SOME GROUPS HAVING ONLY ELEMENTARY ACTIONS
ON METRIC SPACES WITH HYPERBOLIC BOUNDARIES

A. KARLSSON AND G. NOSKOV

ABSTRACT. We study isometric actions of certain groups on metric
spaces with hyperbolic-type bordifications. The class of groups con-
sidered includes SL, (Z), Artin braid groups and mapping class groups
of surfaces (except the lower rank ones). We prove that in various ways
such actions must be elementary. Most of our results hold for non-
locally compact spaces and extend what is known for actions on proper
CAT(-1) and Gromov hyperbolic spaces. We also show that SL,(Z) for
n > 3 cannot act on a visibility space X without fixing a point in X.
Corollaries concern Floyd’s group completion, linear actions on strictly
convex cones, and metrics on the moduli spaces of compact Riemann
surfaces. Some remarks on bounded generation are also included.

1. INTRODUCTION

The philosophy of this paper is somewhat similar to Steinberg’s article
[Ste85], in which he deduces significant special cases of important theorems
for some matrix groups ”by using certain obvious relations among the sim-
plest elements of these groups in rather simple-minded ways”. In our setting,
we also do not treat general lattices in some class of topological groups as
is common in rigidity theory, on the other hand we are able to incorporate
important groups arising in other contexts. In contrast to [Ste85] however,
our results are of mainly one type: degeneracy of actions on metric spaces
with hyperbolic boundaries.

Although several of the mechanisms behind our results are well-recognized,
a few novel points in our proofs allow for a more unified and generalized
treatment. The metric spaces considered here are not necessarily locally
compact, CAT(0), geodesic or é-hyperbolic, and our arguments may in par-
ticular prepare the ground for a more thorough study of actions on infinite
dimensional hyperbolic spaces. In some situations (e.g. SLy,>3(Z)-actions
on classical hyperbolic spaces) we reprove some very special cases of the
more sophisticated theory of superrigidity ([Mar77]). At other instances
(e.g. Theorem 3) one might say that we contribute to this theory. Corollar-
ies 1, 2, 3, and 4 below are some consequences of our considerations. Even
though actions on trees are included in our study, the reader should consult
Culler-Vogtmann [CV96] for more precision in this case.

Research partly supported by the DFG research group “Spektrale Analysis, asympto-
tische Verteilungen und stochastische Dynamik”.
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We propose a notion of metric spaces with hyperbolic bordification, which
include CAT(-1)-spaces, visibility manifolds, Gromov hyperbolic spaces, and
Hilbert’s metric spaces of strictly convex domains with their standard bound-
aries, as well as, graphs with the end-compactification and general geodesic
metric spaces completed following Floyd-Gromov. See section 2 for the def-
inition and section 7 for more details on the examples.

Let us now proceed to define the classes of groups involved in this paper.
Let S be a subset of a group I' and P a property of groups. Define a graph,
called the P-graph of S, which has S as the vertex set and two vertices s;
and s9 are joined by an edge if and only if the group generated by s; and s,
has the property P. For P, we will consider the properties of: Commutation
(C), Nilpotency (N), not containing a non-abelian free semigroup (NoFS,),
and finally, not containing a non-abelian free subgroup (NoF5).

Let A (respectively, B) be the class of groups which are generated by a
set S whose NoFSy-graph is connected (respectively, whose NoF,-graph is
connected). Clearly, A C B. When we speak of the generators of a group
in these classes, we will always mean the elements in the special generating
set S.

Examples include many amenable groups, products of infinite groups,
SL(n,Z) and SL(n,R) for n > 3, braid groups B,, for n > 5, mapping class
groups Mod(%,) for g > 2, and some automorphism groups of free groups
SAut(Fy,), for n > 5. See the last section for more details.

A sequence of isometries g, is called unbounded if d(g,z, z) is unbounded
as n — oo for some (or any) z, and a single isometry g is called unbounded
if g, := g™ is unbounded. An action is called metrically proper if whenever
gn leaves every finite subset of I', it holds that d(z, g,x) — oo for some (or
any) z. An action is called elementary (following e.g. [Gro87]) if the limit
set of any orbit consists of at most two points. (Note that some authors
define an action to be elementary if the whole group fixes a point on the
boundary or in the space.)

Let X be a hyperbolic type bordification, or more generally, a contractive
bordification (see section 2) of a complete metric space X and such that the
isometries of X extend to homeomorphisms of X. We obtain:

Theorem 1. Let T be a group in A and assume that T acts on X by isome-
tries such that the elements in S are unbounded. Then U fixes a point in
0X. If there are two fized points, then the action is in addition elementary.

Theorem 2. Let ' be a group in B and assume that ' acts on X by isome-
tries such that the elements in S are unbounded. Suppose moreover that
every two elements in S generate a metrically proper action. Then the ac-
tion of I is elementary and T fizes a point in 0X.

For example, X can be a Gromov hyperbolic space, CAT(-1)-space, or a
locally visible CAT(0)-space with their usual bordifications, see [BH99] for
details. Note that the hypothesis in Theorem 2 is clearly satisfied if every
generator has infinite order and the action by I' is metrically proper. These
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theorems are sharp in the sense that any hyperbolic Coxeter group (which
all belong to A) acts non-trivially on its Cayley graph but the generators
certainly act boundedly.

Combining Theorem 1 with the fact that SL(n,Z), n > 3, is bound-
edly generated by elementary matrices (see sections 6 and 8) we answer the
question formulated in the introduction of Fujiwara’s paper [Fuj99]:

Theorem 3. Any isometric action of SL(n,Z), n > 3, on a uniformly
convez complete metric space X with a contractive bordification (e.g. a
visibility manifold) must have a global fized point in X.

For a statement without the assumption of uniform convexity we refer to
section 6.

As already indicated above, our results have a large overlap with previ-
ously known results; we now try to briefly make some references to these.
The theory of Fuchsian and Kleinian groups is concerned with discrete
groups of isometries of real hyperbolic spaces and in these situations the
statements in section 4 are classical. The phenomenon of certain groups
not admitting non-degenerate actions on certain spaces occurs frequently in
rigidity theory. One milestone here is Margulis’ work [Mar77] with its im-
pressive generality and depth. This work has been extended in various direc-
tions by many people, we mention only Burger-Mozes [BM96], Gao [Gao97],
Fujiwara [Fuj99], and Monod-Shalom [MS02] as these works consider the
setting of CAT(-1)-spaces (or visibility manifolds in the case of [Fuj99]) and
are therefore most directly related to our paper. For trees there is the the-
ory of Bass-Serre [Ser77], and further contributions by Tits [Tit77], Margulis
[Mar81], Alperin [Alp82], and Watatani [Wat82]. Among more recent devel-
opments for trees, we have Bogopolski [Bog87], Pays-Valette [PV91], Noskov
[Nos93|, Lubotzky-Mozes-Zimmer [LMZ94], Culler-Vogtmann [CV96], and
Shalom [Sha00]. There are of course many other related and notable works
that could be mentioned. Except in the tree-case and for [Gao97] non-locally
compact situations are usually not treated.

Many groups do admit elementary proper actions on some CAT(-1)-space
in view of a simple warped product construction, see [Gro93, p. 157]. On the
other hand, it follows from [KM99, Corollary 6.2] that an action of a non-
amenable group on a CAT(0)-space with orbit function growing at most
exponentially (e.g. a properly discontinuous action on a locally compact
Cartan-Hadamard manifold with curvature bounded from below) always has
an infinite limit set, hence cannot be elementary. In view of Theorem 2 we
therefore get (recall that the fundamental group of a nonpositively curved
manifold is always torsion-free):

Corollary 1. A nonamenable group in the class B cannot be the fundamen-
tal group of a manifold which admits a complete metric for which the uni-
versal cover is a visibility manifold with at most exponential volume growth.

More specifically we also have:
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Corollary 2. Let T be the Teichmiller space of a surface of genus g and
with n punctures. Assume that 3¢ — 3 +n > 3. Then there is no invariant
complete CAT(0)-metric for which T is a visibility space and such that the
number of orbit points of Modyy, in balls grows at most exponentially with
the radius.

Theorem 2 (at least for X a locally compact d- hyperbolic space) and
Corollary 2 (at least for pinched negative curvature) for the mapping class
groups (g > 2) were already known to McMullen [McMO00, p. 327] and
Brock-Farb [BF01]. In the latter reference several other interesting and re-
lated theorems about invariant metrics on Teichmiuller spaces are proved.
Our corollaries generalize Theorem 1.3 in [BF01]. Note the contrast of these
results with the fact that the Weil-Petersson metric on the moduli spaces
is a non-complete(!) metric of negative (but not pinched!) curvature and
the result of Masur-Minsky [MM99] that the complex of curves, on which
Mod(Z,,,), g > 1, acts unboundedly (but not properly!), are Gromov hy-
perbolic.

Another application one can get, employing Hilbert’s metric on convex
sets, is:

Corollary 3. Assume that a group I' in class B with infinite order genera-
tors acts properly discontinuously by projective automorphisms on a strictly
convex bounded domain C in RN. Then for any v € C, the limit set TvNOC
consists of at most two points.

As a finitely generated group I' acts metrically properly by isometries on
itself and a Floyd boundary OT', which is a hyperbolic boundary, equals the
limit set L(T"), we get from Theorem 2:

Corollary 4. Any Floyd boundary of a finitely generated group in the class
B with infinite order generators consists of at most two points.

This provides more examples for the discussion in the last paragraph
of [Flo84] and has a certain consequence for harmonic functions on such
groups, see [Kar02b]. We refer to the article of Gromov-Pansu [GP91] for a
discussion on the Floyd boundary, see also [Gro93] and [Kar02al.

The authors would like to thank Herbert Abels and the Universitat Biele-
feld for making this work possible. The first named author also gratefully
acknowledges the support of FIM and thanks Marc Burger for some useful
discussions related to this paper.

2. HYPERBOLIC BORDIFICATIONS

Let (X,d) be a complete metric space. A bordification of X is a Haus-
dorff topological space X with X embedded as an open dense subset. The
boundary is 0X := X \ X.
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Fix a point zg € X and following Gromov we define for any two points
z,w e X:

(zlw) = %(d(z, 20) + d(w, 7o) — d(z, w)).

For a set W C_Y, we let (z|W) := sup{(z|w) : w e WNX}.
The space X is called a hyperbolic bordification of X if:

HB 1: For any ¢ € 0X, there is a countable family of neighborhoods
W of € in X, such that the collection of open sets

{z:(z|W)>R}UW

where W € W and R > 0, constitutes a fundamental system of
neighborhoods of ¢ in X.

HB 2: Any sequence {z,} in X for which (z,|z,,) = cc as n,m — oo,
converges to a point in 9X.

Note further that HB 1 implies HB 2 when X is sequentially compact.
(In the case X is a geodesic space, we could alternatively use the expression
d(zo, [z, w]) instead of (z|w), although it seems that in general this would
not be quite equivalent.)

The one-point bordification is a trivial hyperbolic bordification of any
complete metric space. For non-trivial examples, see section 7.

An Isom(X)-bordification is a bordification of X, where the action of
Isom(X) on X extends continuously to an action by homeomorphisms of
X and 0X. A contractive bordification is an I'som(X)-bordification which
satisfies:

CB 1: (Contractivity) Whenever g, € Isom(X,d) such that g,z¢o —
¢ € 0X and g;'z9 — n € 0X, then g,z — ( for every z € X \ {n}
and this convergence is uniform outside every neighborhood of 7.

CB 2: For any unbounded isometry g, there are numbers nj such that
g™y and g "k x( converge to some point(s) in X as k — oc.

CB 3: For any unbounded sequence g, such that ¢g,& — £ for some
¢ € 0X, there is a subsequence g,, such that at least one of g, zg
or g;klaco converges to & as k — 00.

The first condition is taken from [Woe93] and implies the last two con-
ditions for a sequential compact X. Let us emphasize that the axioms CB
2 and CB 3, which may not have been much considered previously, play a
crucial role in this paper. They are justified by the following theorem.

Theorem 4. Let X be a hyperbolic Isom(X)-bordification of a complete
metric space X. Then X is a contractive bordification.

Proof. The proof of CB 1 follows a nice argument of Woess [Woe93|:
Let gn be a sequence of isometries with gnzo — ¢ and g, Yo — 7. Let
U and V be neighborhoods in X of ( and 7 respectively. By HB 1 we can
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find R > 0, and neighborhoods W and W' of ¢ and 7 respectively such that
A={z:(z[W)>R}CU
B:={z:(z|lW') >R} CV.

For any z outside B we have

1
(9nzolgnz) = §(d($0,9n$0) + d(z0, gnz) — d(z,zp))

1 _
= d(z0, gnwo) — §(d($079n$0) — d(g, w0, 2) + d(2, 70))

= d(z0, gn0) — (9, '®o|2) > d(z0, gnwo) — R

for all n such that g,zo € W and g,, lgo € W'. Therefore we have that there
is N > 0 such that
gnz € ACU

for all n > N and every z € B¢ D V¢, as required.

Assuming HB 2, the proof of CB 2 is essentially given in [Kar0la,
p. 1454], or see [Kar02a, Proposition 4]. The proof of CB 3 basically
follows the proof of Lemma 2 in [Kar02a] (this is the point where we use the
countability assumption in HB 1). O

Axiomatizations of hyperbolic-type compactifications occur for example
in Beardon [Bea97] and Kaimanovich [Kai00]. Axioms for contractive com-
pactifications, or so-called convergence group actions, have also been consid-
ered by several people, including Gehring-Martin [GM87], Gromov [Gro87],
Woess [Woe93], and Bowditch [Bow99]. From a less hyperbolic point of
view, various notions of contractive boundaries were introduced by Fursten-
berg around 1970.

3. INDIVIDUAL ISOMETRIES

The following proposition provides a classification of the elements in
Isom(X,d) into elliptic isometries (bounded orbits), parabolic isometries
(unbounded orbits and one fixed point) and hyperbolic isometries (unbounded
orbits and two fixed points):

Proposition 1. Let X be a complete metric space and X an Isom(X)-
bordification satisfying CB 1 and CB 2. Let g be an unbounded isometry.
Then there exist two not necessarily distinct points &£ € 0X and ny, such
that g™tz — £ and g " x — £~ for all x. Furthermore the set of fized
points in X of g consists exactly of the point(s) £*.

Proof. The convergence statement is asserted by CB 2. From continuity
and CB 1 we have

g(€F) = g(lim ¢="z) = lim g*" (gz) = £*.
k—o0 k—o00

Moreover, CB 1 also implies that g cannot fix any other point. (|
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The following discussion will not be needed later and we shall therefore
be rather brief.

First note that in general, it is not true that for an unbounded isometry
g the whole sequence ¢g"x converges when n — oo as is illustrated by Edel-
stein’s example ([KarOla, p. 1453]) together with a warped product giving
an infinite dimensional hyperbolic space. However, in the case g has two
fixed points in X, then, at least under some extra assumptions, one can
say more:

For example, one can embed the complete metric space X isometrically
in C(X)/R via

bz [d(z,-)]

(as noted by Kuratowski and others) and let X = ®(X). For CAT(0)-spaces
this gives the usual bordification, see [BH99, I1.8.13]. Assume now that this
X satisfies HB 1 and HB 2 (which is the case for CAT(-1)-spaces). Say
that g fixes £ € 0X, then choosing the representative b for which [b] = € and
b(xo) = 0, we have that

b(gy) = bly) + Ty
for any y € X and some constant T,. Hence b(g"z¢) = nTj.

We now claim that if g fixes also another point, then [Ty| > 0. Indeed,
for g™ — [b] we get from T, = 0 that for any given m and ¢ > 0 that

(9" wolg™z0) > d(g™ T, T0) — €
for all large 4. This makes it impossible for any subsequence to converge to

anything else than £ in view of HB 1.
In general it holds that

. ]' n
= - >
A nhm nd(g 0, To) > |19|

and for CAT(0)-spaces one has in addition that A, = inf, d(gz,z). Assume
that A, > 0, then one can show that g"zy — ¢ and b(g"z¢) = —Agn, cf.
[Kar0la]. To sum up we have:

Theorem 5. Assume that X := ®(X) is a hyperbolic bordification and let
g be an isometry of X. Then one of the following occurs:
(1) g has bounded orbits;
(2) Ag = 0, but orbits are unbounded and there is a unique fized point
in X and which is the unique accumulation point in 0X;
(3) Ag > 0, the forward and the backward orbits converge respectively to
two distinct points in 0X and these constitute the fized point set of
g.

4. GROUPS GENERATED BY TWO UNBOUNDED ISOMETRIES

Assume throughout that X is an I'som(X)-bordification of X and assume
that the conditions CB 1 and CB 2 hold.
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Proposition 2. Assume g and h are two unbounded isometries and that the
group generated by these two elements does not contain a non-abelian free
semigroup. Then Fiz(g) = Fiz(h).

Proof. If |0X| < 2, then any unbounded isometry fixes every point of 0X.
Assume now that 0X contains at least three points. From CB 2 we have
gtz — ¢ and h*™zy — nT, for some, not necessarily all disjoint, bound-
ary points. Suppose now that Fix(g) is not equal to Fix(h), so say ¢+ # 7.
In the case n~ = nT = ¢, we replace h by hgh~!. (The point is that this
element will have forward limit point hé* which is neither equal to n~ nor
equal to £T; the backward limit point has to be n~ as before.)

Therefore we can assume that £ is different from 5+ and 5, and that £~
is different from n*. As X is Hausdorff we may find disjoint neighborhoods
U,V and W around (T, nt and {n,£ }. From CB 1 there are m, n > 0
such that

g we)cu
K™(W€) C V.

These two elements generate a free non-abelian semigroup, see for example
Proposition VII.2 in [dIH00]. Hence Fix(g) must be equal to Fix(h). O

Proposition 3. Let g and h be two unbounded isometries. If their fized
point sets are disjoint, then the group generated by g and h has a non-abelian
free subgroup.

Proof. First note that we may assume that the cardinality of 0X is at least
three (hence infinite). Since X is Hausdorff we may find disjoint open sets
X, containing Fix(g) and X5 containing Fix(h). The statement now follows
from CB 1 and the standard table-tennis argument (Klein’s criterion) as in
[dIHO00], Proposition II.24. O

Proposition 4. Assume in addition that CB 3 holds. Suppose g and h are
unbounded isometries of X and which generate a group which acts metrically
properly on X. If the fixed point sets of g and h are not equal, then the fixed
point sets are in fact disjoint.

Proof. This proof is a modification of a nice argument of Gehring-Martin
[GM87]. Both fixed point sets are nonempty by Proposition 1. In the case
both g and & have one fixed point then the statement is trivial. Therefore
we now assume that Fix(h) = {¢T,¢7}, (hWzg — ¢F) and ¢~ €Fix(g).
We need to show that ¢T is fixed also by g and we may therefore assume
that 0X contains at least three (hence infinite number of) points. Choose
neighborhoods U™, U in X of ¢~ and ¢ respectively so that

(1) hU_NU, =0,

and
E:=X\(UTUU") #0,
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which is possible because h is a homeomorphism, § * are fixed points of & and
X is Hausdorff. Since h™" contracts toward £~ and ¢ is a homeomorphism
fixing £, we have that

gh™™ (E) CU-\{{"}
for every large j. Because of (1) we can find a k = k(j) such that

(2) WD gh—i BN E # 0.

Now let g; = hk()gh="i and note that

(3) 9§~ =€ and lim g;¢" =¢7,
j—o00

since k(j) — oo as j — oo (g is a homeomorphism) and gh ¢+ = gét.

We assert that g; is bounded. Suppose not, then by CB 3 (applied
twice) and (3), there is a subsequence n; such that gi,lmo — n* € 0X,
where {n*} = {¢}. But from CB 1 we should then have that g, F C Ut
or U~ for all large 4, which contradicts (2). Hence g; is bounded and by
the properness assumption, g; = g; for some distinct ¢ and j. Therefore
hk = ghtg=! for some non-zero integers k and 1.

We claim that it now follows that g¢* = £T. Indeed, applying the ob-
tained equality to gé T we have

h*(ge™) = ghlg~' g™ = gt
As h* is unbounded it can have at most two fixed points, namely the same

as h, that is, £ and £~. So we have that gé™ is either ¢+ or €, but the
latter is impossible because g¢~ = ¢~ and g is bijective. O

5. MAIN RESULTS: UNBOUNDED CASES

Let X be a complete metric space and X an Isom(X)-bordification sat-
isfying CB 1 and CB 2. For a group I' acting by isometry on X, we denote
by L(T") the limit set of ", that is, the set of accumulation points in X of an
orbit I'z. The set L(T") is independent of which orbit we consider by CB 1
and by continuity it is [-invariant. We call an action of I' on X elementary
with respect to X if the limit set L(T') consists of 0, 1 or 2 points. If the
orbit is bounded, then the action is said to be bounded. An action of I is
called quasi-parabolic with respect to X if T fixes exactly one point of the
boundary 0X.

Theorem 6. Let T be a group in A. Assume that T' acts on X such that
the elements of S are unbounded. Then, either the action is quasi-parabolic,
or, I fizes two fized points of 0X and the action is elementary.

Proof. Inductively using Propositions 1, 2 and that the NoFSs-graph is con-
nected, we have that the non-empty fixed point sets of each element in S
coincides. Hence Fix(I"), which equals this common set by CB 1, has car-
dinality 1 or 2. Now assume the fixed point set contains two points 1 and
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¢, and that g,z0 — ¢ € 0X. Then CB 3 guarantees that there is a subse-
quence of g, ! converging to 1 in view of the fact that g,n = 7. Now CB 1
implies that £ = (. O

Theorem 7. Let T be a group in B. Assume that X also satisfies CB 3 and
that I' acts on X such that the elements of S are unbounded. Suppose that
the group generated by any pair of elements of S acts metrically properly.
Then the I'-action is elementary and fixes one or two points in 0X.

Proof. Inductively using Propositions 1, 3, 4 and that the Fy-graph is con-
nected, we have that the non-empty fixed point sets of each element in S
coincides. Hence Fix(T"), which equals this common set by CB 1, has car-
dinality 1 or 2. Finally, in view of Propositions 1 and 4, we have that the
limit set must equal the fixed point set arguing using CB 3 similarily to the
previous proof. O

If G is a finite extension of a group in A or B, then the above conclusions
about elementariness of the action also holds for G because limit sets, if
finite, can only consists of at most two points for contractive boundaries.

Note that if two elements s and r are conjugate then both are either
bounded or unbounded as can be seen from the following simple calculation:

d(z,r"z) = d(z, (gsg ")"z) = d(z,gs"g 'z) =d(g 'z,s"g 'z).

6. MAIN RESULTS: BOUNDED CASES

As usual we denote by X a complete metric space with a contractive
bordification X.

Proposition 5. Assume that X is sequentially compact and let T be a group
of isometries of X. Suppose that every element of I" is bounded. Then either
the G-orbit is bounded or L(T') = Fiz(T') C 0X is one point.

Proof. We may suppose that the orbit is unbounded and that G does not
fix a point in 0X. By compactness we can find a sequence g, such that
gnTo — £ € 0X and g, 'zg — £~ € OX. Moreover, if £ = ¢~ then as G
does not fix this point there is an element p € G such that pg,xo — pé™ # €1
and (pgn) ‘zo = g, 'pro — £ . We may hence assume that £¥ # ¢, By
CB 1, for every large N, gn is unbounded, cf. [Kar02a, Lemma 3]. This is
a contradiction. O

We do not know if it can happen that the action is unbounded but the
limit set is empty in the case X is not locally compact.

A metric space (X, d) is called uniformly convez if it is geodesic and there
is a strictly decreasing continuous function g on [0, 1] with ¢g(0) = 1, such
that for any z,y,w € X and midpoint z of  and y,

d(z w) <y (d(x’y)>,

R 2R
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where R := max{d(z,w),d(y,w)}. Cartan-Hadamard manifolds and more
generally CAT(0)-spaces, as well as LP-spaces for 1 < p < oo are standard
examples of uniformly convex spaces. A circumcenter of a bounded set D
is a point z € X such that B,(z) D D and the radius r is minimal, that is

r = inf{R : 3y, Br(y) D D}.

The following lemma, is well known, but we include the proof for complete-
ness and in lack of a reference.

Lemma 1. Let D be any bounded subset of a uniformly convex complete
metric space (Y,d). Then there exists a unique circumcenter of D.

Proof. We may assume that D contains at least two points so that

r:=inf{R: 3y,D C Bgr(y)} > 0.
To prove the existence, let {z,} be a sequence of points such that D C
B, (zy) and 7, converges to r. We need to show that {z,} is a Cauchy
sequence. Let € > 0, § = max{rp,r,}/r, and z = 2, 5, be the midpoint of

z, and z,,. Then there is a point w = wy, 5, such that
r
d(z,w) > 3

By uniform convexity we have

d(z,w) < g (M) max{rm, rm} < g (M) o.

2max{r,,r,} 2r

d(zn, Tm) 1
I ( 2r ) > 5

There is a large number M such that § is so close to 1 so that

Hence

A Tn, Tm) < 2rg H(672) <&

for all n,m > M. By completeness z, converges to a point which is a
circumcenter. Note that because {z,} was arbitrary it is clear that this
circumcenter is unique. O

In view of the above two statements we obtain the following corollary
which generalizes a special case of a fixed point result in [Ser77]:

Corollary 5. Assume in addition that X is uniformly convez and proper.
If each element of T has a fixed point in X, then T has a fized point in X.

Proof. By Proposition 5 we may assume that I'z( is a bounded set. Since
the map assigning to a bounded set its unique circumcenter (Lemma 1)
commutes with isometries and because I'(I'zg) = I'zy we have that I" must
fix the circumcenter of this orbit. O

Let us now record a statement from the theory of locally compact hyper-
bolic spaces which carries over:
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Proposition 6. The stabilizer of three distinct points in 0X s bounded.

Proof. Let T’ be the group which pointwise fixes the three points in question
&1, &, and &3. It has finite index in the stabilizer. Suppose that T' is
unbounded, so there is a sequence g, — oo and g,&; = &; for every n and 1.
Then CB 3 implies that there is a subsequence ny, such that g, o — & (or
g;klwo — &1). Applying CB 3 to this subsequence we get a finer subsequence
ny for which gy, zo — & and g, zo — &2, for e =1 or —1. As this sequence
also fixes €3 we have a contradiction to CB 1. (|

In the theory of convergence groups (see [GM87] and [Bow99]) one deduces
that T" acts properly on triples of points in the compact space 9X.

A group is boundedly generated by a finite set of generators S if there is
a constant v such that every element g € I' can be written as a product
g =1k _rkm where r; are some elements in S, k; integers and m < v.

Note that the following lemma is related to an idea in Shalom’s proof of

[Sha01, Thm. 2.6]:

Lemma 2. Let I' be a group boundedly generated by a finite set S. If T’
acts on a metric space such that every element in S is bounded, then every
[-orbit is bounded.

Proof. Let r; be a sequence of generators, 1 < ¢ < v. Denote by By a
bounded subset, e.g. {z¢}. As r; is bounded, we have that also

By = U r7 By
nezZ
is bounded. By finite induction (1 <% < v) we can conclude that
U rfnm .- -ré”r’lel
(K1yeeskom )EZ™
is bounded. As the number of sequences r;, 1 < i < v of elements in S is

finite, we can continue the induction to obtain that I'B is bounded for any
bounded set B. (]

Now putting together this last lemma with Theorem 6, the remark in the
end of section 4 and Lemma 1, we obtain Theorem 3 and the following more
general result:

Theorem 8. Assume that T =< S > is a group in A such that in addition
I is boundedly generated by S consisting of a finite number of elements all
of which are conjugate. Whenever I' acts by isometry on a complete metric
space X with a contractive bordification, then either the orbit is bounded or
there is a point in 0X fized by all of T.

7. EXAMPLES OF BORDIFICATIONS

Here follows a list of hyperbolic Isom(X)-bordifications:
e the one-point bordification of any complete metric space. Trivial;
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e the bordification construction of Floyd (or the conformal boundary
in the terminolgy of [Gro87]) of geodesic complete metric spaces.
The proof is essentially Lemma 1 in [Kar02a), see also [Kar01b];

e the hyperbolic boundary of Gromov hyperbolic spaces (e.g. CAT(-
1)-spaces). This is almost immediate from the definition, but it is
also in fact a special case of the previous example. See [Gao97] for
material on nonlocally compact spaces;

e the bordification with the space of ends introduced by Freudenthal.
This is simple;

e the usual compactification of proper visibility spaces (first intro-
duced by Eberlein-O’Neill, see [BH99]). (A variant is the concept of
a locally visible CAT(0)-space, whose definition immediately verifies
HB 1). It seems that HB2 is not so clear in the non-proper case;

e the ordinary closure of a strictly convex bounded domain in R™ with
Hilbert’s metric. This is due to Beardon [Bea97] and [KNO0O, sec-
tion 5]. Note that here the extension property of isometries is not
automatic.

8. EXAMPLES OF GROUPS

Recall the notion of P-graph defined in the introduction. Some of the
following series of examples are adaptions from [CV96]:

8.1. Trivial examples. Nilpotent groups and finitely generated groups
of subexponential growth do not contain any non-abelian free semigroup.
Finitely generated amenable groups, in particular solvable groups, do not
contain any non-abelian free groups. The product of two groups is generated
by a set whose C-graph is connected. Coxeter groups also belong to A since
any pair of the (standard) generators generate a finite or infinite dihedral
group.

8.2. SL(n,A), n > 3. Let A be a commutative Z-algebra with 1, for exam-
ple Z, a ring of S-integers, or a field. An elementary matriz is an element
zij(a) := 1 + ae;j of SL(n, A) where a € A and e;; is the matrix with 1
at the place (i,7), i # j, and zero everywhere else. It is straightforward to
verify the following relations for any a,b € A:

[zij(a), 2kt (b)] = i (ab)
ifi #1,j=k, and

[zij(a), zri(b)] =1

ifi #£1, 5 #k.

Let E(n, A) denote the subgroup of SL(n, A) generated by all the elemen-
tary matrices. The N-graph of the set of elementary matrices is connected
provided n > 3. To see this, let z;;(a) and z4;(b) be two elements, so i # j
and k # 1. If i # 1, and j # k, then they commute. If j = k and ¢ # [ (or
j # k and i = 1), then it also follow from the above commutation rules that
the two elements in question generate a 2-step nilpotent group. Finally, if
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i = [ and j = k, then there is an m different from 7 and j (since n > 3).
Now [zij(a), zim(a)] = 1 and zx(b) = z;;(b) together with z;;,(a) generate
a nilpotent group as in the second case. This shows that E(n, A) € A for
n > 3.

Assume from now on that n > 3. If A is a field or the integers of a number
field, then E(n,A) = SL(n, A), see [BMS67]. More generally, if A satisfies
Bass’ stable range condition Sy (see [Bas68]) and SK;(A) is finite, then
E(n, A) has finite index in SL(n, A) for n > d + 2, and hence the results in
section 5 apply. (Recall that SL(2,Z) acts non-trivially on the hyperbolic
plane.)

Assume that A is generated by a1, ..., ay,. One can then generate E(n, A)
with all z;;(ax) and z;;(1) (assuming n > 3). The group E(n, A) contains
the group of monomial matrices which act transitively by conjugation on
the set of generators {z;j(ax)} for a fixed k. If the a;s generate A, then any
two z;;(ax) and z;;(a;) are also conjugate.

In [CK83] it is proved that when A is the ring of integers of a number
field, then SL,(A) is boundedly generated by elementary matrices. For
A = Z see also [AM92], and for some interesting discussions about bounded
generation we also refer to [Sha0l]. In these cases A is isomorphic to Z"
additively, which implies that every elementary matrix z;;(a) can be written
as a product of z;;(ax), 1 <k <m and z;;(1). Therefore such SL(n, A) are
boundedly generated by a finite set of elementary matrices.

In conclusion we have that, if A is a ring of integers of an algebraic number
field and ZA* = A (the units generate A), then Theorems 3 and 8 apply to
I'=SL(n,A) forn > 3.

8.3. Chevalley groups over rings. Let A be a finitely generated com-
mutative Z-algebra with 1 and ® a reduced irreducible root system of rank
greater than 3. The Steinberg group St(®,A) associated to ® with coeffi-
cients in A is generated by symbols z,(a), where @ € ® and a € A subject
to the relations

(1) zo(a+ b) = z4(a)zq(b)
(2) [Ia (a),:ﬂg(b)] = ZTo4p (Na,,@ab)a a+p#0,
where Nog = —Ng, if o, B, o+ 8 € @ and Ngo, = 01if ,8 € @,
a+ [ ¢ P, [Ste68].

Proposition 7. The standard generating system S = {z4(a) : a € ®},
a € A\ {0} has a connected N-graph.

Proof. If % is the set of positive roots relative to some ordering of ® then
the corresponding subgroup is nilpotent, in particular the N-graph for the
root subgroups z,(A4), a € ®* is connected. Now say that two positive
systems are adjacent if they have a non-empty intersection. This gives a
graph structure on the set of positive systems. If we prove that this graph
is connected this would give the desired connectedness of the N-graph. The
Weyl group acts transitively on the set of positive roots [Hum90], thus we
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need only connect @ to w®™ where w is a reflection in a simple root a of
&*. But w fixes all simple roots but « and since ® has rank at least 2, we
conclude that &1 and w®™ are adjacent. O

Given a reduced irreducible root system ®,, of rank n and a commutative
ring A with 1, one can define a Chevalley group G(®,,, A), a group E(®,,, A)
generated by the unipotents in G(®,, A), and a Steinberg group St(®,,, A).
There is a natural homomorphism 7 : St(®,, A) — G(®,, A) with image
E(®,,A), and one defines K;(®,,A) = cokerr and Ks(®,,A) = kerm;
these constructions are all functorial in A. It follows from the above that
the N-graph of E(®,,, A) is connected. If K;(®P,,, A) is finite one could apply
Theorems 6 and 7 to the Chevalley group G(®,,, A). In particular this is the
case when A is the ring of integers of a global field. Results on bounded
generation are obtained in [Tav91]. If the Weyl group acts transitively on
the roots then z,(a) and zg(a) are conjugate as in the previous subsection.
This shows that there are some further situations where Theorems 3 and 8
apply.

Note however that in the case X is a complete separable CAT(-1)-space,
the papers [BM96] and [Gao97] provide superrigidity results for general lat-
tices in higher rank simple groups.

8.4. Braid groups Bj,, n > 5. The Artin presentation of the classical braid
groups B, =< 81,5892, ..., Sp—1 > 18

sisj = sjs; if i —j]>2
S$i8i4+18; = Si+15iSi+1

for 1 < i < n — 2. Hence the C-graph of {s1,s2,...,$,} is connected for
n > 5. (More generally, any Artin group, for which the associated standard
Coxeter generating system has a connected C-graph, belongs to A.)

These generators are all conjugate. Note that B, is not boundedly gen-
erated. Indeed, recall that the corresponding pure braid group F,, which
has finite index in B,,, surjects onto P3 which is isomorphic to Fy, x Z, and
bounded generation passes to finite index subgroup and to homomorphic
images.

When a group has an element in the center which acts unboundedly, then
the arguments in section 4 imply that the whole group fixes a boundary
point. It is well-known that this remark applies to the braid groups since
the element

QQ = ((8182...8n_1)(3182...3n_2)81...(8182)81)2

is a central element of infinite order.

8.5. Mapping Class groups Mod(%,,), g > 2. Let Mod(X,,) be the
mapping class group of an oriented surface X, of genus g and n punctures.

It is known that if the genus is at least one, these groups are generated by
a finite number of Dehn twists around non-separating simple closed curves
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and any two of these curves are either disjoint or intersect transversally in
one point. If disjoint, then the corresponding two Dehn twists generate Z2.
If 3g — 3+ n > 3 then the C-graph is connected for this generating set and
so Mod(%,,) € A.

Since any non-separating simple closed curve can be moved to any other
by a homeomorphism, the elements of S are all conjugate. For more infor-
mation, see [BF01] or [CV96].

Farb-Lubotzky-Minsky proved in [FLMO01] that Mod(X, o) has finite index
subgroups whose pro-p completion is not p-analytic, and as a corollary they
establish that Mod(X,), for g > 1 is not boundedly generated by any finite
set.

To see that Mod(3,,,) (for g > 1, or g = 0 and n > 4) is not boundedly
generated by any finite set of Dehn twists, we propose a quite different ap-
proach. Namely, it is not a very deep fact that Mod(X,,,) acts unboundedly
by isometry (see [MM99, p.105, p.124]) on the complex of curves. Moreover,
it is immediate that a Dehn twist around a curve « fixes « in the complex.
Our claim now follows from Lemma 2.

In fact, taking advantage of the deeper aspects of [MM99], Bestvina and
Fujiwara recently managed to show that the space of non-trivial quasiho-
momorphisms of Mod(X,,,) as above, is infinite dimensional. This property
is incompatible with bounded generation (this remark we learnt from M.
Burger).

8.6. Automorphism groups of free groups. We follow [CV96] here. Let
F,, be the free group of rank n > 3, with generators z1, ..., z,. We first con-
sider the index two subgroup SAut(F,) of Aut(F,) consisting of special
automorphisms (an automorphism is special if the determinant of the in-
duced automorphism of Z" is equal to +1). For i # j, let p; ; (respectively
Ai ;) be the automorphism which sends z; to z;z; (respectively z;z;) and
fixes xy, for k # 4. The elements p; ; and \; ; generate SAut(F,). If i, 5, and
k are distinct, then

[0ij Pjk) = Pik

[Aijs Ajk] = Aige-
It follows that the automorphisms r; := p; ;11 and l; := X; ;41 for 1 <7 <
n — 1, together with r, := p,1 and I, := X\, 1 generate SAut(Fy,). Set
S = {ry,l1,....;mn,ln}. The group SAut(F,) contains the alternating group
on n letters and the automorphisms which send exactly two generators to
their inverses. Conjugating by appropriate such automorphisms one sees
that the elements of S are all conjugate. It is known, due to Sury, that
Aut(F,) and SAut(F,) are not boundedly generated.

Now let s; denote r; or [;. It is easily checked that s; commutes with r;
and [; if 2 < |i — j| < n — 2. Thus the C-graph of S is connected if n > 5
and most of our results apply to SAut(F),) which belongs to A and therefore
also to Aut(Fy).
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