Jordan Curve Theorem

A curve γ is the image of a continuous map $f_{\gamma} = f : [0,1] \to \mathbb{R}^2$. It is closed if $f_{\gamma}(0) = f_{\gamma}(1)$. Thus a closed curve can be thought of the continuous image of the standard unit circle \mathbb{S}^1 . An arc is a subspace of \mathbb{R}^2 homeomorphic to [0,1], i.e., an injective curve. A Jordan curve is a subspace of \mathbb{R}^2 homeomorphic to \mathbb{S}^1 .

Let p be a point in X and ϵ be a positive real number. The ϵ -neighborhood $\mathsf{N}(p;\epsilon)$ of p in X is defined to be the collection of all points $q \in X$ such that $\mathrm{d}_X(p,q) < \epsilon$. A set $U \subseteq X$ is open if for any $p \in U$ there exists some $\epsilon > 0$ such that $\mathsf{N}(p;\epsilon) \subset U$. Empty set and X are open. Topology induced from the metric.

A point $p \in X$ is a *limit point* of a set $A \subset X$ if every ϵ -neighborhood of p contains a point $q \neq p$ of A. A set $B \subset X$ is *closed* if it contains all its limit points. If p is a limit point of both A and $X \setminus A$, then p is called a *frontier point* of A and $X \setminus A$. The *frontier* fr(A) of A is the collection of its frontier points. The intersection cl(A) of all closed sets that contain A is called the *closure* of A. The *interior* int(A) of A is the union of all open sets that are contained in A.

Some Useful Results

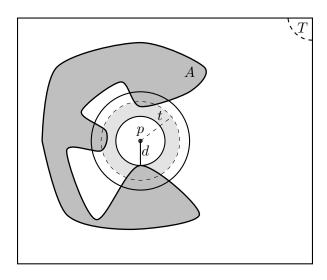
Let X be a topological space and A be a subspace of X. A retraction $r: X \to A$ is a continuous map such that the restriction of r to A is the identity map on A. If Y is a topological space and $f: A \to Y$ is a continuous map, then an extension of f is a continuous map $F: X \to Y$ such that the restriction of F to F to F is F.

Theorem 1 (No-Retraction Theorem). There is no retraction from a disk D to its boundary S.

Proof. Let $g:D\to S$ be a retraction and let $\alpha:S\to S$ be the antipodal map (the composition of a homeomorphism between S and the standard 1-sphere and the antipodal map in the standard case.). Then the map $\alpha\circ g:D\to D$ does not have any fix point, contradicting Brouwer's Fix Point Theorem

Theorem 2 (Tietze Extension Theorem). Let T be a metric space and A be a closed subset of T. Then any continuous map $f: A \to [0,1]$ has a continuous extension to T.

Proof. For a point $p \in T \setminus A$, consider the neighborhoods $N_1 = N(p, d)$ and $N_2 = N(p, 2d)$ where d = d(p) is the distance between p and A. For $d \leq t \leq 2d$ define $g_p(t)$ to be $\sup f(x)$ over all $x \in A \cap N(p, t)$.



The function $g_p(t)$ is bounded and nondecreasing on [d(p), 2d(p)], and, in particular, it is integrable. Define

$$F(p) = \frac{1}{d(p)} \int_{d(p)}^{2d(p)} g_p(t) dt,$$

if $p \in T \setminus A$ and F(p) = f(p) for $p \in A$. It is left to you as an exercise to show that F is continuous.

Corollary 3. Let T be a metric space and A be a closed subset of T. Then any continuous map $f: A \to [0,1] \times [0,1]$ has a continuous extension to T.

Space Filling Curves

Theorem 4. There are space filling curves, i.e. there are continuous surjections from [0,1] to $[0,1] \times [0,1]$.

Proof. Let $\mathcal{C} \subseteq [0,1]$ be the Cantor set. Define $f: \mathcal{C} \to [0,1] \times [0,1]$ by

$$f\left(\sum_{k\in\mathbb{N}}\frac{a_k}{3^k}\right) = \left(\sum_{k\in\mathbb{N}}\frac{a_{2k-1}}{2^{k+1}}, \sum_{k\in\mathbb{N}}\frac{a_{2k}}{2^{k+1}}\right).$$

We show that f is a continuous surjection. Then we use the Tietze extension theorem to extend it to the whole interval.

Theorem 5 (Netto). There is no continuous bijection from [0,1] to $[0,1] \times [0,1]$.

Proof. We sketch a proof here and leave the details to you as an exercise. Let f be a continuous bijection from [0,1] to $[0,1] \times [0,1]$. Every closed subset C of [0,1] is compact, and the continuous image f(C) of a compact set is compact and, thus, f(C) is a closed subset of $[0,1] \times [0,1]$. This shows that f^{-1} is continuous. Set p = f(1/2). Then $f^{-1}([0,1] \times [0,1] - p)$ is not connected while $[0,1] \times [0,1] - p$ is connected which contradicts the fact that f^{-1} is continuos.

JCT

Lemma 6. $\mathbb{R}^2 - J$ has exactly one unbounded component.

Proof. Follows from the fact that J is compact.

Theorem 7 (No Separation Theorem). Let L be a Jordan arc in \mathbb{R}^2 . Then $\mathbb{R}^2 - L$ is connected.

Proof. Suppose not, then $\mathbb{R}^2 - L$ has a bounded component B. If A is any other component of $\mathbb{R}^2 - L$, then $cl(B) \cap A = \emptyset$ since A is open and disjoint from B. In particular, $fr(B) = cl(B) \cap (\mathbb{R}^2 - B)$ is disjoint from A and, thus, $fr(B) \subseteq L$. Let b be a point in B and let D be disk centered at b so that $L \subset int(D)$. Since $L \cong [0,1]$, by Tietze Extension Theorem, the identity map $id_L : L \to L$ has a continuous extension $r: D \to L$. Define $F: D \to D - \{b\}$ by

$$F(x) = \begin{cases} r(x) & \text{if } x \in \text{cl}(B), \\ x & \text{if } x \in D - B. \end{cases}$$

Note that $(D-B) \cap \operatorname{cl}(B)$ is contained in L and, therefore, g is well-defined and continuous. Also, the boundary S of D is contained in D-B. So, F(x)=x for all $x \in S$. Now, if $\mathfrak{p}:D-\{b\}\to S$ is the natural projection, then $\mathfrak{p}\circ F:D\to S$ is a retraction, contradicting the no-retraction theorem. \square

Lemma 8. Let J be a Jordan curve in \mathbb{R}^2 . If $\mathbb{R}^2 - J$ is not connected, then every component of $\mathbb{R}^2 - J$ has J as its frontier.

Proof. Let A be a component of $\mathbb{R}^2 - J$ and assume that frontier of A is a proper subset of J. Let L be the complement of a connected open component of $J - \operatorname{fr}(A)$. Then L is a Jordan arc and $\operatorname{fr}(A) \subseteq L$. Moreover, $\mathbb{R}^2 - L = A \cup (\mathbb{R}^2 - (A \cup L))$ where A and $\mathbb{R}^2 - (A \cup L)$ are open, disjoint and non-empty sets contradicting the No Separation Theorem.

Lemma 9. Let $f = (f_1, f_2)$ and $g(g_1, g_2)$ be two continuous maps from [-1, 1] to $[a, b] \times [c, d]$ such that

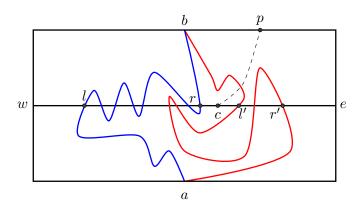
- $f_1(-1) = a$ and $f_1(1) = b$;
- $g_2(-1) = c$ and $g_2(1) = d$.

Then f and g meet, that is, f(x) = g(y) for some $x, y \in [-1, 1]$.

Proof.

Theorem 10 (Jordan Curve Theorem). Let J be a Jordan curve. Then $\mathbb{R}^2 - J$ has exactly two connected components.

Proof. We start by introducing the notations. Let a and b be two points of J of the maximum distance. We can embed J, by rotating if necessary, in a rectangle R in such a way that $R \cap J = \{a, b\}$ and these intersection points have the same x-coordinate, say zero. Let w and e be the middle points of the vertical edges of R. Then J meets the segment \overline{we} . Let l be the left-most intersection point of J and \overline{we} . Let γ be the arc in J between a and b that passes contains l (the blue arc in the figure below) and let γ' be the other arc between a and b in J (the red one). Let r be the right-most intersection point of γ and \overline{we} . Note that r and l could be the same points. Let $\gamma_{[l,r]}$ denote the arc between l and r in γ . The arc γ' should meet $\overline{wl} + \gamma_{[l,r]} + \overline{re}$. However, γ' does not meet $\overline{wl} + \gamma_{[l,r]}$, since l is the left-most intersection of J and \overline{we} and J cannot have a self-intersection. Hence, γ' meets \overline{re} . Let l' and r' be the left-most intersection and the right-most intersection points of γ' and \overline{re} , respectively. Finally, let c be the middle point of the segment $\overline{rl'}$.



At least one bounded component.

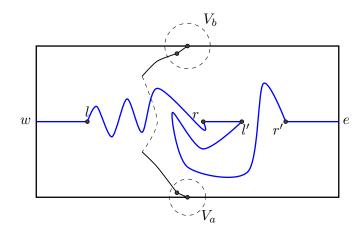
We claim that the component A of $\mathbb{R}^2 - J$ that contains c is bounded. Suppose not, then there is a path in A from c to a point outside R. Let p be the first point which this path intersects R and let α denote the part of the path from c to p. We assume that p has a positive x-coordinate, the other case (when the x-coordinate p is negative) is similar. In this case, there is a path $R_{[p,e]}$ from p to e that avoids both a and b. Since γ' meets $\overline{wl} + \gamma_{[l,r]} + \overline{rc} + \alpha + R_{[p,e]}$, it should meet α which is impossible as α is in A.

At most one bounded component.

Suppose B is a bounded component of $\mathbb{R}^2 - J$ different from A. Consider the path

$$\beta := \overline{wl} + \gamma_{[l,r]} + \overline{rl'} + \gamma'_{[l',r']} + \overline{r'e}$$

connecting w to e (the blue path in the figure below).



Since a and b are not in β , there are neighborhoods V_a and V_b of them that do not contain any point of β . On the other hand, there must be points a' and b' in B such that $a' \in V_a \cap B$ and $b' \in V_b \cap B$. Now, since B is path connected there is a path from a' to b' in B. This path must meet β which is impossible.

4