Exercise session 6

1. Let $\mathcal{F}=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \leq 0, i=1, \ldots, m\right\}$ where g_{i} are convex functions on \mathbb{R}^{n}. Show that \mathcal{F} is a convex set.

OR

1. Let $g: C_{1} \rightarrow \mathbb{R}$ and $f: C_{2} \rightarrow \mathbb{R}$ be convex functions. The sets C_{1} and C_{2} are convex subsets of \mathbb{R}^{n}. Show that $f+g$ is a convex function.
2. Let f be a convex function on some convex set C. Let $x_{1}, \ldots, x_{n} \in C$ and $\lambda_{1}, \ldots, \lambda_{n}$ such that $\lambda_{i} \geq 0$ for all $i \in\{1, \ldots, n\}$ and $\sum_{i=1}^{n} \lambda_{i}=1$. Show Jensen's inequality

$$
f\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right)
$$

for $n=3$.
3. Prove the arithmetic-geometric mean inequality for positive x_{1}, \ldots, x_{n}, i.e.

$$
\frac{x_{1}+\ldots x_{n}}{n} \geq\left(x_{1} \cdot x_{n}\right)^{1 / n}
$$

Use Jensen's inequality and the convex function $-\log$.
4. Is $h(x)=|x|+\max \left\{e^{x}, 10+37 x+x^{6}\right\}$ a convex function on \mathbb{R} ?
5. a) Show that $g(x)=x^{3}$ is not a convex function on \mathbb{R}.
b) Find a convex domain $C \subset \mathbb{R}$ such that $g(x)=x^{3}$ is a convex function on C.
6. Let for some $n \in \mathbb{N}$

$$
f(x)=\sum_{j=1}^{n}\left(x_{j}^{4}-x_{j}^{3}+x_{j}^{2}-x_{j}\right)
$$

where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
a) Show that f is a convex function.
b) You want to minimize f. Make one iteration of Newton's algorithm and start in $x^{(0)}=(1, \ldots, 1)$.
7. Problem 3 from the exam 13-01-2016.

