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Abstract

We consider a nondegenerate random walk on a locally compact
group with finite first moment. Then, if there are no nonconstant
bounded harmonic functions, all the linear drift comes from a real ad-
ditive character on the group. As a corollary we obtain a generalization
of Varopoulos’ theorem that in the case of symmetric random walks,
positive linear drift implies the existence of nonconstant bounded har-
monic functions. Another consequence is the phenomenon that for
some groups (including certain Grigorchuk groups) the drift vanishes
for any measure of finite first moment.

1 Introduction

A metric space is called proper if closed bounded sets are compact. Let G
be a locally compact group and d a left invariant proper metric on G (it
is assumed throughout that the topology generated by d coincides with the
given one). When G is second countable such a metric always exists, see [7].
Let ν be a probability measure on G of finite first moment, which means
that ∫

G
d(e, g)dν(g) < ∞.
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son Foundation.

†Supported in part by NSF grant DMS-0500630.

1



Let Zn denote trajectories of the corresponding random walk, that is,

Zn = g0g1...gn−1

where gi are independent random variables taking values in G with distribu-
tion ν. The probability distribution ν∗n, defined as the n-times convolution
ν ∗ ν ∗ ... ∗ ν of ν, is the distribution of Zn. It is natural to assume that
the support of ν generates G as a semigroup, in which case we refer to ν as
nondegenerate. We are interested in asymptotic objects associated with the
random walk. By Kingman’s subadditive ergodic theorem, the linear drift

l(ν) := lim
n→∞

1
n

d(e, Zn) = inf
n

1
n

∫
G

d(e, g)ν∗n(g)

exists and is constant almost surely. A bounded measurable f : G → R is
ν-harmonic if

f(g) =
∫

G
f(gh)dν(h)

for any g ∈ G. Constant functions are obviously ν-harmonic. If f is a
bounded harmonic function, then f(Zn) is a bounded martingale and there-
fore converges almost surely. We say that the Poisson boundary is trivial if
the constant functions are the only bounded ν-harmonic functions (see [9]).
Our main result is the following:

Theorem 1 Let G be a locally compact group with a left invariant proper
metric and ν be a nondegenerate probability measure on G with first mo-
ment. Then, if the Poisson boundary is trivial, there is a 1-Lipschitz ho-
momorphism T : G → R such that for almost every trajectory Zn of the
corresponding random walk, we have:

lim
n→∞

1
n

T (Zn) =
∫

G
T (g)dν(g) = l(ν).

A measure ν is symmetric if dν(g−1) = dν(g) for every g ∈ G. A measure
is centered if every homomorphism of G into R is centered, meaning that the
ν-weighted mean value of the image is 0 (cf. [6]). Every symmetric measure
ν is centered, since for any homomorphism T : G → R, the mean value,
which is ∫

G
T (g)dν(g) =

∫
G

T (g−1)dν(g) = −
∫

G
T (g)dν(g),

must hence equal 0. By simple contraposition, we get:
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Corollary 2 Let G be a locally compact group with a left invariant proper
metric and ν be a nondegenerate centered probability measure on G with first
moment. Then, if l(ν) > 0, there exist nonconstant bounded ν-harmonic
functions.

Corollary 2 was proved by Varopoulos ([14]) in the case ν is symmetric
and of finite support on a finitely generated group. His proof rests on es-
timates for n-step transition probabilities of symmetric Markov chains. A
simpler proof of the crucial estimate was given by Carne [3]. See also [1] and
[13] for interesting extensions. Note however that so far these estimates do
not work for measures of infinite support. Measures with infinite support
and finite first moment occur for example in the Furstenberg-Lyons-Sullivan
discretization procedure of the Brownian motion, see [12].

Corollary 2 may also be compared with one of the main theorems in
the paper [6] of Guivarc’h which states that for any connected amenable Lie
group and any nondegenerate, centered measure ν with finite moments of all
orders, the linear drift vanishes. The proof goes via a reduction to the case
of connected, simply connected, nilpotent Lie groups. Guivarc’h pointed
out to us that it is in fact proved in [6] that in the case of a connected
amenable Lie group all the drift comes from an additive character (similar to
Theorem 1 above). For finitely generated amenable groups this is no longer
true: consider a simple symmetric random walk on the wreath product of Z3

with Z/2Z. This example has nontrivial bounded harmonic functions, hence
the drift is positive, but all additive characters factor through Z3 and there
the random walk moves sublinearly. In this discrete case, one should also
mention the result of Kaimanovich ([8]) that when the group G is polycyclic
and ν is centered, then the linear drift vanishes.

In the case when G is a finitely generated group, entropy theory (see
Section 4) yields a kind of converse to Corollary 2.

Corollary 3 Let G be a finitely generated group and ν be a nondegenerate
centered probability measure on G with first moment. Then l(ν) > 0 if, and
only if, there are nonconstant bounded ν-harmonic functions on G.

Note that a measure may be centered for the simple reason that there
are no nontrivial homomorphisms into R, in this case Corollary 2 gives:

Corollary 4 Let G be a locally compact group with a left invariant proper
metric and ν be a nondegenerate probability measure on G with first moment.
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Assume that the only bounded ν-harmonic functions are the constants and
that H1(G, R) = 0. Then l(ν) = 0.

The point here is that ν is not necessarily symmetric. It is remarkable
that for a whole general class of groups, the nonexistence of homomorphisms
can have such a strong influence on the drift; this is in great contrast with
the case of nonamenable groups where no matter what, any nondegenerate
measure of first moment must have positive drift (see [6]).

Recall that, if v be the volume growth rate of a finitely generated group
G, v ≤ log |S| < +∞, then it is a fact (see [2], [6], [15] and below) that
if v = 0, then the Poisson boundary is trivial. Examples of groups with
subexponential growth (v = 0) and no nontrivial homomorphisms into the
reals include the torsion groups with subexponential (but superpolynomial)
growth constructed by Grigorchuk. We may formulate:

Corollary 5 Let G be a torsion group of subexponential growth (e.g. certain
Grigorchuk groups) and ν any measure with first moment. Then l(ν) = 0.

Indeed, let H be the subgroup generated by the support of ν. Since
every element has finite order, any homomorphism H → R vanishes and
using the word metric on G for H, the statement follows from the volume
criterion and Theorem 1.

See [5] for properties of measures without first moment, but with finite
entropy, on such groups of subexponential growth.

2 Preliminaries

2.1 Horofunctions.

Let (X, d) be a proper metric space. Fix a basepoint x0 ∈ X. Let

Φ : X → C(X)

be defined by x 7→ d(x, ·) − d(x, x0) and where the topology on the space
of continuous functions C(X) is uniform convergence on compact sets. It
can be checked that Φ is a continuous injection, and we identify X with
its image. Let H = Φ(X). It is easy to verify that H is a compact and
metrizable space. The points in H \ Φ(X) are called horofunctions (based
at x0).
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The action by Isom(X, d) on X extends continuously to an action by
homeomorphisms of H and is given by

g.h(x) = h(g−1x)− h(g−1x0).

Note that we always have

|h(x)| ≤ d(x, x0) and |h(x)− h(y)| ≤ d(x, y).

See [11] and the references therein for more information.

2.2 A noncommutative ergodic theorem.

Let (Ω, µ) be a standard Borel space with µ(Ω) = 1 and L : Ω → Ω an
ergodic measure preserving transformation. Given a measurable map g :
Ω → Isom(X, d) (where the measurable structure on Isom(X, d) is the
Borel structure coming from the topology of convergence on compact sets),
let

Zn(ω) = g(ω)g(Lω)...g(Ln−1ω).

Random walks (G, ν) is a special case of this setting as follows: (Ω, µ) is the
infinite product measure space of copies of (G, ν) indexed by n ∈ Z, L is the
shift transformation and g is simply the projection on the first coordinate
n = 0. The measure ν equals g∗µ. The metric space X is the group G with
the left invariance distance d, and the action is by left translations of G on
itself. The base point x0 is the group identity e in the special case. The
linear drift is

l = lim
n→∞

1
n

d(Zn(ω)x0, x0)

which exists by the subadditive ergodic theorem and coincides with the
previous definition in the special case.

In this general ergodic setting we proved in [11] that

Theorem 6 There is a measurable map h· : Ω → H, almost everywhere
defined, such that

lim
n→∞

− 1
n

hω(Zn(ω)x0) = l.

One of the more general previous theorems of this type was obtained
in [10] by Margulis and the first author proving a statement equivalent
to Theorem 6 in the case of (even nonproper) nonpositively curved metric
spaces. See [11] for references to further previous results.
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2.3 Poisson boundary and stationary measures.

Let ν be a probability measure on a topological group G. Assume G acts on
a space K with measure η. The convolution measure on K is defined by

ν ∗ η(A) =
∫

g∈G
η(g−1A)dν(g).

The measure η is called ν-stationary if ν ∗ η = η. Assume that there are no
nonconstant bounded ν-harmonic functions. Then, as is well-known, η is in
fact G-invariant. Indeed, given a continuous function f on K it follows from
the stationarity relation that

F (g) :=
∫

K
f(gz)dη(z) =

∫
K

f(z)d(g∗η)(z)

is a bounded ν-harmonic function, hence constant. Since this holds for all
continuous functions f , we have that η must be invariant.

3 Proof of Theorem 1

Define the skew-product system L : Ω×H → Ω×H by

L(ω, h) = (Lω, g(ω)−1h).

The proof of Theorem 6 in [11] goes by constructing a L-invariant measure
η on Ω×H such that, if F (ω, h) := −h((g(ω)−1x0), we have:

l(ν) =
∫

F (ω, h)dη(ω, h).

The measure η is constructed as a weak limit of

1
n

n−1∑
i=0

(Li)∗µn

where the disintegration of µn is given by

µn,ω = δΦ(Zn(ω)).

Lemma 7 Assume that there is no nonconstant bounded harmonic func-
tion. Then, the measure η is a product measure µ × m, where m is a G-
invariant measure on H.
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Proof. Let m denote the projection of η on H, in other words m(B) =
η(Ω×B).

Step 1: The measure m is ν-stationary. Indeed, note that(
L

i
)
∗
µn(Ω×B) =

∫
Ω

∫
H

1B(Z−1
i (ω)h)µn,ω(dh)µ(dω)

=
∫

Ω
δΦ(Zn(ω))(Zi(ω)B)µ(dω)

=
∫

Ω
δΦ(x0)(Z

−1
n−i(L

iω)B)µ(dω)

= ν∗(n−i) × δΦ(x0)(B).

In view of this it is clear that ν ∗m = m.
Step 2: Negative coordinates in Ω. Let Ω− be the product of copies

of (G, ν) indexed by the negative integers. The natural projection of the
measure η on Ω− × H is the product measure µ− × m, because the above
construction of η was done independently of the negative coordinates. Given
ω− ∈ Ω−, the distribution of h is just the projection of η on H, which is m
by definition.

Step 3: Coordinates up to k in Ω. We compute now the natural projec-
tion of the measure η to the product of H and of copies of (G, ν) indexed by
integers smaller than k, for k > 0. Write, for bounded measurable F1, F2:∫

F1(ωn, n < k)F2(h)dη =
∫

(F1F2)(L
−k(ω, h))dη

=
∫

(F1F2)(L−kω, Zk(L−kω)h)dη

=
∫

F1(L−kω)F2(Zk(L−kω)h)dη(ω, h)

=
∫

F1(L−kω)
(∫

F2(Zk(L−kω)h)dm(h)
)

dµ(ω),

where we used Step 2 to write the last line, because F1(L−kω) and Zk(L−kω)
both depend only on negative coordinates of ω. Since there are no noncon-
stant bounded harmonic functions, the stationary measure m is invariant,
and ∫

F2(Zk(L−kω)h)dm(h) =
∫

F2dm,

and we find
∫

F1(ωn, n < k)F2(h)dη =
∫

F1dµ
∫

F2dm, as claimed.
Letting k go to +∞ in Step 3 proves the Lemma. �
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By Lemma 7 and section 2.3, assuming that there are no nonconstant
bounded harmonic functions, we find a G-invariant probability measure m
on H satisfying:

l(ν) = −
∫

h((g(ω))−1x0)dm(h)dµ(ω) = −
∫

h(g−1)dm(h)dν(g). (1)

Set
T (g) = −

∫
h(g−1)dm(h). (2)

The integral makes sense because |h(g−1)| ≤ d(g, e). The function T : G →
R is measurable and satisfies |T (g)| ≤ d(g, e) and l(ν) =

∫
T (g)dν(g).

Recall that the action of G on H is given by:

γ1 · h(γ2) = h(γ−1
1 γ2)− h(γ−1

1 ),

so that:

T (gg′) = −
∫

h(g′−1g−1)dm(h)

= −
∫

g′ · h(g−1)dm−
∫

h(g′−1)dm

= T (g) + T (g′),

where we used the invariance of m in the last equation. Hence the map T
defines a homomorphism

T : G → R,

in particular T (g−1) = −T (g), T is ν-integrable, and (1) becomes

l(ν) =
∫

Ω
T (g(ω))dµ(ω) =

∫
G

T (g)dν(g).

Finally we note that T moreover is a 1-Lipschitz map:∣∣T (g)− T (g′)
∣∣ ≤ ∫ ∣∣h(g−1)− h(g′−1)

∣∣ dm(h) ≤
∫

d(g, g′)dm(h) = d(g, g′).

4 Entropy and proof of Corollary 3.

In this section G is a finitely generated group. Let S be a symmetric finite
generating set. The distance on G is the corresponding left invariant word
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metric |·|. It is clearly a proper metric space. Let ν be a probability measure
on G of finite first moment, which means that∑

g∈G

|g| ν(g) < ∞.

Define the entropy of ν by

H(ν) := −
∑
g∈G

ν(g) log(ν(g)).

Recall that we have

H(ν) := −
∑
g∈G

ν(g) log(ν(g)) ≤ log(2|S|)
∑
g∈G

|g| ν(g) + log 2. (3)

Indeed, let an be the number of group elements of wordlength n. Then
an ≤ |S|n. Define a probability measure ν ′ on G by ν ′(g) = 1/(2|g|+1a|g|).
Then,

H(ν)−
∑
g∈G

ν(g) log(2|g|+1a|g|) = −
∑
g∈G

ν(g) log
ν(g)
ν ′(g)

≤ 0,

where the inequality comes from Jensen’s inequality (or − log t ≤ 1/t − 1)
keeping in mind that both measures ν and ν ′ are probability measures. The
estimate (3) follows. By Kingman’s subadditive ergodic theorem,the entropy
of the random walk

h(ν) := lim
n→∞

− 1
n

log ν∗n(Zn) = inf
n

1
n

H(ν∗n)

exists and is constant almost surely. The vanishing of the entropy is related
to bounded harmonic functions; it is proved in [2], [4] and [9] that h(ν) = 0
if, and only if, the Poisson boundary is trivial. By applying (3) to ν∗n,
dividing by n, and letting n →∞, we get:

h(ν) ≤ log(2|S|)l(ν).

Hence any measure ν with first moment on G and with l(ν) = 0 has h(ν) = 0
and therefore only constant bounded ν-harmonic functions. So if there are
nonconstant bounded harmonic functions, l(ν) > 0. Otherwise, since ν is
centered, l(ν) = 0 by Corollary 2. This proves Corollary 3.

Finally, taking as generators the set Sk of elements with word length
smaller than k, the new drift is not bigger than the old one divided by k.
This shows that, for all k, h(ν) ≤ log(2|Sk|)l(ν)/k. Letting k → ∞ yields
h ≤ vl, which is called the fundamental inequality in [15], and explains the
role of subexponential growth in Corollary 5.
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