H symmetric $\Rightarrow \operatorname{ran}(H) \perp \operatorname{ker}(H)$

Setup

Let x and y be vectors in \mathbb{R}^{n} and let H be a matrix in $\mathbb{R}^{n \times n}$. We say that x is in the set $\operatorname{ker}(H)$ if $H x=0$ and we say that y is in the set $\operatorname{ran}(H)$ if there exists a vector z in \mathbb{R}^{n} such that $H z=y$. We say that H is symmetric if $H=H^{\mathrm{T}}$.

The following result is a special case of Theorem 25.1 in the course litterature.
Proposition 1 If H is a symmetric matrix then $\operatorname{ran}(H) \perp \operatorname{ker}(H)$.
Proof Let $x \in \operatorname{ker}(H)$ and let $y \in \operatorname{ran}(H)$. Then there exists a vector z such that $H z=y$ and

$$
x^{\mathrm{T}} y=x^{\mathrm{T}} H z .
$$

Since H is symmetric

$$
x^{\mathrm{T}} H z=x^{\mathrm{T}} H^{\mathrm{T}} z=(H x)^{\mathrm{T}} z .
$$

But $x \in \operatorname{ker}(H)$ so $H x=0$. Thus $x^{\mathrm{T}} y=0$ which implies that x and y are orthogonal to each other.
Since x was arbitrary in $\operatorname{ker}(H)$ and y was arbitrary in $\operatorname{ran}(H)$ the result holds for all vectors in these sets and we conclude that $\operatorname{ker}(H) \perp \operatorname{ran}(H)$.

