H symmetric \Rightarrow ran $(H) \perp \text{ker}(H)$

Setup

Let x and y be vectors in \mathbb{R}^n and let H be a matrix in $\mathbb{R}^{n \times n}$. We say that x is in the set ker(H) if Hx = 0 and we say that y is in the set ran(H) if there exists a vector z in \mathbb{R}^n such that Hz = y. We say that H is symmetric if $H = H^T$.

The following result is a special case of Theorem 25.1 in the course litterature.

Proposition 1 If H is a symmetric matrix then $ran(H) \perp ker(H)$.

Proof Let $x \in \ker(H)$ and let $y \in \operatorname{ran}(H)$. Then there exists a vector z such that Hz = y and

$$x^{\mathrm{T}}y = x^{\mathrm{T}}Hz$$

Since ${\cal H}$ is symmetric

$$x^{\mathrm{T}}Hz = x^{\mathrm{T}}H^{\mathrm{T}}z = (Hx)^{\mathrm{T}}z$$

But $x \in \ker(H)$ so Hx = 0. Thus $x^{\mathrm{T}}y = 0$ which implies that x and y are orthogonal to each other.

Since x was arbitrary in ker(H) and y was arbitrary in ran(H) the result holds for all vectors in these sets and we conclude that ker(H) \perp ran(H).