Examples of quadratic functions

Consider the unconstrained quadratic program

$$
(Q P)\left\{\begin{aligned}
\text { minimize } & f(x)=\frac{1}{2} x^{T} H x+c^{T} x, \\
\text { subject to } & x \in \mathbb{R}^{n} .
\end{aligned}\right.
$$

where H is a symmetric matrix. Note that $\nabla f(x)=0$ if and only if $H x+c=0$ and $\nabla^{2} f(x)=H$. There are four possible scenarios for $(Q P)$.
i) If H is positive definite there exists a unique globally optimal solution \hat{x} to $(Q P)$ and it is given by $\hat{x}=-H^{-1} c$. A proof that H is invertible can be constructed using the $L D L^{T}$-factorization.
ii) If H is positive semidefinite and $-c \in \mathcal{R}(H)$ then exists non-unique globally optimal solutions \hat{x} to $(Q P)$. All possible \hat{x} are given by $H \hat{x}+c=0$.
iii) If H is positive semidefinite and $-c \notin \mathcal{R}(H)$ then there exists no globally optimal solution to $(Q P)$.
iv) If H is indefinite there exists no globally optimal solution to $(Q P)$.

The four scenarios will now be showcased with the help of an example. Let

$$
H=\left[\begin{array}{ll}
1 & 2 \\
2 & \alpha
\end{array}\right]
$$

$\alpha=6$ and $c=\left[\begin{array}{ll}1 & 2\end{array}\right]^{T}$
H is positive definite since $1>0,6>0$ and $1 \cdot 6-2 \cdot 2=2>0$. This is an example of scenario i), visualized in Figure 1 The unique globally optimal solution is $\hat{x}=\left[\begin{array}{ll}-1 & 0\end{array}\right]^{T}$.
$\alpha=4$ and $c=\left[\begin{array}{ll}1 & 2\end{array}\right]^{T}$
H is positive semidefinite since $1 \geq 0,4 \geq 0$ and $1 \cdot 4-2 \cdot 2=0 \geq 0$. Since

$$
H\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=-c
$$

we have $-c \in \mathcal{R}(H)$. This is an example of scenario $i i)$, visualized in Figure 2 There exists infinitely many globally optimal solutions,

$$
\hat{x}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-2 \\
1
\end{array}\right] t
$$

for $t \in \mathbb{R}$.

Figure 1: Contour-plot for $f(x)$ together with the optimum \hat{x}.

Figure 2: Contour-plot for $f(x)$ together with all the optima \hat{x}.
$\alpha=4$ and $c=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$
H is positive definite but $-c \notin \mathcal{R}(H)$ so there exists no globally optimal solution.
This is an example of scenarion $i i i$), visualized in Figure 3 .

Figure 3: Contour-plot for $f(x)$.
$\alpha=2$ and $c=\left[\begin{array}{ll}1 & 2\end{array}\right]^{T}$
H is indefinite since $1>0,2>0$ and $1 \cdot 2-2 \cdot 2=-2<0$ and there exists no globally optimal solution. This is an example of scenarion $i v$), visualized in Figure 4 . Note that $\left[\begin{array}{ll}-1 & 0\end{array}\right]^{T}$ is a saddle point, it satisfies $\nabla f(x)=0$, and is a locally optimal solution.

Figure 4: Contour-plot for $f(x)$ together with all the saddle point $\left[\begin{array}{ll}-1 & 0\end{array}\right]^{T}$.

