Application of GARCH: risk modelling

Fredrik Armerin, Alexander Aurell

May 2, 2016

OMXS30

OMXS30 is a weighted mean of the 30 most traded stocks the Stockholm stock exchange.

	Na			Nasdaq Nordics Listing HIGHLIGHTS 2015					
AL AVERT									
NASDAO OMX Val	Leguard-KTH Bop	risindex C	Scontine	ued index	21F POME		ETER OTBILLING		PEEDB
Nemo	• ccy •	Senast #	+j. 0	56 B	Kip 0	Sal •	Volum •	Oms #	Uppdaterad (CET) •
ABB LM	SEK	169.7	-1,2	-0,7	169,5	169,7	1 840 201	311 910 995	18:00:00
Alta Laval	SEK	126.6	-1.6	-1.25	126.5	126.7	1 187 042	150 707 407	18:00:00
ASSA ABLOY B	SEK	168,4	-3,5	-2,04	167,9	168,1	3 088 774	523 259 635	18:00:00
Atlas Copos A	SEK	207,8	-3,5	-1,65	207,7	207,9	2 077 204	432 591 141	18:00:00
Atlas Copco B	SEK	192,7	-3,7	-1,88	193,3	193,4	991 298	191 726 422	18:00:00
AstraZeneca	SEK	470	-4,8	-1,01	469,1	469,5	696 700	330 366 834	18:00:00
Boliden	SEK	140	-3,1	-2.17	140	140,1	2 545 280	356 911 409	18:00:00
Electrolux B	SEK	233	0,3	0,13	232,6	232,8	2 232 872	522 190 660	18:00:00
Ericsson B	SEK	65	-1.9	-2.84	65	65.1	12 277 754	804 180 159	18:00:00
Fingerprint Cards B	SEK	481	-10.1	-2.05	481.6	481.8	1 909 888	939 241 109	18:00:00
Getrige B	SEK	169.8	4.7	-2.13	169.6	169.8	767 541	130 906 873	18:00:00
Hennes & Mauritz B	SEK	205.5	-4,6	-1.59	285,4	285,6	3 607 418	1 030 548 309	18:00:00
Investor B	SEK	294,7	-9,3	-3,05	295,1	295,2	1 636 090	485 850 454	18:00:00
Kinnevik B	SEK	231	-0	-3,75	231,4	231,5	1 424 214	331 956 962	18:00:00
Lundin Petroleum	SEK	150,4	-0,2	-0,13	150,2	150,4	1 006 819	151 646 962	18:00:00
Nordea Bank	SEK	77.95	-2	-2.5	77.85	77.95	9 934 752	779 060 691	18:00:00
Nokia Ovi	SEK	47.32	-4.05	-2.19	47.33	47.4	1 277 253	60 918 983	18:00:00
Sandvik	SEK	82.4	-4.1	-4.74	82.2	82,3	5 477 165	451 246 878	18:00:00
SCA B	SEK	252.9	-2.8	-1.09	252.9	253.1	1 931 148	409 726 581	18:00:00
SEB A	SEK	76.7	-2	-2.54	76.7	76,75	11 068 250	855 349 177	18:00:00
Securitas B	SEK	126.8	-3	-2.31	126.9	127	1 512 105	192 455 207	18:00:00
Sy, Handelsbanken A	SEK	105.9	-2	-1.84	307	107.1	3 784 243	405 101 905	18:00:00
Skanska B	SEK	176.6	-3.5	-1.94	176.4	176.6	1 021 889	180 711 725	18:00:00
SKF 8	SEK	147.9	-4.1	2.7	147.5	147.7	3 252 226	482 314 735	18:00:00
SSAB A	SEK	33.74	-1.4	-3.98	33.74	33.76	3 718 716	127 295 484	18:00:00
Swedbank A	SEK	173.2	-2.4	-1.37	173.2	173.4	2 943 089	510 374 878	18:00:00
Swedish Match	SEK	254.7	.21.8	.7.88	254.6	254.8	963 335	246 059 033	18:00:00
Table 2 B	SEK	75.6	.05	0.65	76.55	75.65	3 462 809	264 833 481	18:00:00
Tella Company	SEK	30.35	0.66	1.69	38.32	38.35	9 391 994	361 599 662	18:00:00
Vinter B	SEX	94	3.35	144	04.7	94.75	10.403.245	505 225 655	18:00:00

OMXS30

OMXS30 price from 01-01-2009 until today:

Problem: risk estimation

The question we will investigate:

What risk are we exposed to if we buy one share of OMXS30 and hold it for 10 days?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem: risk estimation

The question we will investigate:

What risk are we exposed to if we buy one share of OMXS30 and hold it for 10 days?

Let S_t be the value of the index at day t. A typical thing to look at is the quantiles in the left tail of $S_{10} - S_0$. This gives an estimate of the worst case return (loss of money) in a certain percentage of all possible scenarios.

We will model the returns in two ways; a naive approach based on fitting a normal distribution and with a GARCH process.

Log-returns

Transforming past index values $(S_t)_{t=-N}^0$ into its log-reurns,

$$X_t = \ln(S_t/S_{t-1})$$

yields the following time series:

Assume that the log-returns are IID $\mathcal{N}(\mu, \sigma)$. If we estimate (μ, σ) from past index data with $(\hat{\mu}, \hat{\sigma})$, we may write

$$S_{10} - S_0 = S_0 \left(e^{X_1 + \dots + X_{10}} - 1 \right) \stackrel{d}{\approx} S_0 \left(e^{10\hat{\mu} + \sqrt{10}\hat{\sigma}Z} - 1 \right)$$

where $Z \sim \mathcal{N}(0, 1)$.

Naive approach

By sampling from Z we may calculate empirical quantiles of $-(S_{10} - S_0)$. Even better, there is analytical formula for the quantile of $-(S_{10} - S_0)$

$$F_{S_0-S_{10}}^{-1}(0.05) = S_0 \left(1 - e^{10\hat{\mu} + \sqrt{10}\hat{\sigma}\Phi^{-1}(0.05)} \right)$$

and for the density of $S_{10} - S_0$

$$f_{S_{10}-S_0}(x) = \left|\frac{1}{\sqrt{2\pi}S_0\sqrt{10}\hat{\sigma}(1+x/S_0)}\right| \exp\left(-\frac{(\ln(1+x/S_0)-10\hat{\mu})^2}{2\cdot 10\hat{\sigma}^2}\right)$$

Fit a GARCH process to the log-returns between day -N and 0.

Fit a GARCH process to the log-returns between day -N and 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Use this GARCH process to simulate $(S_{10} - S_0)$:

•
$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i \sigma_{t-i}^2 + \sum_{j=1}^q \beta_j X_{t-j}^2$$

Fit a GARCH process to the log-returns between day -N and 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Use this GARCH process to simulate $(S_{10} - S_0)$:

•
$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i \sigma_{t-i}^2 + \sum_{j=1}^q \beta_j X_{t-j}^2$$

•
$$X_t = \sigma_t Z_t$$
, $Z \sim \mathcal{N}(0, 1)$

Fit a GARCH process to the log-returns between day -N and 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Use this GARCH process to simulate $(S_{10} - S_0)$:

$$\blacktriangleright \sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i \sigma_{t-i}^2 + \sum_{j=1}^q \beta_j X_{t-j}^2$$

•
$$X_t = \sigma_t Z_t$$
, $Z \sim \mathcal{N}(0, 1)$

•
$$Y_t = \mu + X_t$$

Fit a GARCH process to the log-returns between day -N and 0.

Use this GARCH process to simulate $(S_{10} - S_0)$:

• $\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i \sigma_{t-i}^2 + \sum_{j=1}^q \beta_j X_{t-j}^2$

$$X_t = \sigma_t Z_t, \quad , Z \sim \mathcal{N}(0,1)$$

•
$$Y_t = \mu + X_t$$

•
$$S_{10} = S_0 \exp(Y_1 + \cdots + Y_{10})$$

Fit a GARCH process to the log-returns between day -N and 0.

Use this GARCH process to simulate $(S_{10} - S_0)$:

 $\bullet \ \sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i \sigma_{t-i}^2 + \sum_{j=1}^q \beta_j X_{t-j}^2$

$$X_t = \sigma_t Z_t, \quad , Z \sim \mathcal{N}(0,1)$$

•
$$Y_t = \mu + X_t$$

•
$$S_{10} = S_0 \exp(Y_1 + \cdots + Y_{10})$$

From simulations, calculate the empirical quantile of

$$-(S_{10}-S_0)=S_0(1-\exp{(Y_1+\cdots+Y_{10})})$$

Simulations in Quantlab

What results should we expect?

Simulations in Quantlab

What results should we expect?

GARCH - local, naive - global

Lets analyze some data in Quantlab...

(ロ)、(型)、(E)、(E)、 E) の(の)