A PROOF OF THE SUBADDITIVE ERGODIC
THEOREM

ANDERS KARLSSON

Abstract.  This is a presentation of the subaditive ergodic theo-
rem. A proof is given that is an extension of F. Riesz 1945 proof
of the Birkhoce ergodic theorem.

1. Introduction

Let throughout this paper (X, A, ,u) be a probability space and L :
X — X a measure preserving transformation.
Recall the following result.

Theorem 1.1. (Birkhoce 1931) Let f € L', then there is an integrable,
a.e. L-invariant function f such that

lim £ 37 f(2k) = Fo)

n—oo N

for a.e. x (the convergence also takes place in Ll). In fact Hle <|Ifl1
and for any L-invariant set A, fAf = fA f, in particular A = X.

Note that if
(1.1) c(n,x) =Y f(LFz)

then
e(n+m, ) = c(n,) + c(m, L"z),
such a condition is usually expressed as ¢ is an additive cocycle. They

are all of the form (1.1), for f(z) = ¢(1, ).
If for a sequence of functions a(n, ) € L' we instead require

a(n+m, ) < a(n, z) + a(m, L"),

then a is called a subadditive cocycle. Assume that

1

inf —/ a(n,z)dp > —oo.
nJx
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Then the following generalisation of the Birkhoce ergodic theorem holds.

Theorem 1.2. (Kingman 1968) Under the above conditions, there is
an integrable, a.e. L-invariant function @ such that

for a.e. = (the convergence also takes place in Ll). Moreover

lim% /A a(n, x)dp = /A a(x)dp

for all L invariant measurable sets A.

2. Examples of subadditive cocycles

The aim of this section is to illustrate that Kingman’s theorem is a
signigcant extension of Birkhoce’s theorem and that it has many appli-
cations.

2.1. Random products in a Banach algebra. Let A: X — Bbe a
measurable map into a Banach algebra. Let u(n,z) = A(L"'z)A(L"%z)...A(z),
then

a(n, z) = log|lu(n, )|

is a subadditive cocycle, because ||AB|| < ||A||||B||. The correspond-
ing convergence was grst proved by Furstenberg and Kesten in 1960
for random products of matrices, of course without the use of the sub-
additive ergodic theorem. This application is used in some proofs of
Osceledts’ multiplicative ergodic theorem.

2.2. Random walks. Let (G be a topological group and h: X — G a
Borel measurable map. Let v(n,r) = h(L" 'z)..h(Lz)h(z), it {hoL¥}
are independent, then this is usually called a random walk. The range,
that is how many points visited in G,

a(n,z) = Card{v(i,z) : 1 <i<n}

is a L-subadditive cocycle.
Assume that d is a left invariant metric on G, (e.g. a word metric in
the case (G is gnitely generated) then

b(n,z) :=d(e,v(n,z))

is a L-subadditive cocycle, by the triangle inequality and the invariance
of d.
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2.3. Metric theory of continued fractions. See [Bi | and [Bar-
bolosi, J. Num. Th. 66 172-182 (1997)].
Let X = [0,1) and A be the Borel o-algebra. For any z write it as

1 1

r=—=———".
1 1 1
L+
Contiuing this scheme gives the continued fraction expansion of x,
a(x) == [%], etc. The relevant transformation of X is

Tr={)

unless £ = 0 in which case Tz = 0. So a,(z) = a(T"_lsL’).
The corresponding approximants p,(x)/q,(x) are degned for all n if
T is irrational, they are given by recusion formulas. Also

5:53 = 1/(ar (@) + 1/ (az(a) + .+ 1/ (@))..).

There is a unique T-invariant probability measure absolutely continu-
ous with respect to Lebesgue measure, namely

V(A) = — / L i
log2 [, 1+

called the Gauss measure.

By use of the subadditive ergodic theorem, Barbolosi proves that

}

exists for a.e. x. The functions are not simply a subadditive cocycle,

1
lim —Card{l <i<n:|zqg(x)—pi(z) <
lim ~ Card 20 (x) = i) < s

it is necessary to divide into odd and even index, due to the fact that
approximants lie on alternating sides of x.

2.4. Percolation.
2.5. Entropy.
3. A proof
The Banach uniform boundedness principle.

3.1. Three elementary observations.

Proposition 3.1. Let v, be a subadditive sequence of real numbers,
that is Upym < Up + Upy. Then the following limit exists

1
lim —v, = inf —v,, € RU{—0o0}.
n—oo M, m>0m
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Proof. Given € > 0, pick M such that vy, /M < infuv, /n +&. Decompose
n = k,M + r,, where 0 < r, < M. Hence k,/n — 1/M. Using the
subadditivity and considering n big enough (n > N(¢))

1 1 1 1
inf —Um S —Up S — Uk, M+ < _(knvM + Urn>

m n n n

1 1
< —uy +e <inf —w,, + 2¢.
M m
Since € is at our disposal, the lemma is proved. U

Note that this proposition implies that for any L-invariant set A that

lim 1 a(n, x)dpu(zr) = inf = /Aa(n,x)dp(x),

n—oo N A n n

when X = A denote this value by y(a). [We might not need this, it
comes out of the theorem.]

F. Riesz realized in 1945 that the following simple lemma can be
used to prove Birkhoce’s theorem, the lemma is sometimes called F.
Riesz’s combinatorial lemma.

Lemma 3.2. Call the term ¢, a leader in the gnite sequence ¢g, C1, ..., Cp—1
if one of the sums

Cu, Cy + Cut1y -+ Cu + .o+

is negative. Then the sum of the leaders is seminegative. (An empty
sum is by convention 0).

Proof. Proof by induction. If n = 1, then either ¢y > 0, in which
case the sum is empty, or ¢y < 0, in which case the sum equals ¢y < 0.
Assume that the statement is true for integers smaller than n. Consider
the two cases, ¢pis or is not a leader. If ¢y is not a leader then all leaders
are among Ci,...,C,_1 in which case the induction hypothesis apply. If
Co is a leader, then pick k smallest integer such that co + ... + ¢ < 0,
then each ¢;, 1 < k is a leader. If not then ¢; + .. + ¢ > 0, but by
minimality cg+ ...+ ¢;_1 > 0, which is a contradiction. Hence cg, ..., C
are all leaders and ¢y + ... + ¢ < 0, the remaining leaders (if any) are
leaders of ¢, ...c,, for which the induction hypothesis applies. [

Proposition 3.3. The functions
1
f(x) = limsup —a(n, x)
n
and
o]
g(z) = liminf —a(n, z)
n

are a.e L-invariant.
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Proof. Note that f(Lz) > f(z) and g(Lz) > g(z) because of the sub-
additivity
a(n,Lz) > aln+1,2) — a(1,x)

and in the case of limsup (same for liminf)
1 1
limsup(—a(n+1,2) — —a(l,x)) = f(z).
n n

Now integrate

/X f(Lx) — f(x)dp(z) = 0

by the L-invariance, but the integrand is semipositive, hence f(Lx) —

f(z) =0 ae. O

3.2. The maximal ergodic inequality. The following key lemma
will be proved by en extension of the argument of F. Riesz. It thus
avoid use of the usual maximal ergodic inequality and it is simple.

Lemma 3.4 (Derriennic 1975). Let

1
B ={z: lim inf —a(n,z) < 0}
n

n—oo

then

1
lim — [ a(n,z)du < 0.

n—oo M, B
Proof. For each n, let

U, ={z: inf a(n,z) —a(n—k, L*2) < 0}.

1<k<n
Note that
A, ={x: inf a(k,z)<0}CV,

1<k<n

by subadditivity. Note also that A, C A,y; and B C |JA,. For each
n, let

by(x) =a(n,z) —a(n — 1, Lz).

Because of telescoping we have that

a(n,z) —a(n — k, L*2) = b, () + by_1 (L) + ... 4 bp_p1 (LF12)

and in particular

a(n,x) = Z bo_i(LF2).

0<k<n—1
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By the degnition, L*x € U,,_; means that there is a j, k< j <n—1
such that

bpi(LFz) + ...+ b,_;(L7z) < 0.
Hence by the lemma about leaders
> b_i(LFz) < 0.
0<k<n—1,Lkzc¥, _,
Hence, using the L-invariance of p and B,

0 > / S b s(Lr)du) =

0<k<n—1,LEzeW,

= > / bn—w(L x)dp(a) =
0<k<n—1 BNL=FkV,,_,

= > @) =

0<k<n

_ é /B e

On the other hand, again by the L-invariance

711/]3 a(n, z)du(z Z/
2 o Z/B(M A4t =

=1
n

1
<042 / o+ (1, 2)dp(x)
n ; (BNA;)

since b;(z) < a(l,z) < a*(l,z), which is positive and A; C ¥;. Now
since at € L', A; C A;4; and B C Ui>1 A; it follows when taking
lim sup, that

1
limsup—/ a(n,z)dp < 0.
n.Jp

Since B is invariant, the limsup actually is the limit, by proposition

(3.1). O

Corollary 3.5. Let

1
B = {z :liminf —a,(z) < A}
n
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then

1
lim — [ a,dp < Au(B).
B

n—oo N
Proof. Apply the lemma to a, —nA\, which is a subadditive cocycle. [

3.3. The proof of a.e. convergence. First we establish the result
for an additive cocycle ¢,. The point is that —c, is again additive,
hence in particular the corollary applies to —c, as well.

Let

1 1
E.p={z:liminf —¢, < o < § < limsup —c,}
n n

and by the proposition (3.3) this set is L-invariant. Hence we can apply
the corollary (3.5) for X = FE, g. Since if F := {z : liminf %Cn < a},
then £ N E,g = F,g, this gives

1
lim — Cpdp = / cdp < ap(Eyp).
Bup Bup

n—oo N,

And similarily for —c,,

1
lim — —Cpdp = —/ crdp < —Bu(Eap).
E.p E.p

n—oo N

This yields a contradiction unless M(Ea75) = 0, because

Bu(Eap) < / crdp < ap(FEap)

Eap
but G > a.
Now for any subadditive cocycle a,, let
n—1
() = ay(x) — Z ay(L'x)
=0

and note that v, is a subadditive cocycle and v, < 0.
Fix € > 0. Pick M big enough so that

1
—/vmgv(v)qu
mJx

for all m > M. Let g(x) = liminf tv,(z) and f(z) = limsup Lv,(z).
Note that by subadditivity

Vpar () < 0n () + v (L") 4 ... 4+ v (LM )

and by L-invariance of g that

. 1
gM(x) = lim inf mvn]\/[(w) = g(x)

n—oo
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a.e. By the seminegativity of v,,
Vnark(T) < e (2) + 0p (LM 2) < v (),

it also hold that

FY () = Tim sup () = £(a)

This has the following consequence,

1
f—g=f"—¢M < — lim inf —oM

n ?
n—oo n

because v, < 0 and the established convergence for additive cocycles
and where

vM(2) == v (z) — ZUM(LiMSL’)

which again is subadditive and seminegative. Note that

0> ~y(uM) = My(v) — /X’UM > —Me.

This means that

<—-Ma}=FE

n

.1
B:={x:f—g>a}C{r:liminf -0}
n
and applying the corollary of the lemma we have
.1 Moo i L M
—Map(E) >lim— [ v, >lim— [ v," > —Me.
nJE nJx

Hence

wE) <

Rlm

and letting £ — 0 we conclude that p(B) = 0 for any a > 0 as required.
The limit is of course a.e. L-invariant, by the proposition (3.3).
The limit is integrable by Fatou’s lemma

1 1
/liminf——vn < liminf/——vn < Q.
n n

In general, [|a(n,z)| <n [|a(1,z)].
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4. Appendix: Garsia’s proof of the maximal ergodic
lemma

This is not used above.

Lemma 4.1. Let
E,={xz: sup a(k,z) >0}

1<k<n

then
/ a(l,z)dp > 0 and / a(l,z)dp > 0.

Proof. Let
ha(z) = sup alk,z),

1<k<n
SO

hi(z) —a(k,z) >0
for k < n. By positivity and linearity of T
Thi > Tay,
for k < n. (ax(x) = a(k, z)).
Hence
ay +Th! > a; + Tay > ap

by subadditivity. So

ar > agy1 — Th
for all k,1 < k <n and trivially for kK = 0. Therefore

a; > sup apy1 —Thi =h, —Th}.
0<k<n—1

Now integrate

/alz/ hn—/ Th;::/hj;—/ Th
n n n X n
z/h;—/Thgzo,
X X

because T is contractive and hi > 0.
The statement about Ey = |J E, follows from passing to the limit.
[ There is nothing special about a;?, look at (%akn(l’))n]



