϕ0(y)
∂y = I, (10) holds also for the

exact flow of the Poisson system.
As we consider only the motion of a single particle,

the electrostatic force F (q) will be time-independent. In
case of many particles and pairwise forces this is not the
case. However, the Poisson system (3) generalizes from
dimension 6 to 6N in a trivial way: Ω(q) is replaced by a
3N×3N block diagonal matrix consisting of 3×3 blocks.

III. STRUCTURE PRESERVING

INTEGRATORS

It is desirable that the one-step map ϕh : y0 7→ y1
given by the numerical flow satisfies the same structural
properties as the exact flow of the ODE. The preservation
of time symmetry or the Poisson structure implies good
long time behavior for the numerical solution (see the
backward error analysis of [4]). The properties we want
from the integrators are:

1. Time symmetry: ϕ−h = (ϕh)
−1.

2. The integrator gives a Poisson map, i.e., it holds
that

(
∂y1
∂y0

)
B(y0)

(
∂y1
∂y0

)T

= B(y1). (11)

3. The preservation of volume:

det
∂y1
∂y0

= 1.
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Whether (11) is satisfied depends both on the integrator
and the Poisson system considered. Moreover, the inte-
grator has to respect the Casimirs (the first integrals of
the Poisson system), which in general is difficult to verify
for a nonlinear system matrix B(y).
However, in some special cases one can show that these

properties hold. That is the case for example if the inte-
grator is a composition method resulting from a Hamil-
tonian splitting. This will be discussed in Section IV.
We will study analytically in Section V whether the

considered integrators satisfy these properties.

IV. SPLITTING METHODS

To have a common description for the various time
integrators we state them in the framework of splitting
methods and use the φ functions for representing the sub-
flows containing the term Ω(q)p. To this end, we write
the Poisson system (3) as

d

dt
y = T (y) + E(y) + B(y),

where

T
([

q
p

])
=

[
1
mp
0

]
,

E
([

q
p

])
=

[
0

F (q)

]
,

B
([

q
p

])
=

[
0

Ω(q)p

]
.

We denote the exact flows of the subsystems correspond-
ing to T , B, T + B, etc. by ϕT

t , ϕ
B
t , ϕ

T +B
t , etc. This

means that ϕT
t (y0) provides the exact solution of the sys-

tem w′(t) = T (w(t)), w(0) = y0 at time t, and so on. We

further denote by ϕ
B(y∗)
h the exact flow of the ODE with

right-hand side B(y∗), where y∗ =

[
q∗

p

]
. This means that

the magnetic field is fixed at q∗, i.e. Ω(q) ≡ Ω(q∗). One
easily verifies the following solutions for the exact flows:

ϕT
h

([
q0
p0

])
=

[
q0 +

h
mp0

p0

]
,

ϕE
h

([
q0
p0

])
=

[
q0

p0 + hF (q0)

]
,

ϕ
B(y∗)
h

([
q0
p0

])
=

[
q0

exp
(
hΩ(q∗)

)
p0

]
.

(12)

We note that the so-called Rodrigues formula allows
an efficient implementation of the matrix exponential
exp(hΩ) and the φ functions (see (38) and (43) of the
Appendix).
We will also need the solutions of the subsystems cor-

responding to the fields T + B(y∗) and E + B(q∗). The

flow corresponding to T + B(y∗) is given by the exact
solution of the ODE

d

dt

[
q
p

]
=

[
0 1

mI
0 Ω(q∗)

] [
q
p

]
,

which can be expressed by the matrix exponential as
[
q(h)
p(h)

]
= exp

([
0 1

mI
0 Ω(q∗)

])[
q0
p0

]
.

Using (42) we see that

ϕ
T +B(y∗)
h

([
q0
p0

])
=

[
q0 +

h
mφ1

(
hΩ(q∗)

)
p0

exp(hΩ(q∗))p0

]
, (13)

where φ1(z) = (exp(z)− 1)/z.
On the other hand, the flow corresponding to the field

E + B is given by the exact solution of the ODE

d

dt

[
q
p

]
=

[
0

Ω(q)p+ F (q)

]
.

This solution is given by the variation-of-constants for-
mula (44) as

ϕE+B
h

([
q0
p0

])
=

[
q0

exp
(
hΩ(q0)

)
p0 + hφ1

(
hΩ(q0)

)
F (q0)

]
.

(14)
We also state the solution for the flow corresponding to
T + E + B in the particular case when both F and Ω
are constant. This is presented also in [2] using another
formulation. The ODE corresponding to the flow is now

d

dt

[
q
p

]
=

[
0 1

mI
0 Ω

] [
q
p

]
+

[
0
F

]
,

and its solution is given again by the variation-of-
constants formula and by formula (42) as

ϕh

([
q0
p0

])
= exp

(
h

[
0 1

mI
0 Ω

])[
q0
p0

]

+ hφ1

(
h

[
0 1

mI
0 Ω

])[
0
F

]

=

[
q0 +

h
mφ1(hΩ)p0 +

h2

m φ2(hΩ)F
exp(hΩ)p0 + hφ1(hΩ)F

]
,

where φ2(z) = (φ1(z)− 1)/z.
We note that all of these substeps are time symmetric,

i.e., ϕT
−h = (ϕT

h )
−1, and so on.

We also note that the subflows (12) and (14) are vol-

ume preserving. Both the maps ϕE+B
h : y0 7→ y1 and

ϕ
B(y∗)
h : y0 7→ y1 have the Jacobian

∂y1
∂y0

=

[
I 0

∂p1

∂q0
exp

(
hΩ(q̃)

)
]
,

where q̃ = q0 for ϕE+B
h and q̃ = q∗ for ϕ

B(y∗)
h . Its deter-

minant is given by

det
∂y1
∂y0

= det exp
(
hΩ(q̃)

)
.
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As the Cayley transform of a skew-symmetric matrix is
a unitary matrix, and as det exp(hΩ(q̃)) is a continuous

function of h and exp(0) = I, we find for the maps ϕE+B
h

and ϕ
B(y∗)
h the relation

det
∂y1
∂y0

= 1.

Therefore both are volume preserving. One easily verifies
from (12) that ϕT and ϕE

h are also volume preserving.
Splitting the Hamiltonian (8) gives subsystems corre-

sponding to the right-hand sides

B(y)∇y
‖p‖2

2m = T (y) + B(y) (15)

and

B(y)∇y cΦ(q) = E(y). (16)

Both of these constitute Poisson systems of the form (5)

with the system matrix (9) and with Hamiltonians ‖p‖2

2m

and cΦ(q), respectively. Therefore, the subflows ϕT +B
h

and ϕE
h are Poisson maps, as well as their compositions

ϕE
h ◦ ϕT +B

h , etc.

V. METHODS

We will next state four time integration methods.
They are formulated using the φ functions and the so-
lutions of the subflows given in Section IV. Three of
them can be found in the literature: the Boris–Buneman
scheme [1], the method of Chin [2] and the method of
Spreiter and Walter [11]. We also state a new method
which is nearly symmetric and nearly preserves the Pois-
son structure (method C below).

A. Boris–Buneman scheme

The so-called Boris pusher [1] is undoubtedly the
most common particle trajectory integrator used for PIC
codes. It is a second-order accurate centered difference
leap frog scheme, given by

q(t+ h
2 )− q(t− h

2 )

h
=

p(t)

m
,

p(t+ h)− p(t)

h
= F

(
q(t+ h

2 )
)

(17)

+ Ω
(
q(t+ h

2 )
) (p(t+ h) + p(t)

2

)
.

PIC codes usually define the position with an offset of
half a time step h relative to the momentum. In (17) q
is updated alternatingly with p.
To formulate this scheme as a one-step method, we

denote q0 =
(
q(t + h

2 ) + q(t − h
2 )
)
/2, q1/2 = q(t + h

2 ),

p0 = p(t) and so on. Using this notation the linear drift
operation corresponding to T can be split as

q1/2 = q0 +
h
2mp0,

q1 = q1/2 +
h
2mp1.

(18)

The momentum change in between these drift operations
is defined by the second equation of (17). Solving it for
p1 gives

p1 = h(I − h
2 Ω̂)

−1F (q1/2) +R(h2 Ω̂)p0,

where R(z) is the Cayley transform

R(z) = (1 + z)(1− z)−1,

and Ω̂ = Ω(q1/2). We note that both the resolvent (I −
h
2 Ω̂)

−1 and R(h2 Ω̂) can be evaluated efficiently (see (45)

and (46) of the Appendix). Since R(z) + 1 = 2(1− z)−1,
we may rewrite the momentum step also as

p1 = h
2

(
R(h2 Ω̂) + I

)
F (q1/2) +R(h2 Ω̂)p0.

From this one can easily read off that the mid-step can
be split as

p+ = p0 +
h
2F (q1/2),

p++ = R(h2 Ω̂)p
+,

p1 = p++ + h
2F (q1/2).

(19)

The steps (18) and (19) give together the approximation

ϕh ≈ ϕT
h
2
◦ ϕE

h
2
◦ ϕ̂B(y1/2)

h ◦ ϕE
h
2
◦ ϕT

h
2
, (20)

where y1/2 = ϕE
h
2

◦ ϕT
h
2

(y0), and ϕ̂
B(y1/2)

h is given by

ϕ̂
B(y1/2)

h

([
q
p

])
=

[
q

R
(
h
2Ω(q1/2)

)
p

]
.

Since R(−z) = R(z)−1, we have ϕ̂
B(y1/2)

−h =
(
ϕ̂
B(y1/2)

h

)−1

.

Therefore, (20) gives a symmetric method. We note that
(20) is equivalent to the formulation (17) with the initial
value ϕT

h/2(y0).

Since the Cayley transform of a skew-symmetric ma-

trix is a unitary matrix, the subflow ϕ̂
B(y1/2)

h is also a
volume preserving map (see the analysis of Section IV).
And as also the maps ϕT

h
2

and ϕE
h
2

are volume preserving,

the method (20) is volume preserving as a composition of
volume preserving maps. The volume preservation prop-
erty of the Boris scheme was also shown in [10].
Replacing the Cayley transform by the exponential

function in the mid-step, i.e., considering the splitting

ϕh ≈ ϕT
h
2
◦ ϕE

h
2
◦ ϕB(y1/2)

h ◦ ϕE
h
2
◦ ϕT

h
2

(21)

gives also a symmetric and volume preserving method.
Both the Cayley transform and the matrix exponential
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rotate the momentum around the vector b(q) in the mid-
step. This can be seen as follows. Since b(q)TΩ(q)p0 =
c
mb(q)T

(
p0 × b(q)

)
= 0, we may deduce from the power

series representations that

b(q)T exp
(
hΩ(q)

)
p0 = b(q)TR

(
h
2Ω(q)

)
p0 = b(q)Tp0.

(22)
On the other hand, since Ω(q) is skew-symmetric both
exp

(
hΩ

)
and R

(
h
2Ω(q)

)
are unitary matrices, so that

‖ exp
(
hΩ(q)

)
p0‖2 = ‖R

(
h
2Ω(q)

)
p0‖2 = ‖p0‖2. (23)

From (22) and (23) it follows that both give rotations
around b(q).

B. Chin’s schemes

Using the Lie operator formalism [4], the following
splitting methods are derived in [2]:

• Chin-a:

ϕa
h(y0) = ϕE+B

h
2

◦ ϕT
h ◦ ϕE+B

h
2

(y0), (24)

• Chin-b:

ϕb
h(y0) = ϕT

h
2
◦ ϕE+B

h ◦ ϕT
h
2
(y0). (25)

Since the substeps are symmetric maps, both (24) and
(25) give symmetric methods. Moreover, as the meth-
ods (24) and (25) are compositions of volume preserving
maps (see Section IV), both of them are volume preserv-
ing as well.
We note that the methods of Chin become exactly en-

ergy preserving when F = 0 [2].

C. Symmetric splitting of the Hamiltonian

As a new method, we propose a symmetric splitting of
the Hamiltonian for the Poisson system (5). This means
that the right-hand side of the (5) is split into the flows
(15) and (16) according to the Hamiltonian (8). Then,
Strang splitting is applied to this decomposition giving
the symmetric one-step method

y1 = ϕE
h
2
◦ ϕT +B

h ◦ ϕE
h
2
(y0). (26)

For a constant magnetic field Ω(q) ≡ Ω this splitting
approach can be found in [9] where it goes by the name
of Scovel’s method; see also [12].
The mid-step of (26), i.e., the solution

v1 = ϕT +B
h (v0), where v0 = ϕE

h/2(y0), (27)

can be computed efficiently using the formula (13) if the
magnetic field is uniform. If the magnetic field is position
dependent, some approximations have to be made.

We infer from (26) that the last substep ϕE
h/2 changes

only p. As the magnetic field depends only on q, we see
from (13) that by using a symmetric approximation for
(27), we get a symmetric approximation for (26).
The approaches we consider for the mid-step are the

following ones:

1. The symmetric method

w1 = ϕ
T +B(w1)
h
2

◦ ϕT +B(w0)
h
2

(w0) (28)

combined with fixed-point iteration. This approach
can be found in [3].

2. The symmetric method

w1 = ϕ
T +B((w1+w0)/2)
h (w0) (29)

combined with fixed-point iteration.

3. Perform a symmetric high-order composition of ei-
ther (28) or (29). For a description of composition
schemes we refer to [4]. In numerical experiments
we use the 8th-order scheme from [14].

In the methods above the numerical strategy is to per-
form a fixed-point iteration for the implicit mid-step.
This approach is also taken in [3]. For the approach (28)
this means that after the initial value

w
(0)
1 = ϕ

T +B(w0)
h
2

(w0), w0 = ϕE
h
2
(y0)

is computed, the iteration goes on as

w
(k)
1 = ϕ

T +B(w
(k−1)
1 )

h
2

(w
(0)
1 ).

Here ϕ
T +B(w

(k−1)
1 )

h
2

(w
(0)
1 ) can be computed explicitly us-

ing the formula (13).
The implementation for (29) goes analogously. After

the initial value

w
(0)
1 = ϕE

h
2
(y0)

is computed, the iteration goes on as

w
(k)
1 = ϕ

T +B((w
(k−1)
1 +w

(0)
1 )/2)

h
2

(w
(0)
1 ).

As shown in [3] the method (26) with the approach
(28) will be symmetric up to an order that equals the
number of fixed-point iterations. It is easy to verify that
the same holds true for (29). By the results of [3] the
same holds true for the third approach.
It is easily verified that the high-order composition

scheme will also be a Poisson integrator up to an order of
the scheme used for the mid-step (i.e., the relation (11)
will be satisfied up to this order). Although the num-
ber of magnetic field evaluations increases considerably,
the term F (q) is still evaluated only once per time step,
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which may be beneficial in situations where the calcula-
tion of the electric field is more expensive than that of
the magnetic field.
Since the flows of the subsystems resulting from a

Hamiltonian splitting are Poisson maps, so is the com-
position (26); see also [4, Ch. 7]. As the method (26)
is symmetric and a Poisson integrator, it has a modified
Hamiltonian (see the backward error analysis of [4]) and
preserves the first integrals for exponentially long times.
The strategies 1-3 above give symmetric (or Poisson)

maps up to a high order and we expect a good preserva-
tion of first integrals numerically.

D. The method of Spreiter and Walter

In [11] a second-order accurate scheme is proposed
which incorporates a homogeneous magnetic field in z-
direction, and which overcomes the stability condition
hωc ≪ 2π, where ωc is the cyclotron frequency. We re-
peat here the derivation of this method using the φ func-
tions which shortens the derivation considerably. As this
derivation shows, the method can be seen as an exponen-
tial version of the velocity Verlet scheme. Integrating the
Lorentz force law

ṗ(t) = Ωp(t) + F (q(t))

with respect to t gives an ODE for q,

q̇(t)− q̇(0) = Ω
(
q(t)− q(0)

)
+ 1

m

t∫

0

F (q(s)) ds. (30)

Under the assumption that d
dtF (q(t)) = O(1), we can

approximate the ODE (30) up to second order as

q̇(t) = Ωq(t) +
(
q̇(0)− Ωq(0)

)
+

t

m
F (q(0)) +O(t2).

By the variation-of-constants formula (44) the solution
for this ODE at t = h is given by

q(h) = exp(hΩ)q(0) + hφ1(hΩ)
(
q̇(0)− Ωq(0)

)

+ h2

m φ2(hΩ)F (q(0)) +O(h3) (31)

= q(0) + h
mφ1(hΩ)p(0) +

h2

m φ2(hΩ)F (q(0)) +O(h3).

This gives the time stepping formula for q. Integrating
the Lorentz force law and using the variation-of-constants
formula (44) once more yields

p(h) = exp(hΩ)p(0) +

h∫

0

exp
(
(h− s)Ω

)
F (q(s)) ds.

Using the fact that

F (q(s)) = F (q(0)) + sḞ (q(0)) +O(s2)

and

Ḟ (q(0)) = 1
h

(
F (q(h)) − F (q(0))

)
+O(h2)

we find that

p(h) = exp(hΩ)p(0) + hφ1(hΩ)F (q(0))

+ hφ2(hΩ)
(
F (q(h)) − F (q(0))

)
+O(h3).

(32)

The approximations (31) and (32) give together the one-
step formula of Spreiter and Walter:

q1 = q0 +
h
mφ1(hΩ)p0 +

h2

m φ2(hΩ)F (q0),

p1 = exp(hΩ)p0 + hφ1(hΩ)F (q0)

+ hφ2(hΩ)
(
F (q1)− F (q0)

)
.

Since exp(hΩ) → 0, φ1(hΩ) → 1 and φ2(hΩ) → 1
2 as

Ω → 0, we see that in the limiting case Ω → 0 the veloc-
ity Verlet scheme is obtained. We note that the method
of Spreiter and Walter can be interpreted also as an ex-

ponential Taylor method [7].

Despite of its similarity with the velocity Verlet
scheme, we have not found any structure preserving prop-
erties for the method of Spreiter and Walter.

VI. NUMERICAL COMPARISON OF THE

INTEGRATORS

In the first experiment, we compare the integrators for
a particle motion in an inhomogeneous magnetic field in
the absence of an electric field. Then, results for experi-
ments including combined electric and magnetic fields are
provided. The motion of a charged particle in a Penning
trap [8] provides a suitable numerical test in the case of
combined fields. In this setting the particle trajectory is
a periodic orbit, formed by a superposition of three har-
monic oscillators. In addition to the ideal Penning trap
with a uniform magnetic field we consider two variations
of this setup with static but nonuniform magnetic fields.

A. 2d particle motion in an inhomogeneous

magnetic field

In the first experiment we consider an example pro-
vided in [2]: a particle of charge c = −1 and mass

m = 1 at initial position q0 =
[
1 0 0

]T
with ini-

tial velocity v0 =
[
0 v 0

]T
moves in a magnetic field

b =
[
0 0 bz

]T
, bz = 1

q2x
. The particle motion is com-

posed of a periodic motion in the xy-plane and a∇B drift

in y-direction with drift velocity vd = v2

1+v . The drift

reduced trajectory q̃(t) = q(t) − q̃0(t) forms an ellipse

centered at q̃0(t) =
[
xmid vd t 0

]T
with xmid = 1+v

1+2v .
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q̃(t) =
[
x̃(t) ỹ(t) 0

]T
is given by

x̃(t) =
v

1 + 2v
cos ρ(t),

ỹ(t) =
v

(1 + v) +
√
1 + 2v

sin ρ(t).

One full orbit has the period P = 2π(1+v)

(1+2v)
3
2
.

The scalar potential is set Φ = 0 and the vector po-

tential A =
[
0 Ax 0

]T
with Ax = − 1

qx
. The Lagrangian

takes the form L = 1
2‖q̇‖2 + q̇y

1
qx
. As it is independent

of qy, the y-component of the generalized momentum,

I :=
∂L

∂q̇
= m q̇y +

1

qx
, (33)

gives another integral of motion.
Since now F (q) = 0, the flow ϕE

t vanishes and the inte-
grators used in the previous example simplify as follows.

• Boris–Buneman scheme with Cayley transforma-
tion:

ϕh(y0) = ϕT
h
2
◦ ϕ̂B(y1/2)

h ◦ ϕT
h
2
(y0), (34)

• Chin-b (equals Boris–Buneman scheme with matrix
exponential):

ϕh(y0) = ϕT
h
2
◦ ϕB(y1/2)

h ◦ ϕT
h
2
(y0).

The method of Scovel gave poor results as it is not sym-
metric when applied to a nonuniform field. Therefore it
was discarded in this experiment. The symmetric meth-
ods (28) (denoted as Impl. Strang) and (29) (denoted as
Impl. mp.) were used with five (for Impl. Strang) and six
(for Impl. mp.) fixed-point iteration steps.
We compare these methods by performing a numerical

integration over 20000 cycles of period P with step sizes
h varying from 0.0005P to 0.05P . The initial velocity is
set to v = 0.5 in all test cases. Figures 1a and 1b show the
time step length plotted against the relative error of the
invariant I (as defined in (33)) and the absolute position
error using a logarithmic scale. Both iterative methods
provide slightly lower errors of the invariant, while only
the implicit Strang splitting method has a lower position
error than the method of Chin. The method of Boris pre-
serves well first-order drifts. When the step size increases
almost about one order of magnitude there is only a lit-
tle impact on the position error for the method of Boris.
The position error stays around ∆q = 0.5, which is the
diameter of the ellipse in x–direction. For small time
steps, however, the implicit Strang splitting method is
the most accurate. The error behavior becomes more
visible when considering separately the error of the drift
velocity and the error of the period length as shown in
Figures 2a and 2b. The Boris pusher is the best method
regarding the conservation of the drift velocity but the
worst regarding the period length. To indicate the order
of the methods we have added a line of slope 2 in each of
the graphs (denoted by order 2).
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(a) Relative error of invariant I.
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(b) Absolute error of position q.

FIG. 1: 2d inhomogeneus magnetic field: maximum
error (along trajectory) of the invariant I and the

position q as a function of the time step length h (in
units of the analytic period length P ) for a fixed total

simulation time of 20000P .

B. Ideal Penning trap with uniform magnetic field

The ideal Penning trap consists of a static quadrupole
electric field and a uniform magnetic field given by

E = κ
[
x y −2z

]T
,

b =
[
0 0 bz

]T
,

(35)

where κ depends on the geometry and the voltage of the
electrodes. The analytic solution for the motion of a
single particle in an ideal Penning trap can be found in
[8]. Choosing the trap parameters suitably gives a stable
periodic orbit consisting of a fast gyromotion perpendic-
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(a) Relative error of average drift velocity vd.
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(b) Relative error of average period length P̄ .

FIG. 2: 2d inhomogeneus magnetic field: error of the
average drift velocity vd and period length P̄ as a
function of the time step length h (in units of the

analytic period length P ) for a fixed total simulation
time of 20000P .

ular to b with the frequency ωmc ≈ ωc = c
mbz, a slower

axial motion along b with the frequency ωz =
√
2 c
mκ

solely caused by the electrostatic fields and an even
slower circular E×B drift motion around the z-axis with
the magnetron frequency ωm. We set c = 1, m = 1,
bz = 100, κ = 10 and the initial coordinates of the par-

ticle q0 =
[
1
3 0 1

2

]T
and p0 =

[
0 1 0

]T
. The particle

trajectory of this example is shown in Figure 3a.

As the magnetic field is uniform in space the central
step of the symmetric Hamiltonian splitting (26) can be
computed exactly as is done in Scovel’s method. We
compare this method to the method of Chin (25), the
method of Spreiter and Walter (denoted by SpW), the
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(a) Uniform magnetic field.
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(b) Magnetic bottle.
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(c) Asymmetric magnetic field.

FIG. 3: Particle trajectories for the three variations of
the Penning trap.
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Boris pusher (20) and its matrix exponential variation
(21) (denoted by Boris exp).
We compare the methods by their ability to deliver

a stable orbit over a large number of magnetron cycles
(full circles around the z-axis), by the relative energy
error (Figure 4a) and by the absolute error of the po-
sition (Figure 4b). As both types of errors are heavily
oscillating, the maximum value of the error along a tra-
jectory with a total simulation time of 2πω−1

m (a com-
plete magnetron cycle) is plotted against the time step
length, using logarithmic scales for both quantities. The
time step size ranges from 0.002 to 2.4 cyclotron cycles
f−1
c = 2π

ωc
, violating the stability criteria for some meth-

ods. A further reference line with a slope corresponding
to a second-order method has been added to both plots.
With the exception of Spreiter and Walter all meth-

ods feature a bounded energy error and a position error
increasing linearly in time on a closed orbit, as long as
the time step size is considerably smaller than f−1

c . The
method of Spreiter and Walter shows a linearly increas-
ing energy error until its orbit becomes unstable, so with
longer simulation time its errors become worse relative
to the other methods.
For larger time steps the method of Chin, the Hamilto-

nian splitting (Scovel) and the Boris pusher in its matrix
exponential variation become unstable for fch ≈ n, n in-
teger, while the Boris pusher using the Cayley transform
preserves a closed orbit and a bounded energy error.
The Boris pusher provides in both variations a smaller

energy error than the method of Chin and the Hamilto-
nian splitting, but shows a larger position error for small
time steps. Figure 4b demonstrates an interesting be-
havior of the Boris pusher: for a large range of time step
sizes the maximum position error remains constant at
∆q = 0.02, the diameter of the gyromotion. This can be
explained by the fact that the Boris pusher can reproduce
the correct first-order gyrocenter drift motion [17].
The position error of a stable trajectory is bounded

by the maximum diameter of the closed orbit (approx-
imately 1 in our example), which causes the cut-offs in
Figures 4b, 6b, and 7b.

C. Penning trap with magnetic bottle

The third experiment features a nonuniform magnetic
field: a Penning trap with a magnetic bottle determined
by the magnetic field

b = bz
[
0 0 1

]T
+ β

[
−xz −yz z2 − x2+y2

2

]T
. (36)

HereE is as given in (35). A physical implementation of a
Penning trap featuring such a magnetic field can be found
in [13]. We set β = 200 and all the other parameters are
as in the last example. The strength of the magnetic field
and the cyclotron frequency ωc vary only a little along
the trajectory. The particle trajectory of this example is
shown in Figure 3b.
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(b) Absolute error of position.

FIG. 4: The ideal Penning trap: maximum error of the
total energy E and of the position q along a trajectory
of two complete magnetron cycles as a function of the

time step size h (in units of the inverse cyclotron
frequency f−1

c ).

When using the symmetric splitting method (26), ap-
proximations have to be made for the mid-step since now
the magnetic field is nonuniform in space. Figure 5a
shows the effect of the number of employed fixed-point
iterations on the energy preservation of this method in a
long time simulation of a trapped particle using a time
step size of h = 0.4 f−1

c,0 , where fc,0 is the cyclotron fre-
quency at the initial position. As the position error is
bounded by the closed orbit we choose the relative error
of α (defined as the angle of motion around the z-axis) as
a measure for the trajectory’s error in Figure 5b. Both
errors are heavily oscillating, so the maximum value over
each 106 consecutive time steps is drawn.
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The mid-step is either approximated by the implicit
method (28) (denoted as Impl. Strang) or by (29) (de-
noted as Impl. mp.). For 5 fixed-point iterations (in the
case of Impl. Strang) and 6 iterations (in the case of
Impl. mp.) both alternatives seem to become approxi-
mately energy preserving and provide a stable orbit. This
is expected from the theory, since the order of symmetry
of these methods equals the number of fixed-point itera-
tions employed [3] and since a good long time behavior
can be expected for symmetric methods [4].
We compare the methods of Chin, the Boris pusher

and the symmetric splitting method (26) using the im-
plicit schemes as described above. Furthermore, we ap-
ply a high-order composition of (28) or (29) (denoted as
Impl. mp. comp.). The composition is performed using
an 8th-order symmetric scheme of Suzuki and Umeno
[14] consisting of 15 substeps. Each substep uses 16
fixed-point iterations. Consequently, such a composition
scheme requires a large number of magnetic field eval-
uations per time step: 240 for the method (29), or 255
when using the method (28) due to the calculation of the
initial value within each substep. Nevertheless, a single
electric field evaluation suffices for each time step. As the
results of the implicit schemes do not differ considerably
when the composition is applied, only the ones of (29)
are drawn in the plots.
As before we provide two log-log plots showing the

dependence of the energy and the position errors on the
time step size in the range of 0.002 to 0.4 cyclotron cycles
f−1
c,0 . Lacking an analytic solution to determine the posi-
tion errors we use the trajectory of a high-order method
with a small time step (0.00025 cyclotron cycles) as a
reference: the fourth-order method of [16] applied on ϕT

h

and ϕE+B
h (denoted as M in [2]) in combination with a

composition scheme [15] increasing the order to 6.
All variations of the symmetric Hamiltonian splitting

method give an energy error similar to Chin’s scheme
(Figure 6a). However, the smallest position error is ob-
tained by using the composition scheme for the mid-step
of the Hamiltonian splitting.

D. Penning trap with asymmetric magnetic field

As the Penning trap with magnetic bottle is still rota-
tionally invariant, we also consider an example with an
asymmetric magnetic field given by

b(x, y, z) = bz
[
1
3 0 1

]T
+β

[
y − z x+ z y − x

]T
, (37)

where β = 50. Notice that ∇ · b = ∇× b = 0. E is again
as given in (35). The particle trajectory of this example
is shown in Figure 3c. Along the trajectory the magnetic
field strength increases by a factor of 1.8. Therefore time
step sizes between 0.001 and 0.1f−1

c,0 are investigated in
a simulation lasting for approximately 24 orbit cycles.
Figures 7a and 7b show the energy and position errors
for the methods giving similar results as in the previous
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(a) Relative error of energy.
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(b) Relative error of α.

FIG. 5: Penning trap (magnetic bottle): long time
evolution of the errors of the total energy E and the
angle of circular motion α for different numbers of

fixed-point iterations over 109 time steps of fixed size
h = 0.4f−1

c .

example. The number of used magnetic field evaluations
for each implicit method was the same as in the previ-
ous example. The reference trajectory for the position
errors has been computed with the method described in
the previous example. Using the largest time step size
h = 0.1f−1

c,0 shows unbounded energy errors for all the
methods with the exception of the Boris pusher with the
Cayley transform and the fixed point iteration schemes
of the symmetric Hamiltonian splitting in combination
with the high-order composition method of the mid-step.
Therefore another long time integration over 2 · 109 time
steps of length 0.1f−1

c,0 has been performed using both

methods and the fourth-order method of [2, 16] (denoted
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FIG. 6: Penning trap (magnetic bottle): maximum
error (along trajectory) of the total energy E and of the
position q as a function of the time step size h (in units

of the inverse cyclotron frequency f−1
c ).

by Chin M). For this example we measure also the mag-
netic moment defined by

µ(q, p) =
m

2c2
‖Ω(q)p‖2
‖b(q)‖3 =

c

2m2

‖Ω(q)p‖2
ω3
c

.

It is a so-called adiabatic invariant of the system [4] and
should be conserved approximately. The magnetic mo-
ment as well as the energy error are oscillating within
some range, so the maximum value on consecutive inter-
vals of 106 time steps is drawn in Figures 8a and 8b.
While the energy error of the Boris pusher remains

smaller than that of the symmetric Hamiltonian splitting
for over 4 · 108 time steps, the evolution of the magnetic
moment µ indicates the instability long before.
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FIG. 7: Penning trap (asymmetric field): maximum
error (along trajectory) of the total energy E and of the
position q as a function of the time step size h (in units

of the inverse cyclotron frequency f−1
c ).

An initial decrease of µ is followed by a rapid growth
after 3 · 108 time steps for the Boris scheme. The Boris
scheme with 2 times smaller time steps (denoted Boris
h/2) shows a similar behavior with a delay. The fourth-
order method denoted by Chin M exhibits a quickly grow-
ing error in energy but a smoother change of µ. Only the
symmetric Hamiltonian splitting in combination with a
high-order approximation of the mid-step is able to pro-
vide a stable orbit.

VII. CONCLUSIONS

We have considered here time integrators for particle
trajectories in combined electric and magnetic fields. We
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FIG. 8: Penning trap (asymmetric field): long time
evolution of the magnetic moment µ and the error of
the total energy E over 2 · 109 time steps of fixed size

h = 0.1f−1
c .

have reformulated and analyzed existing methods found
from literature under a common framework and addi-
tionally proposed a new method which deals the effect
of the magnetic field implicitly. This is done by splitting
the right-hand side of the equations of motion into three
terms and by using the matrix function approach. The
matrix functions are used for the magnetic field term, and
the so-called Rodrigues formula simplifies their evalua-
tion. We represent the equations of motion as a Poisson
system and analyze the structure preserving properties
of the integrators.

The existing methods we found in literature are:
Boris–Buneman scheme, Chin’s schemes, the method of
Spreiter and Walter, and the Scovel’s method. Addi-
tionally we have proposed a new implicit scheme. This

scheme is the same as the Scovel’s method when the mag-
netic field is homogeneous.
The Boris–Buneman scheme and the Chin’s schemes

are shown to be both symmetric and volume preserving.
For the Spreiter and Walter’s scheme we did not find
any structure preserving properties. The new method
we propose is fully structure preserving up to an order
equaling the number of fixed-point iterations used for the
implicit mid-step. In numerical experiments we illustrate
the effect of the number of fixed-point iterations on the
preservation of the structure. In our experiments 6 iter-
ations were enough to reduce the error negligible.
As a first numerical comparison, we tested all the

schemes except Spreiter and Walter’s method in a case
where there is no electric field. Due to the time symme-
try, all the methods seemed to preserve invariants. For
the position error the newly proposed implicit splitting
method seemed to be the most accurate for small time
steps, whereas for larger time steps the method of Boris
was the most accurate. When the motion was separated
into a periodic and a drift term, it was found that the
method of Boris preserved the drift motion the best and
the periodic motion the worst, whereas this was the op-
posite for the implicit splitting method.
To compare the schemes in combined electric and mag-

netic fields, we integrated particle trajectories within a
Penning trap. As a first example of combined fields we
considered a constant homogeneous magnetic field, so
Scovel’s method could be used producing energy and so-
lution errors very similar to the method of Chin: a lower
solution error than the Boris pusher for step-sizes con-
siderably smaller than the inverse cyclotron frequency at
the cost of a slightly larger but likewise bounded energy
error. Spreiter and Walter’s method on the other hand
did not feature a bounded energy error, so the orbit of
the particle was unstable.
As a second Penning trap example we had an inho-

mogeneous but radially symmetric magnetic field. Re-
placing Scovel’s scheme by the new method still gave the
same energy error like Chin’s scheme. The solution error
differed depending on the method used for the implicit
mid-step iteration. Applying a high order composition
scheme on the mid-step provided the lowest solution er-
ror of all methods tested.
In the last numerical example of a Penning trap, we

performed long time integration of a trajectory in an
asymmetric magnetic field and compared three methods:
one of the Chin’s schemes, the Boris–Buneman scheme
and the newly proposed implicit method. We followed
the preservation of the energy and of the magnetic mo-
ment. As expected from the analysis of Section V, the
implicit method turned out to be the most stable. The
Boris–Buneman scheme, being the second most stable,
was more unstable than the implicit scheme even for 4
times smaller time steps.
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VIII. APPENDIX: MATRIX FUNCTIONS

The following identities are easily verified for the skew-
symmetric matrix Ω (see (4)):

Ω2 = ωωT − ω2
cI,

Ω3 = −ω2
cΩ,

where ωc =
√
ω2
1 + ω2

2 + ω2
3 . Using the second identity

and the Taylor series of sin and cos, we get the Rodrigues
formula for the exponential of hΩ:

exp (hΩ) = I +
sinhωc

ωc
Ω+

1− coshωc

ω2
c

Ω2. (38)

A. φ functions

We list here the necessary definitions and properties of
the φ functions. These functions are defined by

φ0(z) = ez, φℓ(z) =

∫ 1

0

e (1−θ)z θℓ−1

(ℓ− 1)!
dθ, ℓ ≥ 1.

(39)
They satisfy φℓ(0) =

1
ℓ! and the recurrence relation

φℓ+1(z) =
φℓ(z)− φℓ(0)

z
, ℓ ≥ 0. (40)

The φ functions are analytic in the whole complex plane.
Therefore, the matrix φ(A) is well defined for every
A ∈ C

n×n. For various definitions and more details on
matrix functions we refer to [5]. We mention that the φ
functions play a crucial role also in the so-called expo-
nential integrators [6].
From (40) it follows that the series representation of

the φℓ function is given by

φℓ(z) =

∞∑

j=0

zj

(j + ℓ)!
. (41)

We will also need the following formula, which can be
easily verified using (41)

φℓ

(
h

[
0 1

mI
0 Ω

])
=

[
1
ℓ!I hφℓ+1(hΩ)
0 φℓ(hΩ)

]
, ℓ ≥ 0. (42)

Using the formula (38) and the integral definition (39),
the following concise representations can be derived

φ1(hΩ) = I +
1− cos(hωc)

hω2
c

Ω +
hωc − sin(hωc)

hω3
c

Ω2,

φ2(hΩ) = I +
hωc − sin(hωc)

h2ω3
c

Ω (43)

+

(
cos(hωc)− 1

h2ω4
c

+
1

2ω2
c

)
Ω2.

B. Variation-of-constants formula

The so-called variation-of-constants formula provides
the solution of a semilinear ODE

y′(t) = Ay(t) + g(t, y(t)), y(0) = y0.

It is given as

u(t) = exp(tA)u0+

∫ t

0

exp
(
(t−τ)A

)
g(τ, u(τ)) dτ. (44)

C. Relations for the Boris pusher

Let Ω be as in (4). An explicit calculation shows that

(
I − h

2Ω
)−1

= I + κ
(
h
2Ω+ h2

4 Ω2
)
, (45)

where κ = (1+ h2

4 ω2
c )

−1 and ωc =
√
ω2
1 + ω2

2 + ω2
3 . Mul-

tiplication by I + h
2Ω gives the Cayley transform of h

2Ω,

R(h2Ω) =
(
I − h

2Ω
)−1(

I + h
2Ω

)

= I + 2κ
(
h
2Ω + h2

4 Ω2
)
.

(46)

The application of R(h2Ω) on p+ is equivalent to the cross
product formulation of the Boris scheme (see [1] for the
cross product formulation), since if

t = h
2ω,

s = 2t
1+‖t‖2 = κhω,

p′ = p+ + p+ × t =
(
I + h

2Ω
)
p+,

then

p++ = p+ + p′ × s,

= p+ +
(
(I + h

2Ω)p
+
)
× κhω,

= p+ + 2κh
2Ω

(
I + h

2Ω
)
p+,

=
(
I + 2κ(h2Ω+ h2

4 Ω2)
)
p+.
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