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1. Lecture 1: Introduction and Outline

1.1. The classical law of large numbers asserts that for i.i.d. random
variables Xi with E[jXij] <1,

1

n
(X1 +X2 + :::+Xn)! E[X1] a.s:

(the strong version). The �rst version was proved by J. Bernoulli in his
Ars Conjectandi from around 1700: Xi took values 0 or 1 and convergence
in weak sense (convergence in probability). The modern version is due to
e¤orts of Chebyshev, Markov, Borel, Cantelli, and Kolmogorov.
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1.2. In the early 1930s von Neumann proved the �rst ergodic theorem
(after Poincaré�s recurrence theorem) and immediately afterwards Birkho¤
proved his pointwise ergodic theorem. The set-up is: Let (
; �) be a stan-
dard Borel measure space with �(
) = 1 (from now on called a probability
space), and L : 
! 
 a measure preserving (i.e. �(L�1A) = �(A)), ergodic
(i.e. �(L�1A�A) = 0 implies �(A) = 0 or 1), measurable transformation
(an ergodic m.p.t).

Birkho¤�s theorem reads, given g : 
! R; L1-integrable, i.e.
R

 jgj d� <

1 , then

lim
n!1

1

n

n�1X
k=0

g(Lk!) =

Z


gd� a.e:

(The mean ergodic theorem of von Neumann will be discussed later.)

1.3. The strong law of large number is a special case: (
; �) = (R; �)N
and transformation L =the shift, which is ergodic by Kolmogorov�s 0-1 law.
The map g is the projection onto the �rst coordinate, so that Xi(!) =
g(Li�1!) = !i where ! = (!1; !2; :::):

1.4. We are after a noncommutative version of the ergodic theorem,
meaning that the function f now takes values in a more general group G
instead of R. We use the following notations. Let G be a topological group.
Given a measurable map g : 
! G, we let

Zn(!) = g(!)g(L!):::g(L
n�1!)

which is the extension of
P
g(Lk!) to a general, possibly noncommutative,

group. Assuming some appropriate integrability, what can we say about Zn
as n tends to in�nity? The �rst people to consider this type of questions
were Bellman, Kesten, and Furstenberg from the 1950s and onward. As
Grenander noted in his book from the time, it is not even clear how to
formulate a possible extention. We will see one possible answer here. To �x
terminology we call Zn as above an ergodic cocycle in the general case, and
in the special case of i.i.d variables, we call Zn a random walk (de�ned by
some probability measure � on G).

1.5. One of the �rst studies for products of random matrices is a paper
of Furstenberg-Kesten from 1960, where they in particular prove that if Zn
is an ergodic cocycle, integrable in the sense that

R
log kgk d� <1 for some

matrix norm k�k ; then the following limit exists a.e.

lim
n!1

1

n
log kZnk = A:

This was later generalized in two important ways: by Oseledec�s multiplica-
tive ergodic theorem, to be discussed later, and by Kingman�s subadditive
ergodic theorem.
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1.6. In a paper published in 1968, Kingman in response to a question
of Hammersley proved a subadditive ergodic theorem. This extension of the
Birkho¤ theorem is of basic importance in several contexts. Let a(n; !) be
a sequence of measurable functions such that a.e. for almost every n;m � 0

a(n+m;!) � a(n; !) + a(m;Ln!):

(For example, a(n; !) =
Pn�1
k=0 f(L

k!), the additive case.) Then, provided
that Z



a(1; !)d�(!) <1;

the following limit exists a.e.

lim
n!1

1

n
a(n; !) = A:

The Furstenberg-Kesten theorem above follows when this is applied to

a(n; !) = log kZn(!)k

in view of the submultiplicative property of matrix norms.

1.7. Another related implication of importance for us is the de�nition
of the linear drift of Zn. Fix a base point x0 in X. Let

a(n; !) = d(Zn(!)x0; x0):

From the triangle inequality and since G acts by isometry the subadditivity
condition is easily veri�ed:

d(Zn+m(!)x0; x0) � d(Zn+m(!)x0; Zn(!)x0) + d(Zn(!)x0; x0)
= d(Zm(L

n!)x0; x0) + d(Zn(!)x0; x0):

(Note that for the subadditivity to hold the order in which the random
elements are multiplied, from the right or from the left, does not matter.)
Therefore, we have that if

R

 d(gx0; x0)d� <1, then the linear drift

l = lim
n!1

1

n
d(Zn(!)x0; x0)

exists a.e. and is a constant (because of the ergodicity assumption) depend-
ing on � and g. Note that nothing depends on the choice of x0. If we
consider a random walk de�ned by �, we sometimes write l = l(�):

Example: Consider simple symmetric random walk on a regular tree.
Calculate the drift and show the convergence in direction to an end. A main
point here is to generalize this to a much more general setting.
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1.8. Here is an outline of the main results. The �rst can be viewed as
a noncommutative ergodic theorem (not to be confused with the subject of
noncommutative geometry):

Theorem 1 ([KL1]). Let X be a proper metric space and Zn an inte-
grable ergodic cocycle taking values in a topological group G which acts by
isometry on X: Then, for almost every !, there is a horofunction h = h!
depending measurably on ! such that

lim
n!1

� 1
n
h(Znx0) = l

where l := limn!1 1
nd(Znx0; x0):

Remarks at this point (a more complete discussion later):

� When G = GL(n;R) and X = Pos(n;R) =G=K; this specializes to
Oseledec�s theorem, which is fundamental in the subject of di¤er-
entiable dynamics, and hence extends Birkho¤�s ergodic theorem
and the law of large numbers.

� Previous work of Kaimanovich: symmetric spaces of nonpositive
curvature and Gromov hyperbolic spaces (even for nonproper X).

� When X is uniformly convex, Busemann NPC (e.g. CAT(0)) this
was proved by K.-Margulis in [KM99] (even for nonproper X)

� Interesting even when applied to G = X = R with various invariant
metrics d.

1.9. From the proof of Theorem 1 with some additional arguments one
can prove (note that horofunctions appear as a crucial concept in the proof)

Theorem 2 ([KL2]). Let G be a locally compact group with a left in-
variant proper metric d and � a nondegenerate probability measure on G
with �nite �rst moment. Then, if the Poisson boundary is trivial, there is a
1-Lipschitz homomorphism T : G! R such that for almost every trajectory
Zn of the random walk de�ned by �, we have:

lim
n!1

1

n
T (Zn) =

Z
G
T (g)d�(g) = l(�):

This existence of a drift homorphism seemed to have been mostly an
unnoticed phenomenon, except that in the work of Guivarc�h on random
walks on amenable Lie groups, the existence of such homomorphism in this
case was in fact established in the proofs, as he has informed us.

Immediately, one has

Corollary 1. Let G be a locally compact group with a left invariant
proper metric d and � a nondegenerate centered probability measure on G
with �nite �rst moment. Then, if the drift l(�) > 0; there exist nonconstant
bounded �-harmonic functions.
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The special case of �nitely supported and symmetric measures was proved
by Varopoulos. His proof rests on estimates for n-step transition probabil-
ities of symmetric Markov chains. To extend this to measures of in�nite
support was a problem of some signi�cance because of the Furstenberg-
Lyons-Sullivan�s discretization procedure for Brownian motion. Indeed, us-
ing Corollary 1 we obtained:

Theorem 3 ([KL3]). Assume that (M; g) is a regular covering of a Rie-
mannian manifold which has �nite volume and bounded sectional curvatures.
Then M is Liouville if, and only if,

lim
t!1

1

t
d(x0; Bt) = 0 a.s.

where Bt is Brownian motion and d the Riemannian distance.

This will not be discussed in detail. In short, the "if" part was proved
by Kaimanovich. The "only if" part uses Ballmann-Ledrappier�s version of
the FLS-discretization procedure and the observation of Babillot that the
measure so obtained is symmetric.

Another consequence of Theorem 2:

Corollary 2. Let G be a �nitely generated torsion group of subexpo-
nential growth (e.g. Grigorchuk groups) and � any probability measure of
�nite �rst moment. Then l(�) = 0:

2. Lectures 2-3: Horofunctions

2.1. Horofunctions and horospheres �rst appeared in noneuclidean geom-
etry and complex analysis in the unit disk or upper half plane. Consider
the unit disk D in the complex plane. The metric with constant Gaussian
curvature -1 is

ds =
2 jdzj
1� jzj2

or d(0; z) = log
1 + jzj
1� jzj :

It is called the Poincaré metric and for a point � 2 @D one has the horo-
function

h�(z) = log
j� � zj2

1� jzj2
:

These appear explicitly or implicitly in for example the Poisson formula,
Eisenstein series, and the Wol¤-Denjoy theorem.

An abstract de�nition was later introduced by Busemann who de�nes
the Busemann function associated to a geodesic ray  to be the function

h(z) = lim
t!1

d((t); z)� t:

Note here that the limit indeed exists for any metric space, since the triangle
inequality implies that the expression on the right is monotonically decreas-
ing and bounded from below by �d(z; (0)). The convergence is moreover
uniform if X is proper as can be seen from a 3"-proof using the compactness
of closed balls. Horoballs are sublevel sets of horofunctions h(�) � C. In
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euclidean geometry horoballs are halfspaces and in the disk model of the
hyperbolic plane horoballs, or horodisks in this case, are euclidean disks
tangent to the boundary circle.

Busemann functions appear for example as a curcial ingredient in the
proof the theorem of Cheeger-Gromoll that any manifold M of semipositive
curvature which has a geodesic line must split isometrically asM =M 0�R:

2.2. There is a more general de�nition probably �rst considered by Gro-
mov around 1980. Namely, let X be a complete metric space and let C(X)
denote the space of continuous real functions on X equipped with topol-
ogy of uniform convergence on bounded subsets. Fix a base point x0 2 X.
Consider now the map � : X ! C(X) de�ned by

� : z 7! d(z; �)� d(z; x0):
(A related map was considered by Kuratowski and independently K. Kunugui
in the 1930s.) We will sometimes denote by hz the function �(z): Note that
every hz is 1-Lipschitz because

jhz(x)� hz(y)j = jd(z; x)� d(z; x0)� d(z; y) + d(z; x0)j � d(x; y)
which applied to y = x0 gives

jhz(x)j � d(x; x0):
We have:

Proposition 1. The map � is a continuous injection.

Proof. For injectivity and partial continuity of the inverse, say d(x; x0) �
d(y; x0) and note that

hy(x)� hx(x) = d(y; x)� d(y; x0)� d(x; x) + d(x; x0) � d(y; x):
For continuity of � it su¢ ces to see that

jhx(�)� hy(�)j � jd(x; �)� d(x; x0)� d(y; �) + d(y; x0)j
� jd(x; �)� d(y; �)j+ j�d(x; x0) + d(y; x0)j � 2d(x; y):

�

2.3. An exercise in [BH99] asks you to prove that � is a homeomor-
phism onto its image. In other words it remains to show that the map is
an embedding. It may however happen that xn !1 in X but hxn ! hx0 .
Indeed, I learnt a counterexample from Bader: consider a graph with one
central vertex x0 from which countably many edges en are attached of corre-
sponding length n. If we take as metric space just the (end) vertices xn then
this space is a proper metric space with exactly the nonembedding property.
So for n 6= m; d(xn; xm) = n +m: (If we instead add also the edges to the
metric space, then we have a geodesic, although nonproper space. In this
case hxn does not converge in the topology chosen,pointwise the convergence
is the same). On the other hand, if X is a proper geodesic space, then �
is an embedding, see Ballmann�s book. Indeed, given a sequence xn ! 1
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(properness) and y 2 X: Select zn on the geodesic from x0 to xn for every
large n on distance R from x; where R >> d(y; x0): Then hy(z) > 0 but
hxn(zn) < �R: Taking a limit point z of zn shows that any limit of hxn is
distinct from hy:

2.4. We go on to de�ne, following Rie¤el�s terminology, the metric bor-
di�cation of X by taking the closure of the image in C(X): We use the
notation

X [ @X = X := �(X):

The points, or functions, in @X are called horofunctions with h(x0) = 0. The
sublevel sets fz : h�(z) � Cg are called horoballs centered at �. The Lipschitz
estimates above passes to the limits and hence holds for all functions in
�(X).

If the metric space is proper, X is (sequentially) compact by the Arzela-
Ascoli theorem, in which case it is called the metric compacti�cation. Note
that X is metrizable, since X is proper (take supmetric on each ball and
build a convergent sum of metric). Following [BH99] we prove:

Lemma 1. Let X be a complete metric space. Suppose xn ! h 2 @X:
Then xn !1.

Proof. If not, we may assume that d(xn; x0) ! R: Given " > 0 there
is an N such that

jh(x)� d(xn; x) + d(xn; x0)j < "

for every x 2 BR+1(x0): Hence

jh(xm)� d(xn; xm) + d(xn; x0)j < "

for all n and m su¢ ciently large, and in particular

jh(xn)� d(xn; xn) + d(xn; x0)j < "

which means that jh(xn)�Rj < 2" for all large n. It follows from the
previous inequality then that d(xn; xm) < 3": This means xn ! x 2 X and
so hx = h which contradicts h 2 @X. �

The action of Isom(X) on X extends continuously to an action by home-
omorphisms to the whole of �(X) and is given by

g � h(z) = h(g�1z)� h(g�1x0):

(Write out what hgx is for x 2 X and g an isometry.) A related remark is
the fact that the metric bordi�cation is independent of the base point x0 up
to homeomorphism, as can be seen from

hx0x (�) = d(x; �)� d(x; x0)� d(x; y0) + d(x; y0) = hy0x (�)� hy0x (x0):

(An alternative de�nition of the bordi�cation is to map X into C(X)=R
induced by x 7! d(x; �):)
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2.5. We will apply the following observation.

Proposition 2. Assume that a group � acts on a proper metric space
X and assume that � is a �-inavriant measure on @X: Then

T (g) :=

Z
@G
h(gx0)d�(h)

is a homomorphism G! R.

Recall that the action of G on H is given by:

1 � h(2) = h(�11 2)� h(�11 );

so that:

T (gg0) = �
Z
h(g0�1g�1)dm(h)

= �
Z
g0 � h(g�1)dm�

Z
h(g0�1)dm

= T (g) + T (g0);

where we used the invariance of m in the last equation. Hence the map T
de�nes a homomorphism

T : G! R:
Finally we note that T moreover is a 1-Lipschitz map:��T (g)� T (g0)�� � Z ��h(g�1)� h(g0�1)�� dm(h) � Z d(g; g0)dm(h) = d(g; g0):

2.6. We also record some related propositions.

Lemma 2. Let G be an in�nite, �nitely generated group and d a proper
word metric. Then the function h � 0 cannot belong to @G (nor to �(G)).
In fact, any h 2 �(G) must be unbounded.

Proof. For any g the function d(g; �)�d(g; e) is clearly unbounded since
G is in�nite.

Given h 2 @G: Suppose h(�) = limn!1 d(gn; �) � d(gn; e): Take a ball
Br(e) of radius r > 1 around e: For large enough n, it holds that d(gn; �)�
d(gn; e) = h(�) on this ball in view of the convergence and that all functions
in �(G) are integer-valued. Connect e to gn by a geodesic. This geodesic
must intersect the ball in a point s of distance r from e. We have h(s) = �r:
Note that r was arbitrary. �

By the same proof as above we have:

Proposition 3. Assume m is a probability measure on @G which is
invariant under a subgroup H of G: Then

T (g) :=

Z
@G
h(g)dm(h)

is a homomorphism H ! R:
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Corollary 3. Assume that G �xes a point h in @G: Then G surjects
onto Z.

Proof. The nontriviality of the homomorphism comes from the lemma
above that no h is identically 0: �

Corollary 4. Assume that G has a �nite orbit in @G: Then G has a
�nite index subgroup H which surjects onto Z.

Proof. Take as H the stabilizer of a point h on the �nite orbit. We
need to show that h does not vanish identically onH: Since the orbit is �nite,
the index of H is �nite and there are hence G is partition in a �nite set of
coset Hgi. Since all horofunctions on G are unbounded and the distance
d(Hgi;H) is �nite, the assertion follows. �

Corollary 5. Suppose @G is countable. Then G has a �nite index
subgroup which surjects onto Z.

Proof. Take e.g. a uniform probability measure � on the generators of
G: Take a �-stationary probability measure �. Since the measure is �nite
it can only have a �nite number of atoms of maximal mass. These must
constitute a �nite set in @G invariant under G: �

Walsh [Wa] has proved that for any �nitely generated nilpotent group
G and any word metric there is a �nite G-orbit in @G. What about virtually
nilpotent groups? What about polynomial growth? If the same statement
would be true, it could provide an alternative approach to Gromov�s cele-
brated polynomial growth theorem. (Lemma: Let G be a group of polyno-
mial growth d and G0 an in�nite index �nitely generated subgroup. Then
the polynomial growth of G ´ is at most d� 1:)

2.7. The following is a basic general result on the iteration of semicon-
tractions (i.e. 1-Lipschitz maps) in proper spaces. Let

l = lim
n!1

1

n
d(fn(x0); x0)

which exists by subadditivity, similar to the linear drift of Zn above.

Theorem 4 ([Ka02]). Let (X; d) be a proper metric space and let f be a
semicontraction. Then there is a function h 2 �(X) such that for all k � 0,

h(fk(x0)) � �lk

and for any x 2 X

lim
n!1

� 1
n
h(fn(x)) = l:

Proof. De�ne an = d(x0; f
n(x0)) and let "i be a sequence of positive

numbers decreasing to 0. Let bin = an � (l � "i)n. Then since bin is un-
bounded in n we can �nd ni such that bini > b

i
m for all m < ni. By taking a
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subsequence we can in view of compactness assume that fni(x0) converges
to some point h 2 X. Then we have

�ak � h(fk(x0)) = lim
i!1

d(fni(x0); f
k(x0))� d(fki(x0); x0)

� lim inf
i!1

ani�k � ani

= lim inf
i!1

bini�k + (l � "i)(ni � k)� b
i
ni � (l � "i)ni

� lim inf
i!1

�(l � "i)k = �lk:

The proves the �rst part of the proposition and that the limit exists for
y = x0 in the second part. But since d(fk(x0); fk(y)) � d(x0; y) and
jh(z)� h(w)j � d(z; w); the limit is the same for any y and the proposi-
tion is proved. �

Keep in mind that the base point x0 is arbitrary. A nonserious, but
still somewhat illuminating example: a rotation of the circle, rational or
irrational. Holomorphic maps in one or several variables constitute a source
of semicontractions.

2.8. Let X be a complete geodesic space. Consider the set @rayX of
all geodesic rays starting from a point x0: Quite generally, this set (or the
equivalence classes of divergent rays) can be viewed as a boundary at in�nity.
The topology is given by uniform convergence on closed balls. For example,
let i be any sequence of rays starting at x0 and assume that fi(R)g1i=1 is
a Cauchy sequence for every R: By the completeness of (X; d); we can for
each R de�ne (R) = lim i(R). It is then immediate that  is a ray starting
at y and we say that i converges to :

A complete metric space X is a CAT(0)-space or nonpositively curved if
for any x; y 2 X there exists a point z such that

d(x; y)2 + 4d(z; w)2 � 2d(x;w)2 + 2d(y; w)2

holds for every w 2 X: This inequality is called the semiparallelogram law
motivated by the fact that in case of equality it is the usual parallelogram
law for Hilbert spaces. Apart from euclidean spaces, other main examples
are the classical hyperbolic spaces and PosN (R).

The latter space is the space of all positive de�nite symmetric N � N
real matrices. It is an open set in the vector space of symmetric matrices
SymN . The Riemannian metric is

< v;w >p= tr(p
�1vp�1w)

for v; w 2 SymN ' TpPosN . This yields a distance in the usual way which
becomes

d(I; p) =
qX

(log �i)2:

Analogous to the situation in Banach space theory one has for nice
spaces that horofunctions (linear functionals) are in bijective correspondence
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with geodesic rays (vectors). It will turn out that two properties, uniform
convexity (UC) and uniform smoothness (US) guarantees this "re�exivity".

The space X is uniformly convex if it is convex in the sense that any two
points can be joined by a geodesic, and that there is a strictly decreasing
continuous function g on [0,1] with g(0) = 1 and g(1) = 0; such that for any
x; y; w 2 X and midpoint z of x and y,

d(z; w)

R
� g

�
d(x; y)

2R

�
;

where R := maxfd(x;w); d(y; w)g:
The space X is uniformly smooth if for any " > 0 and r, there is a

number R > 0 sucht that for any geodesic (t) and z 2 Br((0)) it holds
that

d(z; (s)) + d((s); (t)) � d(z; (t)) + "
for all s; t � R. This condition immitates the corresponding standard notion
for Banach spaces, namely that for any " > 0 there should exists � > 0 such
that for any unit vector x and y with kyk < � that

kx+ yk+ kx� yk � 2 + " kyk :
It is proved in [BH99] that every CAT(0)-space is uniformly smooth.

The purpose of this section is to prove:

Theorem 5. Assume that X is UC and US. Then the Busemann map

h : @rayX ! @X

 7! h is a homeomorphism and the corresponding bordi�cations are home-
omorphic as well.

The proof will consist of two lemmas of independent interest as they
clearly display the roles of UC and US.

Lemma 3. Assume that X is US and let xn be a sequence such that
for some geodesics [x0; xn] !  2 @rayX. Then for some h 2 @X we have
hxn ! h in C(X).

Proof. Given z 2 Br(x0) and " > 0. Select R such that the inequal-
ity in the de�nition of US holds. Let yn = [x0; xn](R) pick N so that
d(yn; (R)) < " for all n > N . We have

0 � d(z; yn) + d(yn; xn)� d(z; xn) < "
which means

jhyn(z)� hxn(z)j = jd(z; yn)�R+ d(yn; xn)� d(z; xn) +Rj < ":
Since for all n;m > N we have d(yn; ym) < 2" we �nally get

jhxm(z)� hxn(z)j < 4":
This proves the lemma, since this shows that hxn ! h in C(X). �
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Note that this in particular shows that the Busemann map is well de�ned
(the only issue being the uniform convergence on compact sets). Next we
have:

Lemma 4. Assume that X is UC and let xn be a sequence such that
hxn ! h 2 @X. Then for some geodesic ray  we have the geodesic segments
[x0; xn]! .

Proof. We know by a previous lemma that d(x0; xn) ! 1. Given
" > 0 pick N such that

jhxn(z)� h(z)j < "

for all z 2 BR(x0) and n > N . Let yn = [x0; xn](R) and note that hxn(yn) =
�R for every n (su¢ ciently large). This implies that

jhxm(yn) +Rj < 2"

which means

jd(xm; yn)� d(xm; x0) +Rj = jd(xm; yn)� d(xm; ym)j < 2":

Now let z be the midpoint of yn and ym. Note �rst that by uniform convexity

d(x0; xm) � d(x0; z) + d(z; xm) � d(x0; z) + d(ym; xm) + 2"

so we have d(x0; z) � R� 2". Therefore, by uniform convexity we get

R� 2" < d(z; x0) � g
�
d(ym; yn)

2R

�
R

which implies that

d(ym; yn) � 2Rg�1(1� 2"=R):

Hence ym converges and in turn that [x0; xn](t) converges for every t � R.
The limit is a geodesic ray  and the lemma is proven. �

To prove the theorem, we �rst note that both the ray topology and the
topology on the metric bordi�cation are �rst countable: for each point we
can pick consider neighborhoods picking rational " and R. Therefore we
can argue with sequences. The map is surjective becuase let hxn ! h then
by the second lemma xn ! . Applying the frist lemma to yn = xn if n
odd and (n) if n even, so yn converges to . It follwos that h = h . For
injectivity assume xn !  and yn ! � with hxn ! h and hyn ! h. Then
by considering zn = xn if n odd and yn if n even we get from the second
lemma that  = �. The continuity of the Busemann map and its inverse is
immediate from the lemmas.
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2.9. In view of this we have that every horofunction h based at x0 = 0
in RN with the euclidean metric can be written as h(�) = � < v; � > for
some unit vector v.

In the prototypical symmetric space PosN (R) every horofunction is given
as follows (Proposition II.10.69 in [BH99]). Let c(t) = exp(tX) be the
geodesic line de�ned by symmetric matrix X of norm 1. Let F (c) be the
union of the geodesic lines parallel to c (if c is regular this is the unique
maximal �at containing c): There is a di¤eomorphism N[c] � F (c)! PosN
by (v; p) 7! vpvt; where N[c] is the horospherical subgroup associated to
[c], which is the group which leaves the Busemann function de�ned by c
invariant. (Similar to the Iwasawa decomposition.) The Busemann function
de�ned by c(t); t!1; is given by

h(z) = �tr(XY );

where z = vpvt and p = exp(Y ) 2 F (c).

2.10. Let X be a Gromov hyperbolic space. In the case X is Gromov
hyperbolic, it is known that for any two horofunctions h1 and h2 associated
to sequences converging to � in the Gromov boundary there is a constant C
such that jh1(z)� h2(z)j < C for all z 2 X, see [BH99], and for a boundary
point � there may indeed be several such associated horofunctions. This
shows that the h in the theorem is not necessarily unique (only up to suitable
equivalence it is unique).Then there is a natural continuous surjection of
@X onto the usual Gromov boundary @hypX (=@rayX if X is geodesic), see
[BH99]. Example: X=an in�nite ladder.

2.11. There are studies of horofunctions in various other classes of met-
ric spaces, such as abelian groups, Heisenberg groups, Banach spaces, and
Hilbert�s metric on convex sets, by e.g. Rie¤el, Webster-Winchester, Walsh,
Ledrappier-Lim, Karlsson-Metz-Noskov.

3. Lecture 4: Proof of the noncommutative ergodic theorem

3.1. Let (
; �) be a pobability space and L : 
 ! 
 an ergodic m.p.t.
Let (X; d) be a proper metric space with a base point x0. Assume that
G is a group which act on X by isometry, G ! Isom(X; d) (we supress
the notation of this homomorphism). Given a measurable map g : 
 ! G
(where the measurable structure on G comes from the action on X). We
assume the integrability conditionZ



d(gx0; x0)d� <1:

Therefore the linear drift

l := lim
n!1

1

n
d(Zn(!)x0; x0) = inf

n>0

1

n

Z


d(Zn(!)x0; x0)d�
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exists a.e. and is a constant by the subadditive ergodic theorem. We consider
the metric compacti�cation X := �(X) � C(X) and the corresponding
boundary @X = X � �(X):

Recall also the statement of the noncommutative ergodic theorem in the
present context:

Theorem 6 ([KL1]). Under the above assumptions there is an a.e. de-
�ned measurable map ! 7! h! 2 @X such that

lim
n!1

� 1
n
h(Znx0) = l:

In this lecture we give a proof of this theorem. Note that we may assume
l > 0 since otherwise the statement is trivial: any horofunction h would do.
Indeed, when l = 0; for any h we have���� 1nh(Znx0)

���� � 1

n
d(Znx0; x0)! 0:

3.2. The cocycle F . De�ne for g 2 G and h 2 X, F (g; h) = �h(g�1x0)
and note the following cocycle relation

F (g1; g2h) + F (g2; h) = �(g2:h)(g�11 x0)� h(g
�1
2 x0)

= �h(g�12 g
�1
1 x0) + h(g

�1
2 x0)� h(g

�1
2 x0)

= F (g1g2; h):

Note also that for any g 2 G,

d(x0; gx0) = max
h2X

F (g; h);

since F (g;�(g�1x0)) = �d(g�1x0; g�1x0)+d(g�1x0; x0) = d(g�1x0; x0) and
�h(g�1x0) � d(g�1x0; x0) for any h 2 X.

3.3. A skew product. Let Zn(!) be an integrable cocycle taking val-
ues in G de�ned by a map g : 
 ! G. We de�ne the skew product
L : 
�X ! 
�X via

L(!; h) = (L!; g(!)�1h):

Let F (!; h) = F (g(!)�1; h). For detailed information about skew-products
that we will need here, see [L98, Ch. 1].

Consider the space L1(
; C(X)) which is the space of (equivalence classes
of) measurable maps f : 
! X such thatZ



sup
h2X

jf(!)(h)j d�(!) <1:

Note that F is in L1(
; C(X)) in view of
��F (g(!)�1; h)�� � d(x0; g(!)x0) and

the basic integrability assumption on g.
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3.4. A Birkho¤ sum. Using the cocycle relation we have

Fn(!; h) :=
n�1X
i=0

F (L
i
(!; h))

= F (g(!)�1; h) + F (g(L!)�1; g(!)�1:h)+

:::+ F (g(Ln�1(!)�1; g(Ln�2!)�1:::g(!)�1:h)

= F (Zn(!)
�1; h):

By the subadditive ergodic theorem and from the remarks above,

0 < l = inf
n>0

1

n

Z


d(Zn(!)x0; x0)d�(!)

= inf
n>0

1

n

Z


max
h2X

Fn(!; h)d�(!):

3.5. A certain space of measures. Consider the space P�(
�X) of
probability measures � on 
�X which projects onto � on 
, i.e. �(B�X) =
�(B) for any measurable set B � 
. The topology is the weak topology
coming from the duality with L1(
; C(X)) (see [L98, p. 27]). (See also this
reference for a discussion of measurability of maps like F .) In other words,
�n ! � if for every f 2 L1(
; C(X));

�n(f) :=

Z

�X

f(!; h)d�n ! �(f):

Note that this space of measures is weakly sequential compact ([L98, p.
27]).

3.6. Construction of a good measure. Now, for each n choose a
probability measure �n in P�(
�X) such that

1

n

Z

�X

Fn(!; h)d�n(!; h) � l:

For example, the measures de�ned by �n;! = ��(Zn(!)x0) in the terminology
of [L98, p. 22-25] (disintegration of measures) would do, so

�n(A) =

Z


��(Zn(!)x0)(A!)d�(!);

where the section A! = fh : (!; h) 2 Ag:
Let

�n =
1

n

n�1X
i=0

(L
i
)��n

and let � be a weak limit of these measures, which is possible by the weak
sequential compactness.
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The measure � is an L-invariant probability measure projecting onto
� and satisfying

R
Fd� = l: Indeed, it is clearly a probability measure,

projecting onto � since each �n does, and the invariance is simple to check:

�(L
�1
A) = lim

k!1

1

nk

nk�1X
i=0

�
L
i
�
�
�nk(L

�1
A)

= lim
k!1

 
1

nk

nk�1X
i=0

�
L
i
�
�
�nk(A)�

1

nk

�
�nk(A)� �nk(L

�nkA)
�!

= �(A):

Moreover, it is set up by construction so that
R
Fd�n � l :Z

Fd�n =
1

n

Z
F (!; h)

n�1X
i=0

(L
i
)��n =

1

n

Z n�1X
i=0

F (L
i
(!; h))d�n

=
1

n

Z

�X

Fn(!; h)d�n(!; h) � l:

and by the de�nition of weak limits this property passes to � as well. On
the other hand

1

n

Z

�X

Fn(!; h)d�n(!; h) �
1

n

Z

�X

d(Zn(!)x0; x0)d�n(!; h)

=
1

n

Z


d(Zn(!)x0; x0)d�(!)! l:

Hence Z
Fd� = l:

3.7. Applying Birkho¤�s theorem. The Birkho¤ ergodic theorem
implies that for (!; h) in a set E � 
�X of �-measure 1 it holds that

lim
n!1

1

n

n�1X
i=0

F (L
i
(!; h)) =

Z

�X

Fd� = l:

Since � projects onto �, we have that for �-almost every ! that there is a
non-empty set of h with the desired property.

3.8. Applying a measurable selection theorem. Finally we will
appeal to a measurable selection theorem (of von Neumann in a version due
to Aumann) to get a measurable section. There is a Polish topology on 

compatible with the standard Borel structure and such that the projection
f : 
�X ! 
 maps open sets to Borel sets, and the inverse image of each
point in 
 is a closed subset. By regularity of �; we can �nd closed subsets
of P with arbitrarily large measure. These subsets are Polish spaces for the
induced topology and the restriction of f still satis�es the hypotheses of
Theorem 3.4.1 in [Av], which then gives a (partially-de�ned) cross section.
Putting them together yields a measurable, a.e. de�ned cross section ! 7!
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(!; h!) with h! having the desired property and the theorem is proved.
QED.

3.9. Questions: Does limits of this type exists also for other (or all)
horofunction? (It is true for CAT(0)-spaces and Gromov hyperbolic spaces
by geometric arguments.) What about general nonproper spaces? What
about nonhomogeneuous spaces? The map ! ! h! obtained is not guar-
anteed to be equivariant. Is it possible to achieve that by possible consider
a quotient of @X and in such a way get a �-boundary? When is this the
Poisson boundary? (Most of these questions can be answered in the two
good classes of spaces: CAT(0)-space and Gromov hyperbolic spaces.)

4. Lecture 5: Consequences and ray approximation

4.1. Let us begin by carefully see the case of Birkho¤�s theorem. Here
G = R acting by translations on X = (R; j�j) via the map g : 
! R. There
are two horofunctions h+1(x) = �x and h�1(x) = x. Theorem 1 states
that there is a horofunction h such that

lim
n!1

� 1
n
h

 
n�1X
k=0

g(Lk!)

!
= l:

This is the pointwise convergence statement and the limit can be seen to be
given by l =

��R

 g(x)d�(x)

�� and h = h+1 if
R

 g(x)d�(x) > 0 and h = h�1

if
R

 g(x)d�(x) < 0: (If l = 0, then either one works and the statement is

trivial.)

4.2. The following follows [KMo]. Let D : R�0 ! R�0 be an increasing
function, D(t) ! 1 such that D(0) = 0 and D(t)=t ! 0 monotonically.
From the inequality

1

t+ s
D(t+ s) � 1

t
D(t)

we get the following subadditivity property

D(t+ s) � D(t) + s
t
D(t) = D(t) +

D(t)=t

D(s)=s
D(s) � D(t) +D(s):

From all these properties of D, it follows that (R; D(j�j)) is a proper metric
space, and clearly invariant under translations.

Now we determine @R with respect to this metric. Wlog we may assume
that xn !1. We claim that for any z

h(z) = lim
n!1

D(xn � z)�D(xn) = 0:

Assume not. Then for some s > 0 and an in�nite sequence of t ! 1 that
D(t + s) � D(t) > c > 0 (wlog). For such s; t we have and t large so that
D(t)=t < c

D(t+ s)

t+ s
� D(t) + sc

t+ s
�
D(t) + D(t)

t s

t+ s
=
D(t)

t
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but this contradicts that D(t)=t is strictly decreasing. Hence @R = fh � 0g:

4.3. Let us now apply Theorem 1, which turns out to have been proved
earlier by Aaronson with a very di¤erent argument.

Theorem 7. Let f : 
! R which is D-integrable, i.e.Z


D(jf j)d� <1:

Then

lim
n!1

1

n
D

 �����
n�1X
k=0

f(Lk!)

�����
!
= 0:

Proof. Since the only horofunction is the zero function, it is impossible
in view of the noncommutative ergodic theorem that the drift l with respect
to the D-metric is strictly positive. �

4.4. One can relax the conditions on D, not having to have D(0) = 0;
and the condition D(t)=t! 0 can be weakened to d(t) = o(t) and d(t+s) �
d(t) + d(t): To see this de�ne

D(t) = supfd(ut)=u : u � 1g:

Note that this has the required properties. Moreover

d(t) � D(t) � 2d(t);

since if D(t) = d(tu)=u; set n = [u] + 1 and then D(u) � d(nt)=u �
nd(t)=u � 2d(t): (See Aaronson-Weiss.) In this way we can apply the argu-
ment for any metric on R:

4.5. From this one obtains as special case classical results like the one
of Marcinkiewics-Zygmund:

Corollary 6. Let 0 < p < 1: If f 2 Lp; then

lim
n!1

1

n1=p

n�1X
k=0

f(Lk!) = 0:

Such moment conditions arise naturally in probability theory. These
results are essentially best possible (e.g. Sawyer). For the iid case converses
also hold (M-Z, Feller). Another example

Corollary 7. If f is log-integrable, then

lim
n!1

�����
n�1X
k=0

f(Lk!)

�����
1=n

= 1:
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4.6. By approvimating a subadditive by a additive cocycle in the obvi-
ous way, we can reduce the question for the drift on groups to the theorem
above. For example: Let G be a �nitely generated group with word metric
k�kacting on a metric space X such that the action is distorted in such away
that

d(gx0; x0) = o(kgk):
(For example, certain groups acting properly by (a¢ ne) isometries on a
Hilbert space have such properties, pull back metric to X.) Let Zn be an
integrable cocycle (wrt d as in Theorem 1), then

l = lim
n!1

1

n
d(Znx0; x0) = 0:

4.7. To further relate Theorem 1 we should �rst discuss the following
notion introduced and studied by Kaimanovich. A sequence of points fxng
in a metric space is approximated by a geodesic ray  if there is a constant
l � 0 such that

1

n
d(xn; (nl))! 0 as n!1:

For any metric space and sequence, to be approximated by rays is a priori
stronger than to be "horofunction regular" in the sense of Theorem 1:

Proposition 4. Let xn be a sequence of points in X and l � 0. Assume
that there is a geodesic ray  such that d(xn; (nl))=n! 0: Then

lim
n!1

� 1
n
b(xn) = l:

Proof. For any horofunction h it is true that jh(xn)j � d(xn; x0) from
the triangle inequality. Since d(xn; x0)=n! l, this implies that

lim inf
n!1

1

n
b(xn) � �l:

On the other hand note that for t > ln we have d((t); xn) � t � nl +
d((nl); xn): Hence

b(xn) � �nl + d((nl); xn)
and the proposition follows upon dividing by n and taking the limit as
n!1. �

The converse is true for e.g. CAT(0)-spaces, see the next proposition,
and Gromov hyperbolic spaces (exercise, or see [KL4]).

Proposition 5. Let X be a CAT(0)-space and fxng be a sequence of
point such that for some horofunction h = b it holds �h(xn)=n ! l � 0:
Then

lim
n!1

1

n
d(xn; (nl)) = 0:
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Proof. Recall �rst that every horofunction is a Busemann function
de�ned by a geodesic ray  with (0) = x0. Let x̂n be the projection of xn
(i.e. the point closest) on the convex set being the image of . By the cosine
law,

d(x0; xn)
2 � d(x0; x̂n) + d(x̂n; xn)2 � 2d(x0; x̂n)d(x̂n; xn) cos�;

a property of projections (� � �=2), the fact that horoballs are convex:
d(x0; xn)

2 � d(x0; x̂n)2 + d(x̂n; xn)2 � b(xn)2 + d(x̂n; xn)2:
This implies that d(x̂n; x) = o(n) and by the triangle inequality that

d((nl); xn) = o(n)

as desired. �
Kaimanovich (see [Kai89]) characterized sequences fxng in symmetric

spaces of nonpositive curvature (e.g. classical hyperbolic spaces and PosN )
which are regular in the sense of ray approximation. In rank 1, such fxng
is approximated by a geodesic ray i¤

d(xn; xn+1) = o(n) and d(x0; xn) � nl:
(The conditions are easily seen to be necessary, for the su¢ cieny draw tri-
angles and use that angles are exponentially small.) In the higher rank, one
must in addition have that the A-component must stabilize. Note that these
conditions hold a.e. for any integrable ergodic cocycle xn := Znx0 in view
of Birkho¤�s theorem. This implies Theorem 1 for these spaces in view of
Proposition 4, and as pointed out in [Kai89] this is moreover equivalent to
Oseledec�s theorem, see the next paragraph. For general CAT(0)-spaces the
theorem was established by Margulis and the author in [KM99], or more
precisely an equivalent version of it in view of the above propositions. Note
also that with the help of an idea of Delzant, Kaimanovich established ray
approximation (and hence also Theorem 1 in this case) for Gromov hyper-
bolic spaces, see [Kai00].

4.8. Oseledec�s multiplicative ergodic theorem which appeared in 1968
(a di¤erent form of this was also proved by Millionshchikov) asserts that for
�-a.e. ! the sequence A(n; !) := Zn(!)�1; an integrable ergodic cocycle of
N �N invertible matrices, is Lyapunov regular, which by de�nition means
that there is a constant s, a �ltration of subspaces

f0g = V !0 ( V !1 ( ::: ( V !s = RN

and numbers �1 < �2 < ::: < �s such that for any v 2 V !i r V !i�1;

lim
n!1

1

n
log kA(n; !)vk = �i

and

lim
n!1

1

n
log jdetA(n; !)j =

sX
i=1

�i(dimV
!
i � dimV !i�1):
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This is equivalent to the existence of a positive symmetric matrix � =
�(!) for which

lim
n!1

1

n
log
(�nZn)�1! 0

as was observed in [Kai89]. In words, this says that there exists an �av-
erage" matrix � = �(!) whose powers approximate the random product
Zn(!) similar to the classical law of large numbers except that Zn is written
multiplicatively.

This in turn is equivalent to the ray approximation property of Zn(!)x0
for a.e. !.

4.9. Note that most of the discussed special cases of Theorem 1 are in
fact ray approximation, which has a more intuitive appeal. One could ask
whether one could prove ray approximation more generally. On the other
hand Theorem 1 with its horofunction works when there are no geodesics,
and its cocycle property is crucial also in the proof of Theorem 2.

5. Lecture 6: An application to random walks on groups

5.1. Let G be a locally compact, second countable group and � a proba-
bility measure on G. It is natural to assume that the support of � generates
G as a group, in which case we refer to � as nondegenerate. Let f : G! R
be a function such that f(g�) is in L1(G; �) for every g 2 G: Then f is
�-harmonic if

f(g) =

Z
G
f(gh)d�(h)

for any g 2 G. Constant functions are obviously �-harmonic. The pair
(G; �) is called Liouville (or has trivial Poisson boundary) if every bounded
�-harmonic function is constant. For example abelian groups are Liouville
for any measure.

5.2. Let G be a locally compact group and d a left invariant proper
metric on G (it is assumed throughout that the topology generated by d
coincides with the given one). When G is second countable such a metric
always exists, see [HP]. Let � be a probability measure on G of �nite �rst
moment, which means thatZ

G
d(e; g)d�(g) <1:

Let Zn denote trajectories of the corresponding random walk, that is,

Zn = g0g1:::gn�1

where gi are independent random variables taking values in G with distrib-
ution �.
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Let � be a probability measure on a topological group G: Assume G acts
on a space K with measure �. The convolution measure on K is de�ned by

� � �(A) =
Z
g2G

�(g�1A)d�(g):

The measure � is called �-stationary if � � � = �. Assume that there are no
nonconstant bounded �-harmonic functions. Then, as is well-known, � is in
fact G-invariant. Indeed, given a continuous function f on K it follows from
the stationarity relation that

F (g) :=

Z
K
f(gz)d�(z) =

Z
K
f(z)d(g��)(z)

is a bounded �-harmonic function, hence constant. Since this holds for all
continuous functions f , we have that � must be invariant.

The probability distribution ��n, de�ned as the n-times convolution � �
� � ::: � � of �, is the distribution of Zn, and the linear drift is, as above, a
consequence of Kingman�s theorem:

l(�) := lim
n!1

1

n
d(e; Zn) = inf

n

1

n

Z
G
d(e; g)��n(g):

If f is a bounded harmonic function, then f(Zn) is a bounded martingale
and therefore converges almost surely.

5.3. Assume that G is a �nitely generated group. Let S be a symmetric
�nite generating set. The distance on G is the corresponding left invariant
word metric j�j. It is clearly a proper metric space. Let � be a probability
measure on G of �nite �rst moment, which means thatX

g2G
jgj �(g) <1:

De�ne the entropy of � by

H(�) := �
X
g2G

�(g) log(�(g)):

Recall that we have

(5.1) H(�) := �
X
g2G

�(g) log(�(g)) � log(2jSj)
X
g2G

jgj �(g) + log 2:

Indeed, let an be the number of group elements of wordlength n. Then
an � jSjn. De�ne a probability measure � 0 on G by � 0(g) = 1=(2jgj+1ajgj).
Then,

H(�)�
X
g2G

�(g) log(2jgj+1ajgj) = �
X
g2G

�(g) log
�(g)

� 0(g)
� 0;

where the inequality comes from Jensen�s inequality (or � log t � 1=t � 1)
keeping in mind that both measures � and � 0 are probability measures.
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The estimate (5.1) follows. By Kingman�s subadditive ergodic theorem,the
entropy of the random walk

h(�) := lim
n!1

� 1
n
log ��n(Zn) = inf

n

1

n
H(��n)

exists and is constant almost surely. The vanishing of the entropy is related
to bounded harmonic functions; it is proved in [Av], [D] and [KV] that

h(�) = 0 if,and only if, (G; �) is Liouville.

. By applying (5.1) to ��n, dividing by n, and letting n!1, we get:

h(�) � log(2jSj)l(�):

Finally, taking as generators the set Sk of elements with word length
smaller than k, the new drift is not bigger than the old one divided by k.
This shows that, for all k, h(�) � log(2jSkj)l(�)=k. Letting k ! 1 yields
h � vl, which is called the fundamental inequality in [Ve], and explains the
role of subexponential growth in Corollary 11.

5.4. Our main result here is the following:

Theorem 8. [Furstenberg-Khasminskii formula for the linear drift]. Let
(G; �) be a topological group with a nondegenerate probability measure of
�nite �rst moment, d a left-invariant proper metric, and let G be the metric
compacti�cation of (G; d). Then there exists a measure � on G with the
following properties:

� � is �-stationary, i.e. � =
R
(g��)d�(g) and

� `(�) =
R
h(g�1)d�(h)d�(g):

Moreover, if `(�) > 0, then � is supported on @G.

Proof. In the proof of Theorem 1, we constructed a measure m on

 � G. The measure � can be seen as the projection on G of m, but it
turns out that the measure � can be directly constructed. Let (
+;A+;P)
be the space of sequences fg0; g1; : : : g with product topology, �-algebra and
measure P = �
N. For n � 0, let �n be the distribution of Zn(!) in G. In
other words, de�ne, for any continuous function f on G:Z

fd�n =

Z
f(g0g1 � � � gn�1)d�(g0)d�(g1) � � � d�(gn�1); �0 = �e:

We claim that any weak* limit � of the measures 1
n

Pn�1
i=0 �i satis�es the

conclusions of Theorem 8. Clearly, the measure � is stationary: for any
continuous function f on G, we have (note that when h 2 G� @G then it is
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just a group element)Z
f(g:h)d�(h)d�(g)

= lim
k!1

1

nk

nk�1X
i=0

Z
f(gg0g1 � � � gi�1)d�(g0)d�(g1) � � � d�(gi�1)d�(g)

= lim
k!1

1

nk

nk�1X
i=0

Z
fd�i+1

=

Z
fd�+ lim

k!1

1

nk
[

Z
fd�nk � f(e)] =

Z
fd�:

In the same way, we get:Z
h(g�1)d�(h)d�(g)

= lim
k!1

1

nk

nk�1X
i=0

Z
[d(Zi(!); g

�1)� d(Zi(!); e)]dP(!)d�(g)

Now note that
R
d(gZi; e)dPd� =

R
d(Zi+1; e)dP because of i.i.d). This

makes the sum into a telescoping sum and we obtain thatZ
h(g�1)d�(h)d�(g) = lim

k!1

1

nk

Z
d(Znk ; e)� d(Z0; e)dP(!) = `(�):

This shows that the measure � has the desired properties. Moreover,
the measure P � � on the space 
+ � G is T -invariant. There is a unique
T -invariant measurem on 
�G that extends P��. The measurem satis�es
all the properties we needed in the proof of Theorem 1. In particular, if `(�)
is positive,

�(@G) = (P� �)(
� @G) = m(
� @G) = 1:

For this notice that for x 2 G; hx(Zn) = d(x; Zn) � d(x; x0) ! +1 (and
not to �1) if Zn !1: �

6. Lecture 7: The Liouville property and drift homomorphisms

6.1. Varopoulos proved in 1985 that if a �nitely generated group admits
a symmetric (i.e. �(g�1) = �(g)) �nitely supported probability measure
� with positive drift l(�) > 0; then the group admits nontrivial bounded
�-harmonic functions. The symmetry condition cannot be removed: any
measure on Z with �nite

P
x2Z x�(x) 6= 0 has positive drift. However, in a

certain sense this is the only counterexample.

Theorem 9. Let G be a locally compact group with a left invariant
proper metric and � be a nondegenerate probability measure on G with �rst
moment. Then, if the Poisson boundary is trivial, there is a 1-Lipschitz
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homomorphism T : G ! R such that for almost every trajectory Zn of the
corresponding random walk, we have:

lim
n!1

1

n
T (Zn) =

Z
G
T (g)d�(g) = l(�):

Proof. This follows from the Furstenberg-Khasminskii type formula
above, the remark above that if (G; �) is Liouville any �-stationary measure
must be G-invariant, and the proposition on construction homomorphism
from an invariant measure on the metric boundary. �

A measure � is symmetric if d�(g�1) = d�(g) for every g 2 G. A measure
is centered if every homomorphism of G into R is centered, meaning that
the �-weighted mean value of the image is 0 (cf. [G]). Every symmetric
measure � is centered, since for any homomorphism T : G ! R, the mean
value, which isZ

G
T (g)d�(g) =

Z
G
T (g�1)d�(g) = �

Z
G
T (g)d�(g);

must hence equal 0. By simple contraposition, we get:

Corollary 8. Let G be a locally compact group with a left invariant
proper metric and � be a nondegenerate centered probability measure on G
with �rst moment. Then, if l(�) > 0, there exist nonconstant bounded �-
harmonic functions.

Corollary 8 was proved by Varopoulos ([Va]) in the case � is symmetric
and of �nite support on a �nitely generated group. His proof rests on es-
timates for n-step transition probabilities of symmetric Markov chains. A
simpler proof of the crucial estimate was given by Carne [C]. See also [Al]
and [M] for interesting extensions. Note however that so far these estimates
do not work for measures of in�nite support. Measures with in�nite support
and �nite �rst moment occur for example in the Furstenberg-Lyons-Sullivan
discretization procedure of the Brownian motion, see [KL3].

Corollary 8 may also be compared with one of the main theorems in the
paper [G] of Guivarc�h which states that for any connected amenable Lie
group and any nondegenerate, centered measure � with �nite moments of all
orders, the linear drift vanishes. The proof goes via a reduction to the case
of connected, simply connected, nilpotent Lie groups. Guivarc�h pointed
out to us that it is in fact proved in [G] that in the case of a connected
amenable Lie group all the drift comes from an additive character (similar to
Theorem 9 above). For �nitely generated amenable groups this is no longer
true: consider a simple symmetric random walk on the wreath product of Z3
with Z=2Z. This example has nontrivial bounded harmonic functions, hence
the drift is positive, but all additive characters factor through Z3 and there
the random walk moves sublinearly. In this discrete case, one should also
mention the result of Kaimanovich ([K]) that when the group G is polycyclic
and � is centered, then the linear drift vanishes.
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6.2. In the case when G is a �nitely generated group, entropy theory
(see below) yields a kind of converse to Corollary 8.

Corollary 9. Let G be a �nitely generated group and � be a nondegen-
erate centered probability measure on G with �rst moment. Then l(�) > 0
if, and only if, there are nonconstant bounded �-harmonic functions on G.

Proof. Any measure � with �rst moment on G and with l(�) = 0 has
h(�) = 0 and therefore only constant bounded �-harmonic functions. So if
there are nonconstant bounded harmonic functions, l(�) > 0. Otherwise,
since � is centered, l(�) = 0 by Corollary 8. This proves Corollary 9. �

Note that a measure may be centered for the simple reason that there
are no nontrivial homomorphisms into R, in this case Corollary 8 gives:

Corollary 10. Let G be a locally compact group with a left invari-
ant proper metric and � be a nondegenerate probability measure on G with
�rst moment. Assume that the only bounded �-harmonic functions are the
constants and that H1(G;R) = 0: Then l(�) = 0.

The point here is that � is not necessarily symmetric. Example: Isom(Z),
the in�nite dihedral group, vs Z. It is remarkable that for a whole general
class of groups, the nonexistence of homomorphisms can have such a strong
in�uence on the drift; this is in great contrast with the case of nonamenable
groups where no matter what, any nondegenerate measure of �rst moment
must have positive drift (see [G]).

6.3. Recall that, if v be the volume growth rate of a �nitely generated
group G, v � log jSj < +1, then it is a fact (see [Av], [G], [Ve] and below)
that if v = 0, then the Poisson boundary is trivial. Examples of groups with
subexponential growth (v = 0) and no nontrivial homomorphisms into the
reals include the torsion groups with subexponential (but superpolynomial)
growth constructed by Grigorchuk. We may formulate:

Corollary 11. Let G be a group of subexponential growth generated
by torsion elements, and � any nondegenerate measure with �rst moment.
Then l(�) = 0.

Indeed, since a set of generators has �nite order, any homomorphism
G ! R vanishes and the statement follows from the volume criterion and
Theorem 9.

See [E] for properties of measures without �rst moment, but with �nite
entropy, on such groups of subexponential growth.

6.4. Question: Let us call such a homomorphism as in the theorem for
a drift homomorphism. When is the following converse true: assume (G; �)
admits such a homomorphism, then is it Liouville? Erschler indicated an
example to me which seems to show that the converse is not always true.



ERGODIC THEOREMS FOR NONCOMMUTING RANDOM PRODUCTS 27

7. Lecture 8: Extensions of von Neumann�s ergodic theorem

7.1. Let (
; �) be a probability space, L an ergodic m.p.t., and f 2
L1(
;R): One of the �rst basic questions in ergodic theory was to establish
the convergence of the time averages to the space averages

1

n

n�1X
k=0

f(Lk!)!
Z


fd�

which had come up in statistical mechanics. Around 1930, Koopman and
later independently Weil suggested to von Neumann that it might be a useful
to view the ergodic average as

1

n

n�1X
k=0

Ukf

where U is the unitary operator of L2(
) de�ned by (Uf)(!) = f(L!).
Challenged and inspired by this von Neumann indeed proved that the above
convergence in L2. Shortly afterwards Birkho¤ (with a remark of Khint-
chine) proved the deeper convergence almost everywhere of the ergodic av-
erage. One further generalization in the von Neumann setting was that the
isometry U can be replaced by any linear semicontraction, kUk � 1.

7.2. Notice that we can take one step further: Let � be the a¢ ne semi-
contraction of L2 ! L2 de�ned by �(g) = Ug + f: Then

1

n

n�1X
k=0

Ukf =
1

n
�n(f):

Thus von Neumann�s theorem can be formulated in terms of the behaviour
of one semicontractions. This generalization was proven by Pazy (without
commenting on that it generalizes von Neumann�s theorem), namely that
for any semicontraction � of a Hilbert space and any vector f ,

1

n
�n(f)! v

in L2 to some vector v (which Pazy gives a description of; it is the in�mal
vectorial displacement.) This can be generalized as follows (Pazy�s case
being 
 = f!g and X=a Hilbert space) in a theorem which already has
been mentioned:

Theorem 10 ([KM99]). Assume that X is a complete metric space
which is uniformly convex and Busemann nonpositively curved (e.g. CAT(0)-
space or uniformly convex Banach space). Let Zn(!) be an integrable ergodic
cocycle of semicontractions. Denote the drift by l. If l > 0 then there is a
unique geodesic ray !(�) in X with !(0) = x0 such that

lim
n!1

1

n
d(!(nl); Zn(!)x0) = 0:
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7.3. Applications of Theorem 10:
� By the same remark as in the previous paragraphs on von Neu-
mann�s theorem, we recover a random mean ergodic theorem of
Beck-Schwarz: Let U! be linear operators of a Hilbert space with
kU!k � 1. Then for any vector v, there is a vector v̂(!) a.e. such
that

lim
n!1

1

n

n�1X
k=0

U!UL!:::ULk�1!v = v̂(!)

strongly. (Note however that the original theorem was proved for
Banach spaces more general than uniform convexity.)

� The special case of X a CAT(0)-space and Zn(!) = gn was not
known even for proper spaces. It gives convergence to a boundary
point which then is a canonical �xed point for g.

� Another application is a version of Oseledec�s theorem to in�nite
dimensions related to results of Ruelle.

� If l > 0; the map ! 7! ! induces a hitting meaure de�ned on @X.
This is a �-boundary which under a mild condition is isomorphic
to the Poisson boundary. (Previous results by Kaimanovich and
Ballmann-Ledrappier). Example: G a Coxeter group and X the
associated Moussong-Davis complex.

7.4. One can also prove (see e.g. [KL4] for a discussion andreferences):

Theorem 11 (K). Let X be a re�exive Banach space and Zn(!) an
integrable ergodic cocycle taking values in semicontractions of X: Then for
a.e. ! there is a linear functional f! of norm 1 such that

lim
n!1

1

n
f!(Zn(!)0) = l:

Question: Is the theorem true without the assumption of X being re-
�exive?

Here is another question which I do not know if it is known and/or
trivially true/false.

Question: Beardon showed that for any semicontraction � of a Euclidean
space there is either a �xed point or a linear functional such that f(�n0) � 0
for all n � 1: (A more general version was proved in a previous lecture). Is
the same true for Hilbert spaces?
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Exercises for "Ergodic theory of
noncommuting random products"

1. Given a sequence of numbers an and a constant c such that

an+m � an + am + c

for all n;m > 0: Show that

lim
n!1

1

n
an = inf

n

1

n
an:

2. Let (X; d) be a metric space and let f : X ! X be 1-Lipschitz. Prove
that

l := lim
n!1

1

n
d(fn(x); x)

exists and is independent of x. Can you think of some other numbers,
naturally and nontrivially, associated to f ?

3. Let G be the free group on two generators and consider a probability
measure supported on the generators and their inverses. Compute the
drift of the associated random walk.

4. Let X be a proper metric space with base point x0 2 X; and consider
the map

� : x 7�! d(x; �)� d(x; x0)
of X into the space of continuous maps C(X) equipped with the uni-
form convergence on compact sets. Take the closure H := �(X). What
isH ifX = R with the standard metric, ifX = Z2 with the word metric
("Manhattan metric"), and if X = R2 with the euclidean metric?

5. (Busemann) Let  : R�0 ! X be geodesic ray (i.e.  is an isometry)
in the proper metric space X: Show that

h(y) = lim
t!1

d(y; (t))� t

is an element of H := �(X):

1



6. Consider the additive group Z and a probability measure

�(x) = p��1(x) + (1� p)�+1:

Determine all �-harmonic functions on Z:

7. Construct a bounded �-harmonic function on the free group of two
generators with � being the uniform measure on the two generators
and its inverses.

8. Let G be the in�nite dihedral group, which can be realized as all au-
tomorphisms/isometries (not necessarily orientation preserving) of the
simplicial graph Z (the standard Cayley graph of Z). Show that there
are no nontrivial homomorphisms of G into R.

9. (Kuratowski; Kunugui, 1930s) Show that every metric space (X; d) is
isometric to a subset of a Banach space (Hint: consider a close variant
of the map � in the lectures: interchanging x and x0, and C(X) with
sup-norm.)

10. A complete metric space X satis�es the semiparallelogram law if for
any x; y there is a z such that

d(x; y)2 + 4d(z; w)2 � 2d(x;w)2 + 2d(y; w)2

holds for every w 2 X:(This in fact equivalent to the usual CAT(0)
de�nition.) LetMn denote a Riemannian manifold. Assume thatM is
simply connected and has everywhere nonpositive sectional curvature
K � 0; this is equivalent to that the exponential map

expp : TpM !M;

which by de�nition maps lines to geodesics, semi-increases distances,
i.e.

d(expp(v); expp(w)) � kv � wkp
and preserves distances on the lines. Show that M satis�es the semi-
parallelogram law. (Hint: given a con�guration x; y; z; w make a clever
choice for p:)

2



11. In 1948, Busemann introduced and studied a weaker form of nonposi-
tive curvature for metric spaces. Denote by x+y

2
a midpoint of x and y,

i.e.
d(
x+ y

2
; x) = d(

x+ y

2
; y) =

1

2
d(x; y):

(The notation makes most sense when midpoints are unique, which
they will be in the context of nonpositive curvature). A geodesic metric
space X is said to be Busemann NPC if for any three points x; y and
z the following inequality holds

d(
x+ y

2
;
x+ z

2
) � 1

2
d(y; z):

(Note that this is intimately related to the property of expp in the previ-
ous exercise.) Prove that the semiparallelogram law implies Busemann
NPC. (In view of the previous exercise, this means that we have more
or less showed that for Riemannian manifolds that (K � 0 & simply
connected) () (the semiparallelogram law)()(Busemann NPC).)

12. Give an example of a space which is Busemann NPC but does not
satisfy the semi-parallelogram law.

13. Prove Oseledec�s multiplicative ergodic theorem in the deterministic
case of itereates of one single invertible real N � N matrix A (surely
known before Oseledec), i.e.that the sequence An is Lyapunov regular,
which by de�nition means that there is a constant s, a �ltration of
subspaces

f0g = V0 ( V1 ( ::: ( Vs = RN

and numbers �1 < �2 < ::: < �s such that for any v 2 Vi r Vi�1;

lim
n!1

1

n
log kAnvk = �i

and

lim
n!1

1

n
log jdetAnj =

sX
i=1

�i(dimVi � dimVi�1):

(Hint: Jordan normal form).

3



14. Let xn be a sequence of points in the hyperbolic plane such that
d(xn; xn+1) < C for a constant C and d(x0; xn) = nl for some con-
stant l > 0: Prove that the points converge to a point in the boundary
circle (Hint: consider angles.) Is the same true in the euclidean plane?

15. Let (X; d) be a metric space. Assume that xn is a sequence of points
in X such that for some geodesic ray  : R�0 ! X with (0) = x0 one
has that

1

n
d(xn; (nl))! 0 as n!1:

Let h be the Busemann function associated to , so h = b: Show that

� 1
n
h(xn)! l:

16. Let (X; d) be the Euclidean space of dimension N . Verify that for
sequences of points xn such that d(xn; x0)=n ! l, the following two
statements are equivalent: 1. there exists a geodesic ray  : R�0 ! X
with (0) = x0 such that

1

n
d(xn; (nl))! 0 as n!1;

and 2. there is a horofunction h such that

� 1
n
h(xn)! l:

17. Given a group G with a probability measure �. Assume that G acts
on a countable space B with �-stationary probability measure �: Show
that � has �nite support. Is � necessarily G-invariant?

18. Given a �nitely generated group G with a word metric d and a nonde-
generate probability measure � with �(g) 2 Q for every g 2 G. Assume
that the metric boundary @G of (G; d) is countable (examples?). Prove
that the linear drift l(�) is a rational number.

19. Let G be the in�nite dihedral group and d a word metric. Show that
for any nondegenerate measure � of �nite �rst moment that the drift
l(�) = 0:
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