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Abstract. We give a construction of homomorphisms from a group G into R
using random walks on G. The construction is an alternative to [KL07] that
works in more general situations. Applications include an estimate on the drift
of random walks on groups of subexponential growth admitting no nontrivial
homomorphism to Z and inequalities between the asymptotic drift L(n) and
the asymptotic entropy H(n).

Some of the entropy estimates obtained have applications independent of
the homomorphism construction, for example a Liouville-type theorem for
slowly growing harmonic functions on groups of subexponential growth and
on some groups of exponential growth.

1. Introduction

Let G be a finitely generated group and µ a probability measure on G. We say
that µ is non-degenerate if its support generates G as a semi-group. We assume
that µ has finite first moment (with respect to a word metric l = lS which we fix):

L(µ) :=
∑

l(g)µ(g) <∞.

It is clear that the property to have a finite first moment does not depend on the
choice of finite generating set S. Finite first moment implies the finiteness of the
entropy of µ

H(µ) := −
∑
G

µ(g) logµ(g) <∞.

The entropy of the random walk is

h(µ) = lim
n→∞

H(µ∗n)
n

This limit exists by subadditivity. If the entropy of µ is finite, then this limit is
finite. The entropy criterion asserts that the Poisson boundary of (G,µ) is trivial
if and only if h(µ) = 0 ([KV83, Theorem 1.1] and [Der80]). Let H(n) = H(µ∗n).
Proposition 1.3 in [KV83] asserts that

H(n+ 1)−H(n)↘ h(µ)

The expectation of the displacement from the origin is

L(n) :=
∑
g∈G

l(g)µ∗n(g).

Key words and phrases. Random walks on groups, Liouville type theorems, growth of harmonic
functions, homomorphisms to R, groups of intermediate growth, entropy, drift, Gaussian estimates.
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The following limit exists in view of subadditivity:

l = l(µ) = lim
n→∞

1
n
L(n),

which is called the linear drift of a.s. random walk trajectory by the subadditive
ergodic theorem.

In [KL07] Ledrappier and the second named author proved that if a finite first
moment random walk has zero entropy and positive drift, then the group has a non-
trivial homomorphism to R. In this paper we establish criteria for the existence of
homomorphisms to R even in cases when the drift of the random walk might be
zero.

Theorem A. Suppose that µ is non-degenerate with µ(e) > 0, has finite second
moment and that for some sequence nk such that L(nk + 1)− L(nk) > 0 and√

H(nk + 1)−H(nk)/(L(nk + 1)− L(nk))→ 0

as k →∞. Then G admits a non-trivial homomorphism to R.

This theorem has the following corollaries. Let G be a group of subexponential
growth at most exp(nb), b < 1 and without nontrivial homomorphisms to R. Let
µ be a non-degenerate, probability measure with µ(e) > 0 and of finite second
moment. Then there exists a < 1 (depending only on b) such that for some C > 0,

L(n) ≤ Cna.

This applies for example to the first Grigorchuk group - see Corollary 13. For
symmetric finitely supported random walk this was already known [E03] and follows
from Varopoulos’ long range estimates [Var85]. Mathieu [Mat06] has shown that
for a finitely supported measure on a group, such that all elements of this support
are torsion elements, Varopoulos-Carne type estimates hold, and that, therefore,
for such measures, entropy of random walks is zero if and only if the drift is zero.
In particular, this shows that the drift of finitely supported probability measure on
groups of subexponential growth generated by torsion elements is zero. A similar
result, based on Mathieu’s inequality, was announced in [RV05]. For non-symmetric
random walk the result in [KL07] states that the drift of any finite first moment
random walk is zero, that is, L(n) is sublinear. Our results provide quantitative
estimates of L(n). In this context, let us recall that even if we restrict ourselves to
the class of (symmetric) simple random walks on groups of subexponential growth,
L(n) can be arbitrarily close to linear [E06]. This is in the contrast with the fact
that for any finitely supported measure µ on the first Grigorchuk group G (and,
more generally, for any (G,µ) such that G is of growth at most exp(nb), µ is a
measure with finite second moment and the group generated by the support of
µ does not admit non-trivial homomorphism to Z), the drift of the random walk
(G,µ) is at most Cn(b+1)/2, see Corollary 13.

Another corollary is:

Corollary. For a symmetric, non-degenerated with support containing e, finite
second moment random walk on a finitely generated group, there is a constant C >
0, such that for all n > 1,

H(n) ≥ CL(n)2

n
.
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It is easy to see (see e.g. Lemma 7 in [E03]) that Gaussian long range estimates
imply the conclusion of the corollary above. Such estimates hold for finitely sup-
ported symmetric measures on groups (Varopoulos [Var85]), more generally for any
finitely supported centered measure on a group (here centered means that the pro-
jection of µ on the abelianization of G is centered, see Mathieu [Mat06] for a partial
result in this direction and Dungey [Dun08] for the general statement). Though, at
least in the symmetric case, this type of the estimates hold also for measures with
a very quick decay [Pe08], observe that they certainly do not hold for the class of
measures with finite second moment, as in the corollary above. It was previously
known, however, that l > 0 implies h > 0 for symmetric finitely supported random
walks (Varopoulos [Var85]) and, more generally, for centered finite first moment
random walks ([KL07]). We stress that the more general inequality in the corollary
above the condition of the second first moment cannot be removed - see the remark
after Corollary 9.

Among the ingredients of the criteria for homomorphisms are entropy estimates
in section 5. One of the direct corollaries of these estimates is for example the
following Liouville-type result

Theorem B. Consider a random walk on G and assume that the measure µ is
non-degenerate and has finite support including the identity. Take an increasing
function fharm(n) ≥ 0. Suppose that at least one of the following assumption holds:

i) For all n, H(n) ≤ fH(n), where fH(n) is a non-degreasing function. And
fharm(n) ≥ 0 satisfies

fharm(n)
√
fH(n+ 1)− fH(n)→ 0,

as n→∞.
ii) There exists an infinite sequence nk such that

fharm(nk)
√
H(nk + 1)−H(nk)→ 0,

as k →∞.
Then every harmonic functions on G of growth at most fharm is constant.

If H(n) grows linearly, the theorem implies the almost obvious fact that if a har-
monic function tends to zero as the word length of its argument tends to infinity,
then this function is equal to zero. The theorem is of interest when H(n) is sublin-
ear. In this case it is well-known that all bounded harmonic functions are constant,
see Avez [Avez76] for this implication in the case of finitely supported measures and
Kaimanovich, Vershik [KV83] and Derriennic [Der80] for the general form of the
entropy criterion: for any non-degenerate finite entropy probability measure the
two following conditions are equivalent. 1) All bounded harmonic functions with
respect to this measure are constants and 2) H(n) grows sublinear). The theorem
shows that bounds on H(n) can be used to show the absence of non-constant har-
monic function of slow growth, and not only of non-constant bounded harmonic
functions.

The theorem implies in particular, that if G is a group of subexponential growth
≤ exp(na), for example the first Grigorchuk group, then there exists b > 0, de-
pending only on a, such that all µ-harmonic functions of growth at most nb are
constant. Recall that for infinitely supported measures on groups of subexponen-
tial growth the situation could be quite different: some of such measure can admit
non-constant bounded harmonic functions ([E04, E05]).
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Another application of the theorem concerns simple (symmetric) random walks
on iterated wreath products of Z. For these random walks, H(n) is bounded by
na, a < 1 ([E03]), and hence there exists b > 0 such that all µ-harmonic functions
of growth at most nb are constant. Finally, the same conclusion holds for a certain
simple random walk on the Basilica group [BV05] and for a more general class of
groups that includes this group [Kai05].

2. Preliminaries on entropy and drift

Let G be a finitely generated group, with word length lS and non-degenerate
probability measure µ of finite first moment. When the generating set S is un-
derstood we often write l(g) instead of lS(g). Recall the fundamental inequality
[Gui80]:

h ≤ lv,
where v is the exponential growth rate of the number of elements g with l(g) ≤ R
in G. This inequality is implied by the following standard lemma:

Lemma 1. Let µ be a probability measure of finite first moment on a group G.
Then i) for any ε > 0, there is a constant C > 0, depending on cardinality of S
and not depending on µ, such that for all n

H(n) ≤ (v + ε)L(n) + C.

ii) Moreover, if the growth function of the group G satisfies vG(n) ≤ A exp(nb),
b < 1, then H(n) ≤ Cnb for some constant C. Here the constant C depends only
on A and cardinality of S.

Proof. (Cf. [KL07].) i) Let S∗ be an arbitrary finite generating set, and denote
by l∗ the corresponding word metric. Let an denote the number of elements g of
word length l∗(g) = n, so an ≤ (2 |S∗|)n. Let ν′ be the probability measure on G
defined by ν′(g) = 2−l∗(g)−1/al∗(g). Then for any probability measure ν of finite
first moment we have

H(ν)−
∑
g∈G

ν(g) log(2l∗(g)+1al∗(g)) = −
∑
g∈G

ν(g) log
ν(g)
ν′(g)

≤ 0,

where the last inequality comes from the elementary inequality − log t ≤ 1/t − 1.
Therefore

H(ν) ≤
∑
g∈G

ν(g) log(2l∗(g)+1) +
∑
g∈G

ν(g) log(al∗(g))

≤
∑
g∈G

ν(g)(l∗(g) + 1) log 2 +
∑
g∈G

ν(g)l∗(g) log(2 |S∗|)

≤ log(4 |S∗|)
∑
g∈G

ν(g)l∗(g) + log 2.

Apply the above inequality to ν := µ∗n, with S∗ := Sk = {g : l(g) ≤ k} and note
that l∗(g) ≤ l(g)/k + 1. It is then clear that given ε > 0, for all sufficiently large k
and n there is a constant C making the inequality valid.

ii) From the proof of the first part of the lemma we know that for any generating
set S∗

H(µ∗n) = H(n) ≤ log(4 |S∗|)
∑

µ∗n(g)l∗(g) + log 2.
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We apply it to S∗ = Sn = {g : l(g) ≤ n}. We have that

H(n) ≤ log(4A exp(nb))
∑

µ∗n(g)(l(g)/n+ 1) + log 2

The triangle inequality applied to the word metric shows that the first moment of
the convolution of two measures is not greater than the sum of their first moments,
and thus

∑
g µ
∗nl(g) ≤ n

∑
g µ
∗nl(g) = L(µ)n. This implies that

H(n) ≤ (L(µ) + 1)nb + log(4A)(L(µ) + 1) + log 2 ≤ Cnb

for an appropriate constant C and all n. �

We will furthermore make use of:

Lemma 2. There are constants c and C such that for any probability measure ν
on Z+ with finite first moment,

H(ν) ≤ c log(L(ν) + 1) + C.

Moreover, for any c = 1 + ε, ε > 0 one can choose C such that the inequality
holds.

Proof. Assume first that ν has finite support and let pi = ν(i). Lemma 1.1 [Bow75]
asserts that for any finite sequence ai of numbers it holds that

H(ν) = −
∑

pi log pi ≤ −
∑

piai + log
∑

eai ,

where the sums are taken over the i such that pi 6= 0. Fix an ε > 0. We apply this
inequality to ai := −(1 + ε) log(i+ 1) and get

H(ν) ≤ (1 + ε)
∑

pi log(i+ 1) + log
∑ 1

(i+ 1)1+ε
.

Note that the following constant is independent of ν: C := log
∑∞
i=0

1
(i+1)1+ε

. Using
the convexity of -log we get

H(ν) ≤ (1 + ε) log
(∑

pi(i+ 1)
)

+ C = (1 + ε) log
(
1 +

∑
pii
)

+ C.

Since ε and C are independent of ν, this inequality extends to general ν of finite
first moment. �

For estimates of H(n) from below, one has Lemma 7 in [E03] which states that
for any symmetric finitely supported measure µ it holds that for some C > 0:

H(n) ≥ C 1
n
L(n)2 − log n,

and as H(n) ≥ C1 log(n) (which follows from the stronger general estimate on the
transition probabilities µ∗n(g) ≤ Cn−1/2+ε) this in turn implies that

H(n) ≥ C2
1
n
L(n)2.

This is a corollary of Varopoulos’ long range estimate ([Var85]), see [Car85] for a
simple proof and this precise formulation:

µ∗n(g) ≤ Ce−al(g)
2/n

for some constants C, a > 0.
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3. Definition and properties of Tn

Let G be a finitely generated group and µ a non-degenerate probability measure
on G with finite first moment (with respect to a word metric lS which we fix and
sometimes denote by l). Define

Tn(g) =
∑
h∈G

(l(gh)− l(h))µ∗n(h).

Note that |Tn(g)| ≤ l(g).

Lemma 3. We have that∑
g∈G

Tn(g)µ(g) = L(n+ 1)− L(n)

Proof. We have∑
Tn(g)µ(g) =

∑
g∈G

∑
h∈G

(l(gh)− l(h))µ∗n(h)µ(g)

=
∑
h∈G

∑
g∈G

l(gh)µ(g)− l(h)

µ∗n(h)

=
∑
h∈G

l(h)
(
µ∗(n+1)(h)− µ∗n(h)

)
= L(n+ 1)− L(n).

�

Consider β(n) such that for every g ∈ G there exists a constant C(g) such that∑
h∈G

|gµ∗n(h)− µ∗n(h)| ≤ C(g)β(n). (*)

Remark. Observe, that if such C(g) exists and if the measure is non-degenerate
(or, more generally adapted, i.e. the support generates G as a group), we can choose
C(g) = ClS(g), where S is a finite generating set, and C is the maximum of C(g)
over g ∈ S. (β is then the maximum over S of the left hand side.)

Since the left hand side of (*) is bounded by 2, the existence of such β(n) is not
an issue. Note that if the entropy h = 0 and the random walk is aperiodic, one
can choose a sequence β(n) → 0 as n → ∞ (see [KV83]). In general, if we do not
assume that the measure is adapted, the claim of the Remark above does not need
to be true.

Lemma 4. For any g1, g2 ∈ G and any S

|Tn(g1g2)− Tn(g1)− Tn(g2)| ≤ lS(g2)C(g1)β(n)
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Proof. We have that

|Tn(g1g2)− Tn(g1)− Tn(g2)| =

∣∣∣∣∣∑
h∈G

(lS(g1g2h)− lS(g1h)− lS(g2h) + lS(h))µ∗n(h)

∣∣∣∣∣
=

∣∣∣∣∣∑
h∈G

(lS(g1g2h)− lS(g1h)− (lS(g2h)− lS(h)))µ∗n(h)

∣∣∣∣∣
=

∣∣∣∣∣∑
h∈G

(lS(g2h)− lS(h)) (g1µ∗n(h)− µ∗n(h))

∣∣∣∣∣
≤ lS(g2)

∑
h∈G

|(g1µ∗n(h)− µ∗n(h))| ≤ lS(g2)C(g1)β(n).

�

Take a finite generating set S of G and denote by γS(n) the maximum of the
absolute value of Tn(g), g ∈ S.

Lemma 5. For any finite generating set S there exist positive constants C and C1

such that for any g in the group, generated by the support of µ, it holds

|Tn(g)| ≤ γS(n)lS(g) + C1lS(g)2β(n)

Proof. Let m = lS(g). There exist g1, g2, . . . gm ∈ S such that g1g2 . . . gm = g.
Observe that by Lemma 4 for any j, 1 ≤ j ≤ m

|Tn(g1g2 . . . gj)− Tn(g1g2 . . . gj−1)− Tn(gj)| ≤ lS(gj)C(g1g2 . . . gj)β(n)

≤ C0lS(g1g2 . . . gj)β(n)

= C0jβ(n).

Therefore,

|Tn(g1g2 . . . gn)−Tn(g1)−Tn(g2)−· · ·−Tn(gm)| ≤ C0(1+2+ · · ·+m) ≤ C1m
2β(n)

Finally note that

|Tn(g1) + Tn(g2) + · · ·+ Tn(gm)| ≤ mγS(n),

which completes the proof of the lemma. �

Lemma 6. If µ is a symmetric measure with finite second moment, then for some
positive constant C and all g in the group, generated by the support of µ it holds

|
∑
g

Tn(g)µ(g)| ≤ Cβ(n)

and
|L(n+ 1)− L(n)| ≤ Cβ(n).

Proof. From the definition of Tn we know that Tn(e) = 0. Therefore, by Lemma 4
and the remark preceeding it, we have that

|Tn(g) + Tn(g−1)| ≤ C1l(g)l(g−1))β(n) = C1l
2(g)β(n).

Summing over g and using the fact that the second moment of µ is finite, we get∑
g

|Tn(g) + Tn(g−1)|µ(g) ≤ C1

∑
g

l2(g)µ(g)β(n) ≤ Cβ(n).
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Therefore,
|
∑
g

(Tn(g) + Tn(g−1))µ(g)| ≤ Cβ(n)

If µ is symmetric, then∑
g

Tn(g−1)µ(g) =
∑
g

Tn(g−1)µ(g−1) =
∑
g

Tn(g)µ(g),

and this implies the first claim of the lemma. The second one follows from the first
one in view of Lemma 3. �

Note that the conclusion of the lemma does not hold without the assumption on
the second moment, see the discussion after Corollary 9.

4. Construction of limits of Tn

4.1. Simplest case. We may take a subsequence nk →∞ such that limit

T (g) = lim
k→∞

Tnk(g)

exists for every g (by the diagonal process argument).
Lemmas 3 and 4 in the previous section imply that:
• if the entropy of the random walk is zero, then T is homomorphism. Indeed,

it follows from Lemma 4 and the following property of the entropy: Zero
entropy of an aperiodic random walk on a group is equivalent to that for
every g ∑

h∈G

|gµ∗n(h)− µ∗n(h)| → 0 as n→∞.

See [KV83, Theorem 4.2].
• if the drift l of the random walk is positive, then for an appropriately

chosen subsequence of n’s, T is not identically zero: Indeed, we can choose
a sequence nk in such a way that L(nk + 1)− L(nk) ≥ l − εk with εk → 0
and such that T (g) = limk→∞ Tnk(g) converges. Lemma 3 then implies
that ∑

g∈G
T (g)µ(g) ≥ l.

4.2. General case. Fix a finite generating set S in G. For every integer i > 0, let
γS(i) denote max |Ti(g)|, where the maximum is taken over g ∈ S.

Assume that S and i are such that γS(i) 6= 0. Put αS(i) = 1/γS(i) and take g
with lS(g) = m, g = g1g2 . . . gm, for gj ∈ S. By Lemma 5 we know that

αS(i)|Ti(g)| ≤ αS(i)γS(i)m+ C1m
2β(i)αS(i) = m+ C1m

2β(i)αS(i)

In order to take the limit, we want that γS(i) 6= 0 and that αS(i)β(i) remains
bounded along some infinite subsequence. We may then take a subsequence nk →∞
of our subsequence such that the limit

Tα(g) = lim
k→∞

αS(nk)Tnk(g)

exists for every g. Observe, that for any i there exists g ∈ S such that αS(i)Ti(g) =
1, and therefore by construction Tα is not identically zero.

Lemma 4 implies that under some conditions on µ and α(i) (so that αS(i)β(i)
tends to zero) the constructed map Tα is a homomorphism.
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Therefore, to ensure that our construction provides a non-trivial homomorphism
to R it is sufficient to know that there exists a generating set S and a subsequence
such that

- γS(nk) is not zero, and
-β(nk)/γS(nk) tends to zero.

Proposition 7. Suppose that µ is non-degenerate, has finite second moment and
that for some sequence nk it holds that L(nk + 1)− L(nk) > 0 and

β(nk)/(L(nk + 1)− L(nk))→ 0

as n → ∞. Then G admits a non-trivial homomorphism to R (constructed as Tα
with respect to some subsequence of nk).

Proof. We know from Lemma 5 that

|Tn(g)| ≤ lS(g)γS(n) + lS(g)2Cβ(n),

and hence ∑
g∈G
|Tn(g)|µ(g) ≤ C1γS(n) + C2β(n),

for suitable constants C1 and C2, since the first and the second moment of µ are
finite (with respect to S). By Lemma 3, this implies that for all n

(L(n+ 1)− L(n)) ≤ C1γS(n) + C2β(n)

In particular, for our subsequence nk
L(nk + 1)− L(nk) ≤ C1γS(nk) + C2β(nk) ≤ C1γS(nk) + C2ε(L(nk + 1)− L(nk)),

where ε can be chosen arbitrarily small if k is large enough. Therefore,

(L(nk + 1)− L(nk))(1− εC2) ≤ C1γS(nk).

If k is large enough, we can choose ε such that εC2 < 1/2. For such k

1/2(L(nk + 1)− L(nk)) ≤ C1γS(nk).

This implies that for sufficiently large k, γS(nk) 6= 0. Therefore, αS(nk) = 1/γS(nk)
from the construction of Tα is well-defined. Observe that for sufficiently large k

αS(nk)(L(nk + 1)− L(nk)) ≤ 2C1

and therefore, by assumption, α(nk)β(nk) tends to 0 as k →∞. Since α(nk)β(nk) is
bounded, Tα is well-defined along some subsequence of nk. Since α(nk)β(nk) tends
to zero, it follows from Lemma 4 that Tα is a homomorphism. By the construction
of Tα it is not identically zero. �

5. Entropy and differences of shifted convolutions

The results of this section, except for two of the three corollaries, are independent
from previous sections.

Lemma 8. Let S be a finite set in the support of µ. Assume that the identity e is
in the support of µ

i) Then there exists C0 > 0 such that for any g ∈ S

H(n+ 1)−H(n) ≥ C0

∑
h:µ∗n(gh)+µ∗n(h)>0

(µ∗n(gh)− µ∗n(h))2

µ∗n(gh) + µ∗n(h)
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ii) There exists C1 > 0 such that for any g ∈ S∑
h

|µ∗n(gh)− µ∗n(h)| ≤ C1

√
H(n+ 1)−H(n)

Proof. i) Let g0, g1, g2, ... be the support of µ and we assume that g0 = e the
identity, and g1 = g in the statement. Let pi = µ(gi) and νi = giµ

∗n. Note that

ν := µ∗(n+1) =
∑

piνi

and that all νi have the same (weight) distribution, so in particular H(νi) = H(ν0)
for all i. By the basic concavity property of entropy we have that

H(ν) = H

(
(p0 + p1)(

p0

p0 + p1
ν0 +

p1

p0 + p1
ν1) + p2ν2 + p3ν3 + ...

)
≥ (p0 + p1)H

(
p0

p0 + p1
ν0 +

p1

p0 + p1
ν1

)
+
∑
i≥2

piH(νi)

= (p0 + p1)H
(

p0

p0 + p1
ν0 +

p1

p0 + p1
ν1

)
+ (1− p0 − p1)H(ν0).

Let

D :=
∑

h:ν1(h)+ν0(h)>0

(ν1(h)− ν0(h))2

ν1(h) + ν0(h)

and p = p0/(p0 +p1). By symmetry we may assume that p ≤ 1/2 and by concavity:

H

(
2p
(

1
2
ν0 +

1
2
ν1

)
+ (1− 2p)ν1

)
≥ 2pH

(
1
2
(ν0 + ν1)

)
+ (1− 2p)H(ν1).

Therefore, in order to show the desired inequality, it remains to show that

H

(
1
2
(ν0 + ν1)

)
≥ 1

2
H(ν0) +

1
2
H(ν1) + CD

for some constant C > 0. This is proved by summation of the following inequality,
for a, b > 0, there is a constant C such that

−1
2
(a+ b) log((a+ b)/2) +

1
2
(a log a+ b log b) ≥ C (a− b)2

a+ b
.

To prove this inequality, we may assume that a+ b = 2. Indeed, if not, then we
multiply a and b with x = 2/(a+ b) and observe that

1
2

(x(a+ b) log(x(a+ b)/2)− (xa log xa+ xb log xb))

=
1
2
x ((a+ b) log((a+ b)/2)− (a log a+ b log b))

while the right hand side becomes Cx (a−b)2
a+b .

So now we assume that a + b = 2. Let us assume also that a ≥ b. Take ε such
that a = 1 + ε, b = 1− ε. We have to show that for all ε : 0 ≤ ε ≤ 1 and for some
positive C

((1 + ε) log(1 + ε) + (1− ε) log(1− ε)) ≥ 16Cε2

Observe that ((1 + ε) log(1 + ε) + (1 − ε) log(1 − ε)) > 0 for any ε : 0 < ε ≤ 1,
and therefore it suffices to prove the inequality above for ε in the neighborhood
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of zero. Let us write log(1 + ε) and log(1 − ε) as series in ε (at 0): log(1 + ε) =
ε− 1/2ε2 − 1/3ε3 . . . .

((1 + ε) log(1 + ε) + (1− ε) log(1− ε))
= −2(1/2ε2 + 1/4ε4 + 1/6ε6 + . . . ) + 2ε(ε− 1/3ε3 + . . . )

≥ 2(ε2(1− 1/2) + ε4(1/3− 1/4) + · · · ≥ C2ε
2,

for any ε : 0 ≤ ε ≤ 1.
ii) Now we will show that i) implies ii). Put E = H(n+1)−H(n). Observe that∑
h

|µ∗n(gh)− µ∗n(h)| =
∑

h:|µ∗n(gh)−µ∗n(h)|/(µ∗n(gh)+µ∗n(h))≥
√
E

|µ∗n(gh)− µ∗n(h)|

+
∑

h:|µ∗n(gh)−µ∗n(h)|/(µ∗n(gh)+µ∗n(h))<
√
E

|µ∗n(gh)− µ∗n(h)|.

The second sum is at most ∑
h:|µ∗n(gh)−µ∗n(h)|/µ∗n(gh)<2

√
E

|µ∗n(gh)− µ∗n(h)|

+
∑

h:|µ∗n(gh)−µ∗n(h)|/µ∗n(h)<2
√
E

|µ∗n(gh)− µ∗n(h)|,

which is at most 4
√
E. Now we estimate the first sum. This sum is at most the

right hand side from i) divided by
√
E, and, therefore, it is smaller than C2

√
E. �

Corollary 9. For a symmetric non-degenerate, finite second moment random walk
with µ(e) > 0 it holds

i) for some C > 0 and all n > N

L(n+ 1)− L(n) ≤ C
√
H(n+ 1)−H(n)

ii) for some C > 0 and all n > N

H(n) ≥ CL(n)2

n

Proof. i) follows from the second part of Lemma 8 and Lemma 6 in Section 3.
ii) follows from i): we know that for some C > 0√

H(n+ 1)−H(n) ≥ C (L(n+ 1)− L(n)) .

Therefore,
H(n+ 1)−H(n) ≥ C2(L(n+ 1)− L(n))2

Hence by summation

H(n) ≥
n−1∑
i=0

C2(L(i+ 1)− L(i))2

To finish the proof of ii) observe that
n−1∑
i=0

(L(i+ 1)− L(i))2 ≥ 1
n

(
n−1∑
i=0

(L(i+ 1)− L(i)))2 =
L(n)2

n

�
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Remark. The assumption that the second moment is finite is important. For
any ε > 0 there is a measure with finite 2− ε moment on Z for which the conclusion
of the statement does not hold. Indeed, take α : 1, 2 − ε < α < 2 and consider a
symmetric finite first moment measure on Z in the domain of the attraction of the
Stable Law with parameter α. Since this is a finite first moment measure on Z, we
have H(n) ≤ C ′ log(L(n) + 1) + C1 ≤ C ′ log(n) + C1 (follows from Lemma 2)

On the other hand, since the limit stable law has finite first moment, we have
L(n)/n1/α ≥ C.

This implies that the assumption about the second moment is also necessary in
Lemma 6, since the corollary follows from this lemma and Lemma 8, and the latter
holds for any measure.

Moreover, the same example shows that the assumption about second moment
is important in Proposition 7. Indeed, observe that for a symmetric measure on
any abelian G it holds Tn(g) = Tn(g−1) for any g and any n. This implies that,
whatever normalizing we consider, if in this case the constructed limit Tα is a
homomorphism, then it is identically zero.

Now we are going to show that the second part of Lemma 8 implies Theorem B.
Proof of Theorem B. We start with showing that the assumption i) implies

the assumption ii), namely that that if i) holds, then there exists a subsequence nk
such that

fharm(nk)
√
H(nk + 1)−H(nk)→ 0.

First observe, that since fharm(n)
√
fH(n+ 1)− fH(n) tends to 0, there exists a

sequence tending to infinity of positive numbers Mn such that

Mn+1(fharm(n)
√
fH(n+ 1)− fH(n))

tends to 0. Put Kn = M2
n/2. Observe that we can choose a sufficiently slowly

growing sequence Mn above satisfying in addition the following property (**):

Kn+1

Kn
≤ 1

(2− fH(n+ 1)/fH(n))
,

since by the assumption of the theorem for all n the expression on the right hand
side is greater than 1.
Kn tends to infinity, and therefore, for infinitely many n it holds H(n + 1) −

H(n) ≤ Kn+1fH(n + 1) −KnfH(n). (Indeed, otherwise for all sufficiently large n
we have H(n+ 1)−H(n) ≥ Kn+1fH(n+ 1)−KnfH(n). This implies that H(n) ≥
KnfH(n) − Const, and therefore that 1 ≥ H(n)/fH(n) = KN − Const/H(n) ≥
Kn − Const/H(0). This shows that Kn is bounded and we get a contradiction).

Now observe that the property (**) implies that Kn+1fH(n + 1) −KnfH(n) ≤
2Kn+1(fH(n + 1) − fH(n)). Combining this with the previous observation we see
that there exists an infinite subsequence nk along which we have

H(nk+1)−H(nk) ≤ 2Knk+1(fH(nk+1)−fH(nk)) = M2
nk+1(fH(nk+1)−fH(nk)).

It holds for all k

fharm

√
H(nk + 1)−H(nk) ≤

(
fharm

√
fH(nk + 1)− fH(nk)

)
Mnk+1

and hence fharm

√
H(nk + 1)−H(nk) tends to 0 as k →∞.
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Therefore it suffices to prove the theorem under the assumption ii). Consider a
harmonic function φ : G→ R. Take g1, g2 ∈ G. Observe that for all k

φ(g1)− φ(g2) =
∑
h

φ(g1h)µ∗nk(g1h)−
∑
h

φ(g2h)µ∗nk(g2h)

This is at most fharm(nk) multiplied by∑
h

(
µ∗nk(h)− µ∗nk(g2g−1

1 h)
)
≤ C1

√
H(nk + 1)−H(nk),

where the inequality above is from the claim of the second part of Lemma 8. Thus
we see that as k →∞,∑

h

φ(g1h)µ∗(nk)(g1h)−
∑
h

φ(g2h)µ∗(nk)(g2h)→ 0,

and this shows that for any g1, g2 ∈ G it holds φ(g1) = φ(g2). �

Lemma 10. Suppose that the entropy of a random walk is such that for all n we
have H(n) ≤ fH(n), where the function fH(n) satisfies fH(0) = 0 . Then for all n
we have H(n+ 1)−H(n) ≤ fH(n)/n.

In particular, if for all n we have H(n) ≤ Cnα, 0 < α < 1. Then for some
C > 0 and all n

H(n+ 1)−H(n) ≤ C

n(1−α)

Proof. Follows from the fact that H(n+ 1)−H(n) is non-increasing. �

Corollary 11. Take a group G such that its growth function is bounded above by
exp(Cna), for some a < 1. There exists b > 0 such that every harmonic function
on G with respect to a finitely supported non-degenerate measure, of growth at most
nb is constant. Moreover, if a harmonic function φ with respect to some finitely
supported measure satisfies the following condition: there exist an infinite sequence
nk such that for all k and all g : lS(g) ≤ nk the value φ(g) ≤ nbk, then the function
φ is constant.

Example: G is the first Grigorchuk group, [Gri82].

Proof. The assumption implies that for all n it holdsH(n) ≤ Cna. Then by Lemma
10 for all n it holds H(n + 1) −H(n) ≤ C

n(1−α) . Take b such that 2b < 1 − a, put
fharm(n) = nb and apply Theorem B. �

Recall that for finitely generated groups of polynomial growth, harmonic func-
tions with respect to symmetric finitely supported measures and of sublinear growth
are constant (see [HS93], Theorem 6.1).

5.1. Corollaries of the statements about homomorphisms taking into ac-
count the estimates of entropy. .

Proof of Theorem A. Follows from Proposition 7 and the second part of
Lemma 8. �

Corollary 12. Suppose that µ is non-degenerate with µ(e) > 0, has finite second
moment and that G admits no nontrivial homomorphism into R. Then there is a
constant c such that for all n,

H(n) ≥ cL(n)2

n
.
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Proof. In view of Theorem A and the assumption on G, there must be a c > 0 such
that for every n such that L(n+ 1)− L(n) > 0,√

H(n+ 1)−H(n)/(L(n+ 1)− L(n)) ≥ c.

For all n we hence have√
H(n+ 1)−H(n) ≥ c(L(n+ 1)− L(n)).

Therefore, as in the proof of Corollary 9,

H(n) ≥ cL(n)2/n.

�

Corollary 13. Consider a non-degenerate, with e in the support, finite second
moment random walk on a group G of intermediate growth at most exp(nb), b < 1,
which do not admit non-zero homomorphisms to R. There exists a constant C such
that for all sufficiently large n it holds L(n) ≤ Cn(b+1)/2.

Proof. This is an immediate consequence of the previous corollary and Lemma
1. �
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