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We obtain precise descriptions of all horoballs for Hilbert’s geometry on simplices and for
normed finite-dimensional vector spaces with norm given by some polyhedron. Certain
geometrical consequences are deduced and several other applications are pointed out,
which concern the dynamics of important classes of nonlinear self-maps of convex cones.
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1. Introduction and results

Our interest in horoballs comes on the one hand from the problem of describing the dy-
namics of certain important classes of self-maps of convex cones, and on the other hand
from the work of Rieffel [17] on quantum metric spaces in the context of Connes’ non-
commutative geometry. Horofunctions also appeared recently in a general law of large
numbers for random walks on groups [11].

As is remarked in [17, page 607], horofunctions seem not to have received much
study previously. Most work so far has been devoted to spaces of nonpositive curvature
(CAT(0)-spaces), see, for example, [1]. However, it is also true that Busemann functions
or horofunctions have been an important tool in the study of Riemannian manifolds of
nonnegative curvature.

Hilbert’s geometry on convex sets and Minkowski’s geometry on vector spaces (here
meaning normed finite dimensional vector spaces over the reals) are not CAT(0), except
in very special cases: hyperbolic geometry and Euclidean geometry, respectively. This
makes these spaces interesting for further study of horofunctions outside the universe
of nonpositive curvature. Indeed, Rieffel raises two questions [17, Questions 6.5, 6.6]
about the horofunction compactification, Busemann functions, and the action of V on
its boundary for normed finite dimensional vector spaces V . In Section 4, we give some
of the answers to these questions when the norm is given by a polyhedron (which is the
case most opposite to Euclidean geometry). This will be in contrast to the well-known
fact that if X is a complete metric space satisfying the CAT(0)-condition or “nonpositive
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2 Horoballs in simplices and Minkowski spaces

curvature,” then the map from geodesic rays to horofunctions is a bijection. Indeed, the
horofunction boundary is homeomorphic to the standard ray boundary [1].

Theorem 3.4 determines all the horoballs in Hilbert’s metric k on an open simplex Δ
embedded in Rd, see the figures in that section for a quick insight into how they look.
Note that it is well known that (Δ,k) is isometrically isomorphic to a certain Minkowski
space with polyhedral unit ball (see [16, Proposition 1.7], [6, Proposition 7], or [7]).
Therefore, certain techniques from polyhedral Minkowski spaces can be used for (Δ,k).
Unfortunately, the isometry is somewhat involved and not well suited for “translating”
results to (Δ,k) directly.

In the same section, we also draw a few geometrical consequences from Theorem 3.4:
every horoball is an intersection of certain basic ones, the horofunction compactification
Δ∞ ∪Δ is explicitly given, and every geodesic ray converges in the Euclidean topology of
Rd.

Further applications outside of pure geometry, namely to dynamical systems, are dis-
cussed in Section 5.

2. Preliminaries on horoballs and tangent cones

Let (X ,d) be a metric space with unbounded metric d. We endow C(X), the space of
continuous real-valued functions on X , with the topology of uniform convergence on
bounded sets. Fix a reference point x0 ∈ X and consider the map Ψ : X → C(X) with

Ψ : z �−→ d(z,·)−d
(
z,x0

)
. (2.1)

It continuously injects X into C(X) by the triangle inequality and positivity. A metric
space is called proper if every closed bounded ball is compact. When this is the case for
(X ,d), the Arzelá-Ascoli theorem implies that Ψ(X), the closure of Ψ(X) in C(X), is com-
pact. Thus Ψ(X) is a compactification of X . Two compactifications with different refer-
ence points are homeomorphic because their functions only differ by additive constants.
The boundary points are

X∞ :=Ψ(X) \Ψ(X). (2.2)

The elements of X∞ are called horofunctions. Rieffel calls X∞ the metric boundary. So
a sequence (zn)n ⊂ X going to infinity converges to ξ ∈ X∞ if and only if the sequence
of functions (d(zn,·)− d(zn,x0))n ⊂ C(X) converges uniformly on compact sets to some
horofunction h= hξ . The lower level set {z : hξ(z)≤ C}, C ∈R, is termed a horoball and
the level set a horosphere. We refer to [2] for further details.

At first glance this compactification looks quite abstract. But suppose (X ,d) is a geo-
desic space and let all geodesics be parameterized by arc length. Then geodesic rays always
define a horofunction.

Example 2.1. Let γ be a d-geodesic ray issuing from γ(0)=: y ∈ X . For z ∈ X , the limit of
d(γ(n),z)− d(γ(n), y) for n→∞ exists, since the sequence is monotonically decreasing
in n and bounded below by −d(z, y), according to the triangle inequality. Thus it defines
a horofunction and corresponding horoballs.



A. Karlsson et al. 3

Let us denote the closed d-ball of radius r centered at x ∈ X by B(x,r) and the cor-
responding sphere by S(x,r). For any sequence (Xn)n of subsets of X define the metric
upper limit by

d limsupXn :=
⋂

n≥1

⋃

k≥0

Xn+k. (2.3)

That is d limsupXn consists of all points x for which there exists an increasing sequence
(nk)k and points xnk ∈ Xnk such that (xnk )k converges to x in (X ,d). Some authors call this
limit the Kuratowski-Painlevé upper limit [3].

Lemma 2.2. Let (X ,d) be a geodesic metric space with reference point x0. Suppose that an
unbounded sequence (zn)n ⊂ X converges to a point ξ ∈ X∞. Denote the horofunction of ξ
by hξ . Then the horoball of level C ∈R about ξ looks as follows:

Bh
ξ (C) := {x | hξ(x)≤ C

}= d limsupB
(
zn,d

(
zn,x0

)
+C

)
. (2.4)

Proof. Suppose hξ(x)= limn→∞(d(zn,x)−d(zn,x0))≤ C, then for any ε > 0 the inclusion
x ∈ B(zn,d(zn,x0) +C + ε) holds for all but finitely many n, hence x belongs to the right-
hand side. Conversely, if x belongs to the right-hand side, then there exists an increasing
sequence (nk)k and points xnk ∈ B(znk ,d(znk ,x0) +C) such that (xnk )k converges to x in
(X ,d). It follows that d(znk ,xnk )− d(znk ,x0) ≤ C. The triangle inequality shows that the
limit of the left-hand side is hξ(x). �

Suppose (X ,d) is embedded in RN , which we endow with the Euclidean norm ‖ · ‖.
Consider a Euclidean ray issuing from the point y ∈ X and suppose it contains a d-
geodesic ray γ. Then Example 2.1 tells us that (γ(n))n defines a horofunction and horo-
balls Bh

γ(C). We use Lemma 2.2 to calculate these horoballs.
For any closed subset M ⊂RN , we define the tangent cone T(x,M) of M at x ∈M by

v ∈ T(x,M) if and only if there exists (vn)n converging to v in (RN ,‖ · ‖) and (λn)n ⊂
(0,∞) converging to 0 such that x + λnvn ∈M for all n∈N [9]. With this definition the
tangent cone is really a cone, that is, it is invariant under dilations. Furthermore, it is
invariant under translations or dilations simultaneously of M at x.

Lemma 2.3. Let M ⊆ RN be convex and contain 0. Then any two sequences (μn)n, (λn)n ⊂
(0,∞) tending to∞ satisfy

d limsup
n→∞

μnM = d limsup
n→∞

λnM. (2.5)

Moreover, T(0,M)= d limsupn→∞nM.

Proof. By symmetry it is enough to show one inclusion. Suppose (μnkvk)k, with vk ∈M,
tends to v ∈ d limsupn→∞μnM. For every integer k choose lk such that λlk ≥ μnk . Then

μnkvk = λlk
μnk
λlk

vk =: λlkwk. (2.6)

Since M is convex and contains 0, we have wk ∈M. Consequently, v is an element of
d limsupn→∞ λnM.
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Suppose v ∈ T(0,M). Then there exist (vn)n and (λn)n converging to v and 0, respec-
tively, such that λnvn ∈M for all n∈N. Hence vn ∈ (1/λn)M and for n→∞,

v ∈ d limsup
n→∞

1
λn

M = d limsup
n→∞

nM. (2.7)

Conversely, if v = limn→∞nvn for a sequence (vn)n ⊂M, then (1/n)(nvn)= vn ∈M. Since
nvn tends to v, we arrive at v ∈ T(0,M). �

3. Simplices

In this section, all topological notions will be with respect to (Rd,‖ · ‖), d ≥ 1, unless
stated otherwise. We denote the closure by (·), the interior by (·)◦, and the boundary
by ∂(·). Let Rd

+ be the cone of all vectors with nonnegative entries and let H be the hy-
perplane of all points in Rd whose components sum up to one. Then Δ := (Rd

+)◦ ∩H is
the open standard (d− 1)-simplex. Hilbert used Klein’s model of the hyperbolic plane to
define a metric k on any open, bounded, convex domain in Rd [8]. More precisely, for
two points x, y ∈ Δ, let x′, y′ be the intersection points of the line through x and y with
∂Δ such that the points appear in the order x′, x, y, y′. Now define k to be the logarithm
of the cross ratio

k(x, y) := ln
‖x′ − y‖ · ‖x− y′‖
‖x′ − x‖ · ‖y− y′‖ . (3.1)

The corresponding geometry is studied in [5, 6]. By definition the k-distance between
two points of Δ tends to +∞, when one of them tends to ∂Δ.

3.1. Hilbert’s projective metric on Rd
+. A classical and elegant way to construct k-balls

on Δ is to use its projective invariance as in [5, Section 18]. We will follow this approach
in considering another (pseudo) distance, k′, of Hilbert on the simplicial cone Rd

+ whose
restriction to Δ is k.

Birkhoff extended k to a pseudo distance k′ on cones in the following way [4]. For
x, y ∈Rd the partial order induced by Rd

+ on Rd is given by x ≤ y, if y− x ∈Rd
+. That is,

xi ≤ yi for all i∈D := {1, . . . ,d}. We use supp(x) to denote {i∈D | xi > 0}, the support of
x. When x, y ∈Rd

+ \ {0} satisfy supp(x)⊇ supp(y), then we are able to define the greatest
lower bound of the quotient x/y by

min(x/y) :=max
{
α > 0 | αy ≤ x

}

=min
{
xi/yi | i∈ supp(y)

}
> 0.

(3.2)

When supp(x)⊆ supp(y), then the least upper bound of x/y is

max(x/y) :=min(y/x)−1

=max
{
xi/yi | i∈ supp(y)

}
> 0.

(3.3)
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Figure 3.1. The k-ball in Δ centered at c with extremal points b1, . . . ,b6.

When supp(x)= supp(y), then Hilbert’s projective metric k′ is defined to be

k′(x, y) := ln
max(x/y)
min(x/y)

. (3.4)

The pseudometric k′ is discussed in [16]. It satisfies k′(αx,βy)= k′(x, y) and it vanishes
if and only if x is a positive multiple of y. Thus the rays of (Rd

+)◦ issuing from 0 are the
equivalence classes of k′. We project them to a point of H with respect to the center 0 by
π :Rd

+ \ {0} → Δ:

π(x) := x

‖x‖1
, (3.5)

where ‖x‖1 :=∑i |xi|. Since ‖ · ‖ respects the Rd
+-ordering, the metric space (Δ,k′) is

complete [16, Thmorem 1.2]. The ‖ · ‖- and the k′-distance are locally comparable on Δ
[16, equations (1.21), (1.22)]. Therefore, k′-closed balls are closed. Furthermore, k′-balls
are convex according to [16, Lemma 4.1]. But they might not be strictly convex as the
k′-ball of a 2-simplex in Figure 3.1 shows.

Proposition 3.1 (see [14, equation (3.15)]). The two distances k′ and k coincide on Δ.

For i∈D, let ui ∈Rd
+ be the vector which is 1 in the ith component and 0 elsewhere.

For x = (x1, . . . ,xd)∈Rd and I ⊂D, define

xI :=
∑

i∈I
xiu

i. (3.6)

Analogously, ΔI := {xI | x ∈ Δ}. When y ∈ Rd with x ≤ y we call [x, y] := {z ∈ Rd | x ≤
z ≤ y} the cuboid of x and y. For r > 0 and x ∈ Rd

+ \ {0}, we define the closed k-ball of
radius r by B(x,r) := {y ∈Rd

+ | k′(x, y)≤ r}. This ball is actually a cone.
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Proposition 3.2. For r > 0 and x ∈ Δ, the extremal rays of the cone B(x,r) are spanned
by those extremal points of [x,erx] which are not multiples of x. Especially, B(x,r)∩Δ is a
closed convex set with the 2d − 2 extremal points

{
x+
(
er − 1

)
xI

1 +
(
er − 1

)∥∥xI
∥
∥

1

| ∅� I � D

}

. (3.7)

Proof. Let y ∈Rd
+ be such that k′(x, y)= r. By (3.4) this implies supp(y)= supp(x) and

the existence of an α > 0 such that αx ≤ y ≤ erαx. For each inequality, there is at least one
coordinate in which equality holds. This shows y/α ∈ ∂[x,erx]. The inclusion [x,erx] ⊆
B(x,r) follows from the definition of k. Thus π(B(x,r))= π([x,erx]).

For I ⊆D, the extremal points of [x,erx] are

E(I) := Er(I) := x+
(
er − 1

)
xI . (3.8)

Since π maps nonzero linear combinations overR+ to convex combinations, π([x,erx]) is
convex. Its extremal points are contained in {π(E(I))|I⊆D}. Since π(E(D))=π(E(∅))=
π(x), the set π([x,erx]) is the convex hull of {π(E(I)) | ∅� I � D}.

To show the extremality of {π(E(I)) | ∅� I � D}, we suppose that y ∈ ∂B(x,r) is a
linear combination

∑n
i=1 λiz

i of points zi ∈ B(x,r) with λi > 0, for 1≤ i≤ n. Use (3.2) to
express ek(x,y) as the maximum over ( j, l)∈D2 of

yjxl
xj yl

= xl
xj
·
∑n

p=1 λpz
p
j

∑n
i=1 λiz

i
l

= xl
xj
·

n∑

p=1

z
p
j

z
p
l

(
λpz

p
l∑n

i=1 λiz
i
l

)

. (3.9)

Thus yjxl/xj yl = er if and only if z
p
j xl/xjz

p
l = er for all 1≤ p ≤ n. Indeed, the quotient in

(3.9) on the very left is known to be maximal, that is, er . The sum on the very right of the
equation is a convex combination of quotients xlz

p
j /xjz

p
l with positive weights given by

the expression in brackets. Every xlz
p
j /xjz

p
l is not bigger than er because these quotients

appear in measuring k′(x,zp) with zp ∈ B(x,r). So the convex combination is maximal if
and only if every xlz

p
j /xjz

p
l is maximal, that is, er .

For y = E(I), obviously yjxl/xj yl = er for all j ∈ D \ I and l ∈ I . So {zpi /xi | i ∈ D}
consists only of two values whose quotient is er . Thus zp is a multiple of y. �

Proposition 3.2 tells us that k-balls in Δ are π-images of cuboids. In other words, they
are (d− 1)-dimensional polytopes with (2d − 2) extremal points. The latter fact is well
known [6]. The hexagonal shape of a 2-dimensional ball is depicted in Figure 3.1. It is
centered at c := π((1, . . . ,1)) and has the extremal points

b1 := π
(
E
({1})), b2 := π

(
E
({1,3})), b3 := π

(
E
({3})),

b4 := π
(
E
({2,3})), b5 := π

(
E
({2})), b6 := π

(
E
({1,2})).

(3.10)

To understand the remaining lines in the figure we have to investigate the faces of a k-ball.
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A k-ball in Δ with a positive radius has dimension d− 1. We want to know its (d− 2)-
dimensional faces. Let us call such a face a facet. Proposition 3.2 suggests trying the π-
images of (d− 2)-dimensional faces of [x,erx], provided they do not contain x or erx.

Corollary 3.3. The k-ball in Δ, centered at x ∈ Δ with radius r > 0, has d(d− 1) facets.
For each pair of distinct indices 1≤ i, j ≤ d, the facet is given by the extremal points {π(E(I))|
∅� I � D, i∈ I �� j}. Every other face of the k-ball is the intersection of a finite number of
these facets.

Proof. According to (3.9), the convex sets in question define convex subsets of ∂B(x,r),
because they have the joint maximal quotient π(E(I)i)/π(xi) and the joint minimal quo-
tient π(E(I) j)/π(xj). Every such set is by definition the π-image of a suitable (d − 2)-
dimensional face of [x,erx]. The faces of [x,erx] lie in affine hyperplanes which do not
contain 0. Hence π does not decrease their dimensions. Thus the convex sets in question
have dimension d− 2. For every point b in a k-sphere, the quotients {bi/xi | i∈D} have
at least one maximal element and one minimal. �

Varying the radius r > 0 of the k-ball B(x,r) in Proposition 3.2, we see that π(Er(I))
describes a line segment from x to π(xI) ∈ ∂Δ. For every pair of distinct indices 1 ≤ i,
j ≤ d the convex hull of x and {π(xI) | ∅� I � D, i ∈ I �� j} is called an x-sector of Δ.
According to Corollary 3.3, the intersection of such an x-sector with a k-sphere centered
at x is a facet.

Figure 3.1 indicates the supporting hyperplanes of the 2-dimensional k-ball centered
at c. They are of course lines and their location is indicated by the line segments from ui

to some bj , 1≤ j ≤ 6, but not passing through c.
Let b ∈ ∂Δ, that is, b has a zero in at least one and in at most d− 1 coordinates. For

(gn)n ⊂ Δ and converging to b, (3.2) shows

lim
n→∞max

(
gn/x

)=max(b/x)∈ (0,∞). (3.11)

3.2. Horoballs. The straight line segment between two different points of Δ is a k-geode-
sic [16, Propostion 1.9]. So (Δ,k) is a geodesic space. But k-geodesics are not necessarily
unique because k-balls have faces as we have seen. A k-geodesic g : [0,∞)→ Δ is called
a k-geodesic ray. Thus Euclidean rays issuing from a point in Δ are k-geodesic rays. On
Δ the ‖ · ‖- and the k-topology coincide locally as we have seen already. Hence k-closed
balls are k-compact, that is, (Δ,k) is a proper metric space. Now we can apply the results
of Section 2 to find horofunctions and horoballs.

Let (gn)n ⊆ Δ converge to b ∈ ∂Δ and fix x ∈ Δ. For notational convenience set r(n) :=
k(x,gn) and Er(n)(I)=: En(I). We want to find a horoball defined by (gn)n which contains
x in its boundary. We call such a horoball centered at b. That is, we have to consider a
sequence of k-balls B(gn,r(n)), n∈N, which will hopefully converge (in the Kuratowski-
Painlevé distance) to a horoball centered at b. In our case, all k-balls are isomorphic poly-
topes, that is, they have the same face lattice described in Corollary 3.3. Their extremal
points are {En(I) | ∅� I � D}. Suppose (En(I))n converges to E∞(I) for all ∅� I � D.
Then the limiting set is the convex hull of {E∞(I) | ∅� I � D} and the extremal points
of the limiting set are contained in this set of limit points.
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According to Proposition 3.2, En(I) is given, for∅� I � D, by

yI(n)= gnD\I + er(n)gnI∥
∥gnD\I

∥
∥

1 + er(n)
∥
∥gnI

∥
∥

1

= π
(
gnD\I

)
(

1 +
er(n)

∥
∥gnI

∥
∥

1∥
∥gnD\I

∥
∥

1

)−1

+π
(
gnI
)
(

1 +

∥
∥gnD\I

∥
∥

1

er(n)
∥
∥gnI

∥
∥

1

)−1

.

(3.12)

Let us look again at Figure 3.1. We replace c by gn and move it towards b ∈ ∂Δ, for ex-
ample b = (u1 + u2)/2. The boundary of B(gn,r(n)) then contains the fixed point x, say
x = b3. Since b1(n), b5(n), b6(n) in the figure lie on rays emanating from u1 or u2, the
sequences must end up on the line segment from u1 to u2. This is the first case we will
consider.

Suppose supp(b)∩ I �= ∅, then gnI tends to bI �= 0 for n→∞ and

liminf
n→∞

∥
∥gnI

∥
∥

1∥
∥gnD\I

∥
∥

1

≥ ∥∥bI
∥
∥

1 > 0. (3.13)

Now (3.12) and the fact that r(n) tends to∞ for n→∞ imply

E∞(I)= π
(
bI
)
, (3.14)

for ∅ � I � D with supp(b)∩ I �= ∅. All these points have their support in supp(b).
They comprise {ui | i ∈ supp(b)}, which are the extremal points of Δsupp(b). Hence the
latter points are extremal in any horoball.

To motivate the case supp(b)∩ I =∅ geometrically, we look again at Figure 3.1. Let
b = u1 and look at b4(n) when gn moves towards b for n→∞ and choose again x := b3.
When (π(gn{2,3}))n converges we can draw the limiting boundary of B(gn,r(n)). This is the
type of problem we have to treat now.

Suppose supp(b)∩ I =∅. Then gnD\I tends to b for n→∞. According to (3.12), we
have to find the limits of π(gnI ) and er(n)‖gnI ‖1. To this end use (3.2) to deduce

er(n) ·∥∥gnI
∥
∥

1 =
max

(
gn/x

)

min
{(
gnj /
∥
∥gnI

∥
∥

1

)(
1/xj

) | j ∈D
} . (3.15)

By (3.11) the numerator converges to max(b/x). The denominator is

μI(n) :=min

{
gnj∥
∥gnI

∥
∥

1

1
xj
| j ∈D

}

. (3.16)

Obviously, 0 < μI(n) ≤mini∈I(1/xi). When (μI(n))n converges to μI and (π(gnI ))n con-
verges to π(gI) for n→∞, then (3.12) implies

E∞(I)= μI
μI + max(b/x)

b+
max(b/x)

μI + max(b/x)
π
(
gI
)
. (3.17)

To see when (μI(n))n converges to 0 we have to know the “speed” at which (gni )n ap-
proaches 0. For i, j ∈D, we say that i is faster than j if limsupn∈N(gni /g

n
j )= 0. Whenever
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there exists a j ∈D which is faster than some i∈ I , then μI(n) converges to 0 for n→∞.
Let F be the set of all fastest components in D. Then μI(n) converges to 0 if and only if
I �⊆ F. Consequently, (3.17) implies

E∞(I)= π
(
gI
)
, (3.18)

for∅� I ⊆D \ supp(b) with I �⊆ F.
To see when (μI(n))n converges to a positive value, we have to consider the only re-

maining cases∅� I ⊆ F. By the definition of F we have for large enough n,

μI(n)=min

{
gnj∥
∥gnI

∥
∥

1

1
xj
| j ∈ F

}

. (3.19)

Using gn = ‖gnD\F‖1 ·π(gnD\F) +‖gnF‖1 ·π(gnF ) and j ∈ F, we derive

gnj∥
∥gnI

∥
∥

1

=
∥
∥gnF

∥
∥

1 ·π
(
gnF
)
j∥

∥
∥
∥gnF

∥
∥

1 ·π
(
gnF
)
I

∥
∥

1

=
π
(
gnF
)
j∥

∥π
(
gnF
)
I

∥
∥

1

. (3.20)

Thus again for big n,

μI(n)=min

{
π
(
gnF
)
j∥

∥π
(
gnF
)
I

∥
∥

1

1
xj
| j ∈ F

}

. (3.21)

Theorem 3.4. Let (gn)n ⊆ Δ be a sequence converging to b ∈ ∂Δ. Define F to be the set of
fastest components of (gn)n. The sequence (gn)n defines a horoball if and only if (π(gnF ))n
converges to a point π(gF), the “direction” of (gn)n. The extremal points of the horoball are
given by

(i) every ui for i∈D \F;
(ii) every E∞(I) of (3.17) for∅� I ⊆ F, where

μI = min
(
π
(
gF
)
/xF
)

∥
∥π
(
gF
)
I

∥
∥

1

. (3.22)

Proof. Suppose (π(gnF ))n converges to π(gF). Then (3.14) and (3.18) show that π(gI) is
possibly extremal for∅� I ⊆D \F. They comprise the points in (i).

When (π(gnF ))n converges, then π(gF) ∈ ΔF \ΔF implies that there are elements in F
which are faster than other elements of F. This is impossible by the definition of F. Thus
π(gF)∈ ΔF and π(gF) j > 0 for all j ∈ F. Because of (3.21), μI > 0 has the formula given in
(ii) and the corresponding points in (3.17) are possibly extremal.

Let K be the convex hull of all points in (i) and (ii). All points of (i) are extremal
in Δ and thus in K . Fix ∅ � I ⊆ F. Then the corresponding point of (ii) has the for-
mula (3.17) with 0 < μI <∞. Write E∞(I) as a convex combination of the points in (i)
and (ii) and consider the I-coordinates of E∞(I). Formula (3.17) shows that points of
(i) cannot contribute to these coordinates. By (ii) a contribution can only come from
E∞(J) with ∅ � J ⊆ F. Thus we only have to check ∅ � J � I . The function f (μ) :=
max(b/x)/(max(b/x) + μ) is strictly decreasing in μ as long as max(b/x) > 0. The latter is
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u1

u2

u3

u4

Figure 3.2. A horoball centered at (u1 +u2 +u3)/3.

true, since x ∈ Δ and b �= 0. We know that π(gF) has full support F. Thus the formula in
(ii) shows μJ > μI , for∅� J � I , which implies f (μJ) < f (μI). Hence a convex combina-
tion of all f (μJ), for all J as above, is always strictly less than f (μI). This shows that E∞(I)
is extremal.

Now suppose (π(gnF ))n diverges. Then it has accumulation points in ΔF and every con-
vergent subsequence defines a horoball via the corresponding subsequence of (gn)n ac-
cording to our previous arguments. Take two accumulation points a1 �= a2 and their cor-
responding subsequences. When supp(a1) �= supp(a2), then (i) shows that their horoballs
are different. When supp(a1) = supp(a2), then (ii) and (3.17) imply that the supp(b)-
components of their E∞(F)-s coincide if and only if their μF-s are the same. In this case
their E∞(F)-s coincide if and only if a1 = a2, which is false. Thus the horoballs differ
when a1 �= a2. But when the horoballs are different, then the locally uniform convergence
of (Ψ(gn))n is violated. Therefore, no horofunction exists and consequently no horoball
for (gn)n. �

We note that no directional assumptions on the convergence of (gn)n to b have to be
made in Theorem 3.4 when supp(b) contains all but one component. A horoball of this
type is depicted in Figure 3.2.

According to Theorem 3.4, there exist sequences (gn)n ⊂ Δ converging to b ∈ ∂Δwhich
define a horoball but (π(gnD\supp(b)))n diverges in (Rd,‖ · ‖). Look for example at the right
horoball of Figure 3.3 and imagine two different accumulation points in Δ{2,3}. The corre-
sponding subsequences define the same horoball, because the extremal point of statement
(ii) only depends on the support of the accumulation points. This shows clearly that the
“direction” mentioned in Theorem 3.4 has to be a point with support F but not the bigger
support D \ supp(b).

It remains to check whether there exist divergent sequences defining a horoball. To this
end we will refine the argument in the last paragraph of the proof of Theorem 3.4.
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u1

u2

u3

u4

u1

u2

u3

u4

Figure 3.3. Two horoballs centered at u1 with π(g{2,3,4}) equal to (u2 +u3 +u4)/3 on the left and (u2 +
u3)/2 on the right.

Corollary 3.5. Every sequence (gn)n ⊆ Δ accumulating only at ∂Δ that defines a k-horo-
ball has to converge.

Proof. Suppose we are given a sequence (gn)n ⊆ Δ accumulating only at ∂Δ but pos-
sessing at least two accumulation points a1 �= a2. Each of them is the limit of a suit-
able subsequence of (gn)n. These subsequences must define the same horoball because
otherwise the locally uniform convergence of (Ψ(gn))n is violated. Thus Theorem 3.4(i)
shows that both sequences have the same set F of fastest components. Furthermore,
they must define the same E∞(F) in statement (ii) of the same theorem to ensure co-
inciding horoballs. Let yF be an accumulation point of the sequence (yF(n))n defined
in (3.12). Now (3.17) tells us that supp(yF) is the disjoint union of supp(ai) and F. So
supp(a1) coincides with supp(a2). Looking at the F-components of E∞(F), we conclude
that max(a1/x) =max(a2/x). Considering now the supp(a1)-components of E∞(F), we
derive a1 = a2. �

3.3. Geometrical consequences. We will collect some geometrical information drawn
from Theorem 3.4.

We will see in the next corollary that every horoball centered at b is the intersection of
specific basic horoballs. Such a basic horoball is characterized by a center b = uj , a single
fastest component F = {k}, and a point x ∈ Δ in its boundary, for two different indices
j,k ∈D. Because of F = {k}, we have μ{k} = 1/xk by Theorem 3.4(ii) and

E∞
({k}) := xj

xj + xk
uj +

xk
xj + xk

uk, (3.23)

according to (3.17). A horoball of this type is shown on the right-hand side of Figure 3.3.

Corollary 3.6. Every closed horoball centered at b with fastest components F is the intersec-
tion of |supp(b)| · |F| closed horoballs which are centered at a point of {uj | j ∈ supp(b)},
have a fastest component {i}, for some i ∈ F, and contain the extremal point E∞(F) of the
original ball.
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Proof. We have to show that the intersection of all basic horoballs in question has the
same extremal points as the original horoball. By definition the intersection contains the
extremal points ui, i ∈ supp(b). So it remains to show that the extremal points of the
original horoball which appear in Theorem 3.4(ii) are the missing extremal points of the
intersection. This follows from

π
(
E∞(F)supp(E∞(I))

)= E∞(I) (∅� I ⊆ F). (3.24)

To prove this we collect some remarks. The support of E∞(I) is just supp(b)∪ I , ac-
cording to (3.17). Theorem 3.4(ii) shows that μF equals min(π(gF)/xF) and therefore
μI · ‖π(gF)I‖1 = μF . By definition and the choice of I ,

∥
∥
∥π
(
gF
)
I

∥
∥
∥

1
=
∥
∥
∥
∥
∥
gF∩I∥
∥gF
∥
∥

1

∥
∥
∥
∥
∥

1

=
∥
∥gI
∥
∥

1∥
∥gF
∥
∥

1

. (3.25)

Using (3.17) and these remarks, we see that E∞(F)supp(b)∪I equals

μF
μF + max(b/x)

b+
max(b/x)

max(b/x) +μF
π
(
gF
)
I

= μI
∥
∥π
(
gF
)
I

∥
∥

1

μI
∥
∥π
(
gF
)
I

∥
∥

1 + max(b/x)
b+

max(b/x)
max(b/x) +μI

∥
∥π
(
gF
)
I

∥
∥

1

· gI∥
∥gI
∥
∥

1

·
∥
∥gI
∥
∥

1∥
∥gF
∥
∥

1

= μI
∥
∥π
(
gF
)
I

∥
∥

1

μI
∥
∥π
(
gF
)
I

∥
∥

1 + max(b/x)
b+

max(b/x)
∥
∥π
(
gF
)
I

∥
∥

1

max(b/x) +μI
∥
∥π
(
gF
)
I

∥
∥

1

π
(
gI
)
.

(3.26)

Because of b,π(gI)∈ Δ, we derive

∥
∥E∞(F)supp(b)∪I

∥
∥

1 =
(
μI + max(b/x)

)∥∥π
(
gF
)
I

∥
∥

1

μI
∥
∥π
(
gF
)
I

∥
∥

1 + max(b/x)
. (3.27)

Together we deduce

E∞(F)supp(b)∪I = E∞(I) ·∥∥E∞(F)supp(b)∪I
∥
∥

1. (3.28)

�

A consequence of Corollary 3.6 is that a horoball is uniquely determined by x, b, and
E∞(F). Thus its horofunction is determined by b and π(gF)∈ ΔD\supp(b). So

Δ∞ := {(b, f ) | b ∈ ∂Δ, f ∈ ΔD\supp(b)
}
. (3.29)

Remark 3.7. Once one has realized that “directions” are important in the definition of
horoballs, one can come up with a more geometric proof of Theorem 3.4.

(1) The case F = D \ supp(b). Here we replace x by E∞(F) and consider a sequence
(gn)n of points tending along the Euclidean ray issuing from E∞(F) to b. By Example 2.1
this defines an k-horoball. According to Theorem 3.4, the shape of the k-horoball can be
determined by tangential cones as in Lemma 2.3. In other words, we consider the tangen-
tial cone at a ball of the sequence in E∞(F). All further balls are just blow ups of the initial
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u2

u3

u1

u4

u2

u3

u1

u4

Figure 3.4. Two horoballs centered at (u1 +u2)/2 with π(g{3,4}) equal to (u3 +u4)/2 on the left and u4

to the right.

x4

x3

x2

x1

y1

y2

Figure 3.5. Blowing up and shifting a sequence of balls.

one and they exhaust the tangential cone. The resulting horoball coincides with the one
of the original sequence. We call this the “blow up” technique.

(2) The case F = {i}. In a first step, we use (1) for a sequence (gn)n on a Euclidean ray
issuing from xn ∈ Δ pointing to b to define a k-horoball Bn. In a second step, we use a
sequence (xn)n ⊂ Δ of “directions,” tending to a point in ∂Δ with support D \ {i}. This
defines a sequence (Bn)n of k-horoballs converging to the “basic” horoball with F = {i}.
Again the resulting horoball equals the original one. This time the horoballs (Bn)n are
shifted according to (xn)n. We call this the “shift” technique.

(3) The remaining cases are a mixture of (1) and (2) by Corollary 3.6. We call the
resulting geometric construction the “blow up and shift” technique.

The “blow up and shift” technique of Remark 3.7 is used in Figure 3.5 of the next
chapter on polyhedral Minkowski spaces.

A consequence of Corollary 3.5 concerns k-geodesic rays. It stimulated Foertsch and
Karlsson to study the convergence of geodesics more generally with different techniques
in [7].
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Corollary 3.8. Every k-geodesic ray in Δ converges to a point b ∈ ∂Δ.

Proof. Use Remark 3.7 and Corollary 3.5. �

4. Polyhedral Minkowski spaces

In the case of a general Minkowski space V (i.e., a normed finite dimensional vector space
over the reals), the linear ray boundary is only a small part of V∞. Namely, if (xn)n ⊂V is
an unbounded sequence tending to ξ ∈ V∞ and R+xn tends to R+y0, with |y0| = 1, then
the ray R+y0 does not determine ξ in general. Additional points of V∞ will occur when
(xn)n “drifts away” from R+y0. Choosing an appropriate subsequence, we will assume
that (xn)n drifts away in the direction of a certain simplicial cone lying in the boundary of
the tangent coneT(−y0,B). This simplicial cone will uniquely determine the limit ξ ∈V∞
and the horoballs about ξ.

4.1. The norm. Let B ⊂ V be a bounded, open, centrally symmetric, and convex set.
Then B defines a norm | · | on V by

|x| := inf
{
α > 0 | x ∈ αB

}
. (4.1)

The convex set B is termed a polyhedron when it has only finitely many extremal points.
The normed space (V ,| · |) is then a polyhedral Minkowski space. By definition B is the
| · |-unit ball. We denote its | · |-unit sphere by S. Every v ∈ S defines a ray R+v. This ray
is a | · |-geodesic ray as we can see from the definition of | · |. Thus (V ,| · |) is a proper
geodesic metric space, and we can use the techniques of Section 2 to define horofunctions
and horoballs.

Henceforth we take the origin in V as a reference point. For each v ∈ S denote by hv the
horofunction corresponding to the ray R+v in the sense that hv is defined by a sequence
of points on R+v tending to infinity.

Lemma 4.1. Bh
v (C)= T(−v,B)−Cv = T(0,v+B)−Cv.

Proof. The second equality follows from the fact that the tangent cone T(x,M) is invari-
ant under translations of V . For the first, use Lemmas 2.2 and 2.3 to deduce

Bh
v (C)= d limsup

n→∞
B(nv,n+C)

= d limsup
n→∞

(
B
(
(n+C)v,n+C

)−Cv
)

= T(0,v+B)−Cv.

(4.2)

�

4.2. Horoballs. Now we can prove the main result of this section.

Theorem 4.2. Let V = (Rd,| · |) be a polyhedral Minkowski space. Let (pn)n be an un-
bounded sequence in V \ {0} which tends to ξ ∈V∞, that is,

hξ(x)= lim
n→∞

(∣∣pn− x
∣
∣−∣∣pn

∣
∣). (4.3)
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Then there exist a unit basis y1, . . . , yd of V and a subsequence (xn)n of the sequence (pn)n
such that

(1) the cone
∑d

i=2R+yi is contained in ∂T(−y1,B),
(2) limn→∞(xn/|xn|)= y1,
(3) xn = |xn|y1− a2ny2−···− adnyd, for nonnegative ai j , and limn→∞(ain/|xn|)= 0 for

all 2≤ i≤ d.
Furthermore, for any subsequence (nk)k such that the limits ai := limk→∞ aink ∈ R+ ∪{∞}
are defined,

Bh
ξ (C)= T

(− y1,B
)−Cy1−

∑

ai=∞
R+yi−

∑

ai<∞
ai yi. (4.4)

The formula of the horoball in Theorem 4.2 realizes the “blow up and shift” technique
of Remark 3.7. The “blow up” is the tangent cone T(−y1,B), the “shift” can be finite,
−Cy1−

∑
ai<∞ ai yi, or infinite, −∑ai=∞R+yi, see Figure 3.5.

Proof of Theorem 4.2. Since B is compact, the sequence (pn/|pn|)n has an accumulation
point y1. Let us consider a corresponding subsequence (xn)n. That is, we assume that

lim
n→∞R+xn =R+y1. (4.5)

The boundary ∂T(−y1,B) of the cone T(−y1,B) is a union of codimension one (closed)
faces Fi, 1≤ i≤ k. The vector y1 lies in the interior of T(−y1,B) and hence it belongs to
the interior of a larger set V −{−T(−y1,B)}. The last one is the finite union of the cones
of the form R+y1 − Fi, 1 ≤ i ≤ k. Passing to a subsequence we may assume that xn ∈
R+y1−F for some face F. Each face F is a finite union of simplicial cones of codimension
one. Hence, again passing to subsequence we may assume that F is simplicial, that is, it is
spanned by d− 1 linearly independent unit vectors y2, . . . , yd. Thus each xn has a unique
representation, as in Figure 4.1,

xn = a1ny1− a2ny2−···− adnyd. (4.6)

Because of (4.5), we have limn→∞(ain/|xn|) = 0 for all 2 ≤ i ≤ d and a1n = |xn| for all n.
Thus the sequence (xn) satisfies the conditions (1)–(3).

To prove the formula for the horoball, we follow Figure 3.5. We notice that

B
(
xn,
∣
∣xn
∣
∣+C

)= B
(∣∣xn

∣
∣y1,

∣
∣xn
∣
∣+C

)− a2ny2−···− adnyd. (4.7)

From Lemma 2.2 and equality (4.7), we deduce

Bh
ξ (C)= d limsup

n→∞
B
(
xn,
∣
∣xn
∣
∣+C

)

= d limsup
n→∞

(
B
(∣∣xn

∣
∣y1,

∣
∣xn
∣
∣+C

)− a2ny2−···− adnyd
)
.

(4.8)

In a first step we will prove,

d limsup

(

B
(∣∣xn

∣
∣y1,

∣
∣xn
∣
∣)−

∑

I

ain yi

)

= T
(− y1,B

)−
∑

I

R+yi, (4.9)
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B
(
xn,
∣
∣xn
∣
∣+C

)

�a2n y2

y1
y2

�Cy1

xn

∣
∣xn
∣
∣y1

B
(∣∣xn

∣
∣y1,

∣
∣xn
∣
∣+C

)

Figure 4.1. The decomposition of xn.

where I consists of those i, for which limn→∞ ain =∞. Let Bn = B(|xn|y1,|xn|) and recall
that by Lemma 4.1,

d limsupBn = T
(− y1,B

)
(4.10)

and moreover, since the sequence of balls above is increasing by inclusion, we have

d limsupBn =∪nBn = T
(− y1,B

)
. (4.11)

By this Bn−
∑

I ain yi is contained in the right-hand side of (4.9). Conversely, suppose that
x belongs to the right-hand side. This means that there exist nonnegative bi− s such that

x′ = x+
∑

I

bi yi ∈ T
(− y1,B

)
. (4.12)

The latter cone is the union of balls ∪Bn by (4.11). Fix a natural number n0 such that
the “unit cube”

K =
{

y : y =
∑

I

ci yi, 0≤ ci ≤ 1, i∈ I

}

(4.13)

is contained in Bn0 and x′ is also contained therein. For n large enough, we have λn =
|xn|/|xn0| > 1. By homothety with coefficient λn we obtain

λnK ⊂ Bn, λnx
′ ∈ Bn. (4.14)
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For any y ∈ K and large enough n, the convex combination

1
λn

λnx
′ +
(
λn− 1
λn

)
λny = x′ +

(
λn− 1

)
y (4.15)

belongs to Bn. It follows that

x+
∑

I

bi yi +
(
λn− 1

)
K ⊆ Bn, n� 0. (4.16)

In other words, x +
∑

I ci yi ∈ Bn if bi ≤ ci ≤ bi + (λn − 1) for all i ∈ I . To prove that x
belongs to the left-hand side of (4.9), it is enough to show that x +

∑
I ain yi ∈ Bn for n

sufficiently large. This inclusion would follow from the inequalities bi ≤ ain ≤ bi + (λn −
1). But this is indeed the case for n� 0 since by assumption the sequences (ain), (λn),
λn/ain each tend to∞with n. This proves the remaining inclusion, that is, (4.9) is verified.

Next, we claim that for any real C, we have

d limsup

(

B
(∣∣xn

∣
∣y1,

∣
∣xn
∣
∣+C

)−
∑

I

ain yi

)

= T
(− y1,B

)−Cy1−
∑

I

R+yi. (4.17)

Indeed, for C = 0 this coincides with (4.9). In general, we choose −Cy1 to be the
origin. Although xn is changed to xn +Cy1, the vectors y1, y2, . . . , yn and the coefficients
a2n, . . . ,adn do not change. Hence we obtain the general formula by adding −Cy1 to the
right-hand side.

It remains to add the sum over those i with finite ai on both sides of (4.9). The desired
equality follows immediately from the fact that

d limsup
n→∞

(
Xn + vn

)= d limsup
n→∞

(
Xn
)

+ lim
n→∞vn (4.18)

for any converging sequence (Xn)n of subsets in V and any converging sequence (vn)n of
points in V . �

Corollary 4.3. Under the assumptions of Theorem 4.2 for any ξ ∈ V∞, there is a geodesic
ray γ(t) such that

hξ(t)= lim
n→∞

∣
∣x− γ(t)

∣
∣− t. (4.19)

In other words, every horofunction is determined by a geodesic ray.

Proof. hξ(t) is uniquely determined by a sequence, satisfying (1)–(3) of Theorem 4.2,
more precisely, by the basis y1, y2, . . . , yd and by the limits a2, . . . ,ad therein. Now, for fixed
c > 0 consider the ray

γ(t)= ty1− ln(t+ c)
∑

ai=∞
yi−

∑

ai<∞
ai yi, t ≥ 0. (4.20)
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The sequence (γ(n)) has the same data as that of xn, hence it defines the same horo-
function hξ . On the other hand, γ(t) is a geodesic ray. Recall the well-known fact that a
C1-curve in V is geodesic if its velocity vector belongs to the cone spanned by some fixed
face of the unit ball at any moment t. In our case, for c sufficiently large,

γ′(t)= y1− 1
t+ c

∑

ai=∞
yi (4.21)

belongs to the face of B, corresponding to the cone F for all t ≥ 0. �

Remark 4.4. This corollary gives a positive answer to Rieffel’s paper [17, Question 6.5] in
the case of a polyhedral Minkowski space.

5. Dynamical applications

Let (X ,d) be a metric space. A map f : X → X is called (d-)nonexpansive if

d
(
f (x), f (y)

)≤ d(x, y) (5.1)

for all x, y ∈ X . It is a standard fact that

A := lim
n→∞

1
n
d
(
f n(x),x

)
(5.2)

exists and is independent of x. The following theorem was proved in [10].

Theorem 5.1. Let (X ,d) be a proper metric space and f a nonexpansive map. Either the
orbits of f are bounded, or else for any x ∈ X there exists a horofunction h with h(x) = 0
such that

h
(
f n(x)

)≤−An (5.3)

for every n≥ 0.

The conclusion of the theorem immediately implies that, moreover,

lim
n→∞−

1
n
h
(
f n(x)

)= A. (5.4)

This general result of course applies in particular to the metric spaces considered in
this paper, hence the combination of the description of all horofunctions and Theorem
5.1 give strong information on the dynamics of nonexpansive maps. Such maps arise for
Hilbert’s metric on convex sets in many important contexts, see, for example, [4, 6, 14–
16], and so we get from Theorem 5.1 in this setting the following.

Theorem 5.2. Let Δ be an open simplex and f : Δ→ Δ a k-nonexpansive map. For each
x ∈ Δ, either the orbit f n(x) stays in a compact set inside Δ or there is a horoball with
description as in Theorem 3.4 passing through x containing all orbit points f n(x), n≥ 0. If

inf
x∈Δ

k
(
f (x),x

)
> 0, (5.5)

then in addition all accumulation points belong to only one closed face of ∂Δ.
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Proof. The first part of the theorem is just an immediate application of Theorem 5.1,
regardless whether the linear rate of escape A is positive or zero.

In the case (X ,d) = (Δ,k) it follows from [13], in view of that (Δ,k) is isometric to a
certain Minkowski space, that A = infx∈X k( f (x),x). And when this number is positive,
Theorem 5.1 gives us a horofunction h for which

h
(
f n(x)

)≤−An−→−∞. (5.6)

(Incidentally, we here note that this is stronger than what is obtained in [13] in this finite
dimensional setting.) The orbit can now only accumulate at one-closed face in view of
the description of all horofunctions in Theorem 3.4. �

A similar statement can be formulated for the Minkowski spaces we consider. The
closed face in the corollary is the intersection of all horoballs associated with that same
distinguished horofunction. We conjectured some time ago that the statement about
the limit set being contained in just one closed face should hold without the condition
inf k( f (x),x) > 0 and we were able to prove that in 2 dimensions and some other special
cases, see also [12]. However, Nussbaum has indicated to us that he recently has obtained
significant general results on this topic, therefore we leave this issue for now. In any case,
our theorem provides some very precise information about the whole orbit, not just the
limit set.

Another consequence is the following.

Theorem 5.3. Let Δ be an open simplex and f : Δ→ Δ a k-nonexpansive map. Suppose that
the orbits of f converge toward one boundary face which consists of only one point. Then for
an associated horofunction, all its horoballs � are f -invariant sets, that is, f (�)⊂�.

Proof. This follows from the description given in Theorem 3.4 and [10, Theorem 3.4]
(actually its proof to be precise). �
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Mathematics, vol. 61, Birkhäuser Boston, Massachusetts, 1985.

[3] G. Beer, Topologies on Closed and Convex Sets, Mathematics and Its Applications, vol. 268,
Kluwer Academic, Dordrecht, 1993.

[4] G. Birkhoff, Extensions of Jentzsch’s theorem, Transactions of the American Mathematical Society
85 (1957), no. 1, 219–227.

[5] H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955.



20 Horoballs in simplices and Minkowski spaces

[6] P. de la Harpe, On Hilbert’s metric for simplices, Geometric Group Theory, Vol. 1 (Sussex, 1991),
London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge,
1993, pp. 97–119.

[7] T. Foertsch and A. Karlsson, Hilbert metrics and Minkowski norms, Journal of Geometry 83
(2005), no. 1-2, 22–31.
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[9] J.-B. Hiriat-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I,
Grundlehren der Mathematischen Wissenschaften, vol. 305, Springer, Berlin, 1993.

[10] A. Karlsson, Non-expanding maps and Busemann functions, Ergodic Theory and Dynamical Sys-
tems 21 (2001), no. 5, 1447–1457.

[11] A. Karlsson and F. Ledrappier, On laws of large numbers for random walks, The Annals of Proba-
bility 34 (2006), no. 5.

[12] A. Karlsson and G. A. Noskov, The Hilbert metric and Gromov hyperbolicity, L’Enseignement
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