Solution to problem 4

4. Is $h(x)=|x|+\max \left\{e^{x}, 10+37 x+x^{6}\right\}$ a convex function on \mathbb{R} ?

Solution:

The real line is a convex set.

By the triangle inequality

$$
|t x+(1-t) y| \leq t|x|+(1-t)|y|
$$

for all $x, y \in \mathbb{R}$ and $t \in(0,1)$, so $|x|$ is convex. Since the sum of two convex functions is convex (Problem 1) and

$$
\begin{array}{ll}
(\exp (x))^{\prime \prime}=\exp (x)>0, & \forall x \in \mathbb{R} \\
\left(10+37 x+x^{6}\right)^{\prime \prime}=30 x^{4} \geq 0, & \forall x \in \mathbb{R}
\end{array}
$$

we need only to show that the maximum of two convex functions is convex. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be convex functions. Then for $x, y \in \mathbb{R}$ and $t \in(0,1)$

$$
\begin{align*}
e(t x+(1-t) y) & :=\max \{f(t x+(1-t) y), g(t x+(1-t) y)\} \\
& \leq \max \{t f(x)+(1-t) f(y), t g(x)+(1-t) g(y)\} \tag{1}\\
& \leq t \max \{f(x), g(x)\}+(1-t) \max \{f(y), g(y)\} \\
& =t e(x)+(1-t) e(y)
\end{align*}
$$

Hence h is convex.

Solution to problem 6

Let for some $n \in \mathbb{N}$

$$
f(x)=\sum_{j=1}^{n}\left(x_{j}^{4}-x_{j}^{3}+x_{j}^{2}-x_{j}\right)
$$

where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
a) Show that f is a convex function.
b) You want to minimize f. Make one iteration of Newton's algorithm and start in $x^{(0)}=(1, \ldots, 1)$.

Solution:

The Hessian of f is

$$
F(x)=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}}(x) & & 0 \\
& \ddots & \\
0 & & \frac{\partial^{2} f}{\partial x_{n}^{2}}(x)
\end{array}\right]
$$

where

$$
\frac{\partial^{2} f}{\partial x_{i}^{2}}(x)=12 x_{i}^{2}-6 x_{i}+2=12\left(\left(x_{i}-0.25\right)^{2}+1.25\right)
$$

Since $\frac{\partial^{2} f}{\partial x_{i}^{2}}(x)>0$ for all $x \in \mathbb{R}^{n}, F(x)$ is positive definite and hence f is (strictly) convex on \mathbb{R}^{n}.

To make a step in the Newton method, we need to calculate then gradient,

$$
\nabla f(x)=\left(4 x_{1}^{3}-3 x_{1}^{2}+2 x_{1}-1, \ldots, 4 x_{n}^{3}-3 x_{n}^{2}+2 x_{n}-1\right)
$$

In $x^{(0)}$, we have

$$
\nabla f\left(x^{(0)}\right)=(2, \ldots, 2) \quad F\left(x^{(0)}\right)=8 I_{n \times n}
$$

From the solution of a), we know that F is positive definite. The Newton direction is therefore given by

$$
d^{(0)}=-F\left(x^{(0)}\right)^{-1} \nabla f\left(x^{(0)}\right)^{T}=-\frac{1}{8}(2, \ldots, 2)^{T}
$$

and we try to update with $t_{0}=1$:

$$
x^{(1)}=x^{(0)}+t_{0} d^{(0)}=\frac{3}{4}(1, \ldots, 1)^{T} .
$$

The function value decreases,

$$
\begin{aligned}
& f\left(x^{(0)}\right)=\sum_{i=1}^{n}(1-1+1-1)=0 \\
& f\left(x^{(1)}\right)=\sum_{i=1}^{n} \sum_{j=1}^{4}\left(-\frac{3}{4}\right)^{j}<0
\end{aligned}
$$

so we accept $t_{0}=1$ and the iteration is done.

