FinanceLab project

Alexander Aurell, Henrik Hult

May 11, 2016

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

We are standing at time 0 with time to maturity T and a dividend at time t. These are the cash flows:

Time0tTForward0
$$S_T - G_T$$

We are standing at time 0 with time to maturity T and a dividend at time t. These are the cash flows:

	Time	0	t	T
-	Forward	0		$S_T - G_T$
	Stock	$-S_0$	d	S_T

We are standing at time 0 with time to maturity T and a dividend at time t. These are the cash flows:

Time	0	t	T
Forward	0		$S_T - G_T$
Stock	$-S_0$	d	ST
ZC (t)	$de^{-r_t t}$		

We are standing at time 0 with time to maturity T and a dividend at time t. These are the cash flows:

Time	0	t	Т
Forward	0		$S_T - G_T$
Stock	$-S_0$	d	S_T
ZC(t)	de^{-r_tt}	-d	
ZC (<i>T</i>)	Be ^{−r_TT}		-B

We are standing at time 0 with time to maturity T and a dividend at time t. These are the cash flows:

Time	0	t	Т
Forward	0		$S_T - G_T$
Stock	$-S_0$	d	S_T
ZC (t)	de ^{-rtt}	-d	
ZC (<i>T</i>)	Be ^{−r_TT}		-B

Cash flow at time 0 should sum to zero, hence $B = \frac{S_0 + de^{-r_t t}}{e^{-r_T T}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We are standing at time 0 with time to maturity T and a dividend at time t. These are the cash flows:

Time	0	t	Т
Forward	0		$S_T - G_T$
Stock	$-S_0$	d	S_T
ZC(t)	de^{-r_tt}	-d	
ZC(T)	Be ^{−r_TT}		-B

Cash flow at time 0 should sum to zero, hence $B = \frac{S_0 + de^{-r_t t}}{e^{-r_T T}}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Cash flow at time T should sum to zero, hence $G_T = B$.

We are standing at time 0 with time to maturity T and a dividend at time t. These are the cash flows:

Time	0	t	Т
Forward	0		$S_T - G_T$
Stock	$-S_0$	d	S_T
ZC (t)	$de^{-r_t t}$		
ZC (T)	Be ^{-r_T}		-B

Cash flow at time 0 should sum to zero, hence $B = \frac{S_0 + de^{-r_t t}}{e^{-r_T T}}$.

Cash flow at time T should sum to zero, hence $G_T = B$.

We get
$$d = \frac{S_0 - G_T e^{-r_T T}}{e^{-r_t t}}.$$

We are standing at time 0 with time to maturity T and a dividend at time t. We refinance the incomming porportional dividend. These are the cash flows:

Time	0	t	T
Forward	0		$S_T - G_T$

We are standing at time 0 with time to maturity T and a dividend at time t. We refinance the incomming porportional dividend. These are the cash flows:

Time	0	t	T
Forward	0		$S_T - G_T$
Stock	$-\frac{S_0}{1+\alpha}$		ST

We are standing at time 0 with time to maturity T and a dividend at time t. We refinance the incomming porportional dividend. These are the cash flows:

Time	0	t	Т
Forward	0		$S_T - G_T$
Stock	$-\frac{S_0}{1+\alpha}$		S_T
ZC (<i>T</i>)	$G_T e^{-r_T \tilde{T}}$		$-G_T$

We are standing at time 0 with time to maturity T and a dividend at time t. We refinance the incomming porportional dividend. These are the cash flows:

Time	0	t	Т
Forward	0		$S_T - G_T$
Stock	$-\frac{S_0}{1+\alpha}$		S_T
ZC(T)	$G_T e^{-r_T T}$		$-G_T$

Cash flow at time 0 should sum to zero, hence $\frac{S_0}{1+\alpha} = G_T e^{r_T T}$.

We are standing at time 0 with time to maturity T and a dividend at time t. We refinance the incomming porportional dividend. These are the cash flows:

Time	0	t	T
Forward	0		$S_T - G_T$
Stock	$-\frac{S_0}{1+\alpha}$		ST
ZC(T)	$G_T e^{-r_T T}$		$-G_T$

Cash flow at time 0 should sum to zero, hence $\frac{S_0}{1+\alpha} = G_T e^{r_T T}$.

We get
$$\alpha = \frac{S_0}{G_T} e^{r_T T} - 1.$$

Summary

The constant dividend is given by

$$d=\frac{S_0-G_Te^{-r_TT}}{e^{-r_tt}}.$$

The proportional dividend is given by αS_t where

$$\alpha = \frac{S_0}{G_T} e^{r_T T} - 1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Summary

The constant dividend is given by

$$d=\frac{S_0-G_Te^{-r_TT}}{e^{-r_tt}}.$$

The proportional dividend is given by αS_t where

$$\alpha = \frac{S_0}{G_T} e^{r_T T} - 1.$$

We need the following market data to compute the dividend:

 S_0, G_T, t, r_t, T, r_T

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Solution 1a)

Extract the market data.

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨー のへで

Solution 1a)

We read from Quantlab:

$$T = 0.45$$
 $r_T = -0.0032$
 $S_0 = 39.88$ $G_T = 36.83$

It is given in the exercise that we should assume that the dividend is payed at 2016-04-15. What if we dont know this? The market indicates that the dividend is to be payed somewhere between 2016-03-18 and 2016-06-17. How to choose t? Lets make a linear interpolation between the two forward contracts...

Solution 1a)

Result:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Since the interest rate is approximately zero, we get $d \approx S_0 - G_T \approx 2.993$.

Solution 1b)

Result:

$\alpha \approx \mathbf{0.0813}$

Since the interest rate is approximately zero, the dividend is

 $\alpha S_t \approx \alpha S_0 \approx 3.242$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Solution 1b)

Result:

$\alpha \approx \mathbf{0.0813}$

Since the interest rate is approximately zero, the dividend is

$$\alpha S_t \approx \alpha S_0 \approx 3.242$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lets look up the dividend online...

Solution 3)

Result:

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④ Q @

Do we have any sources of error in the analysis?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Interpolation of interest rate
- Existence of small dividends?