Jordan Curve Theorem

A curve vy is the image of a continuous map f, = f : [0,1] — R2 It is closed if f,(0) = fy(1).
Thus a closed curve can be thought of the continuous image of the standard unit circle S'. An arc is
a subspace of R? homeomorphic to [0,1], i.e., an injective curve. A Jordan curve is a subspace of R?
homeomorphic to S'.

Let p be a point in X and € be a positive real number. The e-neighborhood N(p;e) of p in X is
defined to be the collection of all points ¢ € X such that dx(p,q) < e. A set U C X is open if for any
p € U there exists some € > 0 such that N(p;e) C U. Empty set and X are open. Topology induced
from the metric.

A point p € X is a limit point of a set A C X if every e-neighborhood of p contains a point ¢ # p
of A. A set B C X is closed if it contains all its limit points. If p is a limit point of both A and X \ A,
then p is called a frontier point of A and X \ A. The frontier fr(A) of A is the collection of its frontier
points. The intersection cl(A) of all closed sets that contain A is called the closure of A. The interior
int(A) of A is the union of all open sets that are contained in A.

Some Useful Results

Let X be a topological space and A be a subspace of X. A retraction r : X — A is a continuous map
such that the restriction of r to A is the identity map on A. If Y is a topological space and f: A — Y
is a continuous map, then an extension of f is a continuous map F' : X — Y such that the restriction
of FFto Ais f.

Theorem 1 (No-Retraction Theorem). There is no retraction from a disk D to its boundary S.

Proof. Let g : D — S be a retraction and let « : S — S be the antipodal map (the composition
of a homeomorphism between S and the standard 1-sphere and the antipodal map in the standard
case.). Then the map aog: D — D does not have any fix point, contradicting Brouwer’s Fix Point
Theorem. O

Theorem 2 (Tietze Extension Theorem). Let T' be a metric space and A be a closed subset of T. Then
any continuous map f: A — [0,1] has a continuous extension to T'.

Proof. For a point p € T \ A, consider the neighborhoods N; = N(p,d) and Ny = N(p,2d) where
d = d(p) is the distance between p and A. For d < t < 2d define gp(t) to be supf(z) over all
r € AN N(p,t).
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The function g,(t) is bounded and nondecreasing on [d(p), 2d(p)], and, in particular, it is integrable.
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if pe T\ Aand F(p) = f(p) for p € A. It is left to you as an exercise to show that F' is continuous.
O

Corollary 3. Let T be a metric space and A be a closed subset of T. Then any continuous map
[+ A—10,1] x [0,1] has a continuous extension to T .

Space Filling Curves

Theorem 4. There are space filling curves, i.e. there are continuous surjections from [0, 1] to [0,1] x

[0, 1].

Proof. Let C C [0,1] be the Cantor set. Define f : C — [0,1] x [0, 1] by
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We show that f is a continuous surjection. Then we use the Tietze extension theorem to extend it to
the whole interval. O

Theorem 5 (Netto). There is no continuous bijection from [0, 1] to [0, 1] x [0, 1].

Proof. We sketch a proof here and leave the details to you as an exercise. Let f be a continuous
bijection from [0, 1] to [0,1] x [0,1]. Every closed subset C of [0, 1] is compact, and the continuous
image f(C) of a compact set is compact and, thus, f(C) is a closed subset of [0,1] x [0,1]. This
shows that f~! is continuous. Set p = f(1/2). Then f~1([0,1] x [0,1] — p) is not connected while
[0,1] x [0,1] — p is connected which contradicts the fact that f~! is continuos. O
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Lemma 6. R? — J has ezactly one unbounded component.
Proof. Follows from the fact that J is compact. 0
Theorem 7 (No Separation Theorem). Let L be a Jordan arc in R?. Then R? — L is connected.

Proof. Suppose not, then R? — L has a bounded component B. If A is any other component of R? — L,
then cl(B) N A = () since A is open and disjoint from B. In particular, fr(B) = cl(B) N (R? — B) is
disjoint from A and, thus, fr(B) C L. Let b be a point in B and let D be disk centered at b so that
L C int(D). Since L = [0,1], by Tietze Extension Theorem, the identity map id; : L — L has a
continuous extension r : D — L. Define F': D — D — {b} by

Flz) = r(z) if z € cl(B),
x ifxeD— B.

Note that (D — B)Ncl(B) is contained in L and, therefore, ¢ is well-defined and continuous. Also, the
boundary S of D is contained in D — B. So, F(z) = x for all x € S. Now, if p: D — {b} — S is the
natural projection, then po F': D — § is a retraction, contradicting the no-retraction theorem. O

Lemma 8. Let J be a Jordan curve in R?. If R? — J is not connected, then every component of R? — J
has J as its frontier.

Proof. Let A be a component of R? —.J and assume that frontier of A is a proper subset of J. Let L be
the complement of a connected open component of J — fr(A). Then L is a Jordan arc and fr(A) C L.
Moreover, R? — L = AU (R? — (AU L)) where A and R? — (AU L) are open, disjoint and non-empty
sets contradicting the No Separation Theorem. O

Lemma 9. Let f = (f1, f2) and g(g1, g2) be two continuous maps from [—1,1] to [a,b] X [c,d] such that



o fi(=1) =a and fi1(1) = b;
e g2(—1) =c and g2(1) =d.
Then f and g meet, that is, f(x) = g(y) for some x,y € [—1,1].
Proof. O

Theorem 10 (Jordan Curve Theorem). Let J be a Jordan curve. Then R?—.J has exactly two connected
components.

Proof. We start by introducing the notations. Let a and b be two points of J of the maximum distance.
We can embed J, by rotating if necessary, in a rectangle R in such a way that RN J = {a,b} and
these intersection points have the same x-coordinate, say zero. Let w and e be the middle points of
the vertical edges of R. Then J meets the segment we. Let [ be the left-most intersection point of J
and we. Let «y be the arc in J between a and b that passes contains [ (the blue arc in the figure below)
and let 7/ be the other arc between a and b in J (the red one). Let r be the right-most intersection
point of v and we. Note that r and [ could be the same points. Let ~,] denote the arc between I
and 7 in 7. The arc 4’ should meet wl 4 vy, + Te. However, o/ does not meet wl + 7y.,, since [ is
the left-most intersection of J and we and J cannot have a self-intersection. Hence, 4’ meets 7e. Let
" and " be the left-most intersection and the right-most intersection points of 7/ and 7e, respectively.
Finally, let ¢ be the middle point of the segment r/’.

At least one bounded component.

We claim that the component A of R? — .J that contains ¢ is bounded. Suppose not, then there is a
path in A from c to a point outside R. Let p be the first point which this path intersects R and let «
denote the part of the path from c to p. We assume that p has a positive z-coordinate, the other case
(when the z-coordinate p is negative) is similar. In this case, there is a path Ry, ¢ from p to e that
avoids both a and b. Since 7/ meets wl + Vi) +T¢+ a+ Ry, g, it should meet a which is impossible
as o is in A.

At most one bounded component.

Suppose B is a bounded component of R? — J different from A. Consider the path

B = wl + Vit + 7l + ’Yfl’,r’] +r'e

connecting w to e (the blue path in the figure below).



Since a and b are not in 5, there are neighborhoods V, and V, of them that do not contain any point
of 3. On the other hand, there must be points a’ and b’ in B such that '’ € V, N B and b’ € V;, N B.
Now, since B is path connected there is a path from a’ to &’ in B. This path must meet $ which is

impossible.
O



