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Introduction

Mean-field games?

Mean-field type games?

Mean-field control theory?

Backward stochastic differential equations?
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Introduction: deterministic optimal control (finite horizon):

Minimize or maximize

J(u(·)) =

∫ T

0

f (x(t), u(t))dt + h(x(T )) (1)

with respect to u : [0,T ]→ U, subject to{
ẋ(t) = b(x(t), u(t)), 0 < t ≤ T ,

x(0) = x0,
(2)

where U is a given set of control values.
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Introduction: stochastic optimal control (finite horizon)1 :

Minimize or maximize

J(u·) = E

[∫ T

0

f (Xt , ut)dt + h(XT )

]
, (3)

with respect to u : [0,T ]→ U, subject to{
dXt = b(Xt , ut)dt + σ(Xt , ut)dWt , 0 < t ≤ T ,

X0 = x0.
(4)

1Jiongmin Yong and Xun Yu Zhou. Stochastic controls: Hamiltonian systems and HJB equations. Vol. 43. Springer Science &
Business Media, 1999.
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Introduction: mean-field optimal control (finite horizon)1:

Minimize or maximize

J(u·) = E

[∫ T

0

f (Xt ,E [Xt ], ut)dt + h(XT ,E [XT ])

]
, (5)

with respect to u : [0,T ]→ U, subject to{
dXt = b(Xt ,E [Xt ], ut)dt + σ(Xt ,E [Xt ], ut)dWt , 0 < t ≤ T ,

X0 = x0.
(6)

”Control of SDEs of mean-field type”
”Control of McKean-Vlasov equations”

Example (non-linear in expectation):

J(u·) = Var(XT )

= E
[
X 2

T − E [XT ]2
] (7)

1Daniel Andersson and Boualem Djehiche. “A maximum principle for SDEs of mean-field type”. In: Applied Mathematics &
Optimization 63.3 (2011), pp. 341–356.
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Introduction

Optimal control theory tries to answer two questions:

I Existence of a minimum/maximum of the performance functional J.
I Explicit computation of such a minimum/maximum.

I The Bellman principle, which yields the Hamilton-Jacobi-Bellman equation
(HJB) for the value function.

I Pontryagin’s maximum principle which yields the Hamiltonian system for
”the derivative” of the value function.
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Introduction: mean-field optimal control problems as large population limits

Consider N agents with state dynamics{
dX i

t = b(X i
t , µ

N
t , u

i
t)dt + σ(X i

t , µ
N
t , u

i
t)dW

i
t , 0 < t ≤ T ,

X i
0 = x i

0,
(8)

where µN
t = 1

N

∑N
i=1 δX i

t
, cooperating to minimize/maximize

J i,N(u1
· , . . . , u

N
· ) =

1

N

N∑
i=1

E

[∫ T

0

f (X i
t , µ

N
t , u

i
t)dt + h(X i

T , µ
N
T )

]
. (9)

Under some conditions...

I The control found by solving the mean-field optimal control problem
(previous slide) approximates the solution to (8)-(9) .

I Results exists on the commutation of optimization and limit taking.1

1Daniel Lacker. “Limit Theory for Controlled McKean–Vlasov Dynamics”. In: SIAM Journal on Control and Optimization 55.3
(2017), pp. 1641–1672.
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Introduction: mean-field games as large population limits

Instead of cooperating, let the N agents compete. Given the control chosen by
all other agents, u−i

· , agent i wants to minimize

j i,N(ui
·; u
−i
· ) = E

[∫ T

0

f (X i
t , µ

N
t , u

i
t)dt + h(X i

T , µ
N
T )

]
. (10)

A Nash equilibrium (û1
· , . . . , û

N
· ) for this differential game is given by

j i,N(u·; û
−i
· ) ≥ j i,N(ûi

·; û
−i
· ), ∀u·, ∀i = 1, . . . ,N. (11)

A Nash equilibrium can be approximated by a fixed point scheme

i) Fix a deterministic function µt : [0,T ]→ P2(Rd).

ii) Solve the stochastic control problem (single agent!):

û· = argmin
u·

E

[∫ T

0

f (Xt , µt , ut)dt + h(XT , µT )

]
(12)

iii) Determine the function µ̂t : [0,T ]→ P2(Rd) such that µ̂t = P ◦ (X̂t)
−1 for

all t ∈ [0,T ], X̂· being the dynamic corresponding to û·.

This matching problem (often in PDE form) is called a ”Mean-Field Game”.12

1Minyi Huang, Roland P Malhamé, Peter E Caines, et al. “Large population stochastic dynamic games: closed-loop McKean-Vlasov
systems and the Nash certainty equivalence principle”. In: Communications in Information & Systems 6.3 (2006), pp. 221–252.

2Jean-Michel Lasry and Pierre-Louis Lions. “Mean field games”. In: Japanese journal of mathematics 2.1 (2007), pp. 229–260.
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Introduction: mean-field type game

Let there be N agents with dynamics
dX i

t = bi (X 1
t ,P ◦ (X 1

t )−1, u1
t , . . . ,X

i
t ,P ◦ (X i

t )−1, ui
t , . . . , u

N
t )dt

+σi (. . . ,X i
t ,P ◦ (X i

t )−1, ui
t , . . . )dW

i
t ,

X i
0 = x i

0,

(13)

Agent i replies to the other agents choice of control u−i
· by minimizing its best

reply functional

J i (ui
·; u
−i
· ) = E

[ ∫ T

0

f i (. . . ,X i
t ,P ◦ (X i

t )−1, ui
t , . . . )dt

+hi (. . . ,X i
T ,P ◦ (X i

T )−1, . . . )
]
.

(14)

Players not identical (exchangeable) anymore!

A mean-field type game consists of major players, that can influence their
distributions, and asks: what is the equilibrium behavior of these agents?
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Introduction: differentiation of measure-valued functions

A variation in control gives a variation in the marginal distribution, and
thus we must be able to handle variation of measure-valued functions.

Underlying probability space is rich enough, so that for every µ ∈ P2(Rd),
there exists a square-integrable random variable X whose distribution is µ.

Consider f : P2(Rd)→ R. We can write f (µ) =: F (X ) and differentiate F is
Frechét sense, whenever there exists a linear functional DF [X ] : L2(F ;Rd)→ R
such that

F (X + Y )− F (X ) = 〈DF [X ],Y 〉+ o(‖Y ‖2). (15)

By Riesz’ representation theorem, DF [X ] is unique and there exists a Borel
function φ[µ] : Rd → R such that φ[µ](X ) = DF [X ], therefore1

f (µ′)− f (µ) = E
[
φ[P ◦ (X )−1](X )(X ′ − X )

]
+ o(‖X ′ − X‖2). (16)

Denote ∂µf (µ; x) := φ[µ](x), and we have the identity

DF [X ] = ∂µf (P ◦ (X )−1;X ) =: ∂µf (P ◦ (X )−1). (17)

1Rainer Buckdahn, Juan Li, and Jin Ma. “A stochastic maximum principle for general mean-field systems”. In: Applied Mathematics
& Optimization 74.3 (2016), pp. 507–534.
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Introduction: differentiation of measure-valued functions

Example: If f (µ) =
(∫

Rd xdµ(x)
)2

then

E [X + tY ]2 − E [X ]2 = E [2E [X ]Y ] + o(t) (18)

and ∂µf (µ) = 2
∫
Rd xdµ(x).

If f takes another argument, ξ, then (with µ = P ◦ (X )−1)

f (ξ, µ′)− f (ξ, µ) = E
[
∂µf (ξ̃, µ;X )(X ′ − X )

]
+ o(‖X ′ − X‖2), (19)

where the expectation is not taken over ξ̃. To shorten notation,

E
[
∂µf (ξ̃, µ;X )(X ′ − X )

]
=: E

[
(∂µf (ξ, µ))∗(X ′ − X )

]
. (20)

For expectations over ”the other arguments”, we write

Ẽ
[
∂µf (ξ̃, µ;X )

]
=: E [∗(∂µf (ξ, µ))] (21)
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Introduction: backward stochastic differential equations (BSDE)

Deterministic setting: reverse time to get control problem with state
constraint at t = T . Stochastic setting: time reversal destroys adaptedness!

Given filtration F = {Ft}t≥0, any xT ∈ L2
FT

(Ω;RD) induces an F-martingale

Xt := E [xT | Ft ]. (22)

If F is generated by a Wiener process W·, the martingale representation
theorem then gives existence of a unique square-integrable process Zt such that

Xt = xT +

∫ T

t

ZtdWt . (23)

Z· works as a projection and makes X· progressively measurable!

In this fashion, we can construct BSDEs with general drift.1 Given a suitable
driver-terminal condition pair (f , xT ), (X·,Z·) solves the BSDE

dXt = fdt + ZtdWt , XT = xT (24)

if (together with some regularity)

Xt = xT −
∫ T

t

fdt −
∫ T

t

ZsdWs . (25)

1Jianfeng Zhang. Backward Stochastic Differential Equations: From Linear to Fully Nonlinear Theory. Vol. 86. Springer, 2017.
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Introduction: control/games of mean-field BSDEs

Two problems to be presented in this talk:

1. A mean-field type control based model for pedestrian motion, where the
state dynamics is a BSDE:{

Find û· such that J(u·) ≥ J(û·), ∀u· ∈ U ,
Given a control, the state X· satisfies a mean-field BSDE.

2. A mean-field type game between two players whose state dynamics are
BSDEs:{

Find (û1
· , û

2
· ) such that J i (u·; û

−i
· ) ≥ J i (ûi

·; û
−i
· ), ∀u· ∈ U i , i = 1, 2,

Given controls, the state X i
· satisfies a mean-field BSDE.
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Pedestrian crowd motion: quick facts

Empirical studies of human crowds have been conducted since the ’50s1.

Basic guidelines for pedestrian behavior: will to reach specific targets, repulsion
from other individuals and deterministic if the crowd is sparse but partially
random if the crowd is dense2.

Humans motion is decision-based.

Classical particles

I Robust - interaction only through collisions

I Blindness - dynamics ruled by inertia

I Local - interaction is pointwise

I Isotropy - all directions equally influential

”Smart agents”

I Fragile - avoidance of collisions and obstacles

I Vision - dynamics ruled at least partially by
decision

I Nonlocal - interaction at a distance

I Anisotropy - some directions more influential
than others

1BD Hankin and R Wright. “Passenger flow in subways”. In: Journal of the Operational Research Society 9.2 (1958), pp. 81–88.
2E Cristiani, B Piccoli, and A Tosin. “Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic

viewpoints”. In: Mathematical modeling of collective behavior in socio-economic and life sciences. Springer, 2010, pp. 337–364.
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Pedestrian crowd motion: mathematical modeling approaches

Microscopic
D Helbing and P Molnar. “Social force model for pedestrian dynamics”. In: Physical review E 51.5 (1995), p. 4282
A Schadschneider. “Cellular automaton approach to pedestrian dynamics-theory”. In: Pedestrian and Evacuation
Dynamics (2002), pp. 75–85
S Okazaki. “A study of pedestrian movement in architectural space, part 1: Pedestrian movement by the
application on of magnetic models”. In: Trans. AIJ 283 (1979), pp. 111–119

Macroscopic
LF Henderson. “The statistics of crowd fluids”. In: Nature 229.5284 (1971), p. 381
R Hughes. “The flow of human crowds”. In: Annual review of fluid mechanics 35.1 (2003), pp. 169–182
S Hoogendoorn and P Bovy. “Pedestrian route-choice and activity scheduling theory and models”. In:
Transportation Research Part B: Methodological 38.2 (2004), pp. 169–190

Mesoscopic/Kinetic
C Dogbe. “On the modelling of crowd dynamics by generalized kinetic models”. In: Journal of Mathematical
Analysis and Applications 387.2 (2012), pp. 512–532
G Albi et al. “Mean field control hierarchy”. In: Applied Mathematics & Optimization 76.1 (2017), pp. 93–135

Mean-field games:
a macroscopic approximation

of a microscopic model

Mean-field type games/control:
a macroscopic approximation

of a microscopic model
or

a distribution dependent
microscopic model
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Pedestrian crowd modeling: heuristics of the mean-field approach

I The dynamics of a pedestrians is given by

I change in position = velocity + noise

The pedestrian controls it’s velocity.

I The pedestrian controls it’s velocity rationally, it minimizes

I Expected cost

= E
[∫ T

0 f (energy use(t), interaction(t)) dt + deviation from final target
]

I The interaction is assumed to depend on an aggregate of distances to other
pedestrians:

I Lots of pedestrians in my neighborhood - congestion cost
I Seeking the company of others - social gain

I To evaluate its interaction cost, the pedestrian anticipates the movement of
other pedestrians via the distribution of the crowd.

Many possible extensions:
controlled noise, multiple interacting crowds, fast exit times, interaction with the
environment, common noise, hard congestion.
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Pedestrian crowd motion: mean-field models

Early works

S Hoogendoorn and P Bovy. “Pedestrian route-choice and activity scheduling theory and models”.
In: Transportation Research Part B: Methodological 38.2 (2004), pp. 169–190

C Dogbé. “Modeling crowd dynamics by the mean-field limit approach”. In: Mathematical and
Computer Modelling 52.9-10 (2010), pp. 1506–1520

Aversion and congestion

A Lachapelle and M-T Wolfram. “On a mean field game approach modeling congestion and
aversion in pedestrian crowds”. In: Transportation research part B: methodological 45.10 (2011),
pp. 1572–1589
Y Achdou and M Laurière. “Mean field type control with congestion”. In: Applied Mathematics
& Optimization 73.3 (2016), pp. 393–418

Fast exits (evacuation)

M Burger et al. “On a mean field game optimal control approach modeling fast exit scenarios in
human crowds”. In: Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on. IEEE.
2013, pp. 3128–3133
M Burger et al. “Mean field games with nonlinear mobilities in pedestrian dynamics”. In:
Discrete and Continuous Dynamical Systems-Series B (2014)
B Djehiche, A Tcheukam, and H Tembine. “A Mean-Field Game of Evacuation in Multilevel
Building”. In: IEEE Transactions on Automatic Control 62.10 (2017), pp. 5154–5169

Multi-population

E Feleqi. “The derivation of ergodic mean field game equations for several populations of players”.
In: Dynamic Games and Applications 3.4 (2013), pp. 523–536

M Cirant. “Multi-population mean field games systems with Neumann boundary conditions”. In:
Journal de Mathématiques Pures et Appliquées 103.5 (2015), pp. 1294–1315
Y Achdou, M Bardi, and M Cirant. “Mean field games models of segregation”. In: Mathematical
Models and Methods in Applied Sciences 27.01 (2017), pp. 75–113
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Pedestrian crowd motion: rationality

Another model categorization: level of rationality1.

Rationality level Information structure Area of application

Irrational - Panic situations

Basic Destination and environment Movement in large unfamiliar environments

Rational Current position of other pedestrians Movement in small and well-known environment

Highly rational Forecast of other pedestrians movement Movement in small and well-known environment

Optimal Omnipotent central planner ”Soldiers”

Mean field games can model highly rational pedestrians.

Mean-field optimal control can model optimal pedestrians.

1E Cristiani, F Priuli, and A Tosin. “Modeling rationality to control self-organization of crowds: an environmental approach”. In:
SIAM Journal on Applied Mathematics 75.2 (2015), pp. 605–629.
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Tagged pedestrian motion: control of mean-field BSDEs

Stochastic dynamics with initial condition cannot model motion that has to terminate
in a target location at time horizon T , such as:

• Guards moving to a security threat

• Medical personnel moving to a patient

• Fire-fighters moving to a fire

• Deliveries

Control of mean-field BSDEs can be a tool for centrally planned decision-making for
pedestrian groups, who are forced to reach a target position.

Recall, mean-field control is suitable for pedestrian crowd modeling when

• the central planner is rational and has the ability to anticipate the behaviour of
other pedestrians

• aggegate effects are considered
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Tagged pedestrian motion: control of mean-field BSDEs

The motion of our representative agent is described by a BSDE,{
dXt = b(t,Xt ,P ◦ (Xt)

−1,Zt , ut)dt + ZtdWt ,

XT = xT .
(26)

The central planner faces the optimization problem
min
u·

E

[∫ T

0
f (t,Xt ,P ◦ (Xt)

−1, ut)dt + h(X0,P ◦ (X0)−1)

]
s.t. (X·,Z·) solves (26),

u· ∈ U .

(27)

From a modeling point of view, the tagged pedestrian uses two controls:

I (ut)t∈[0,T ] - picked by an optimization procedure to reduce energy use,
movement in densely crowded areas

I (Zt)t∈[0,T ] - to predict the best path to yT given (ut)t∈[0,T ], given implicitly by
the martingale representation theorem.

A spike pertubation technique leads to a Pontryagin type maximum principle1.

1A Aurell and B Djehiche. “Modeling tagged pedestrian motion: a mean-field type control approach”. In: arXiv preprint
arXiv:1801.08777v2 (2018).
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Tagged pedestrian motion: control of mean-field BSDEs

Assumptions: i) u 7→ b(·, ·, ·, ·, u) is Lipschitz and its y -,z- and µ-derivatives are bounded ii) b(·, 0, δ0, 0, u) is square-integrable for

all u ∈ U iii) yT ∈ L2
FT

(Ω; Rd ) iv) admissible controls (U [0, T ]) take values in the compact set U and are square-integrable.

Theorem - necessary conditions

Suppose that (X̂·, Ẑ·, û·) solves the control problem. Let H be the Hamiltonian

H(t, x , µ, z, u, p) := b(t, x , µ, z, u)p − f (t, x , µ, u), (28)

and let p· solve the adjoint equation (where PX̂t
:= P ◦ (Xt)−1),

dpt = −
{
∂xH(t, X̂t ,PX̂t

, Ẑt , ût , pt) + E
[
∗(∂µH(t, X̂t ,PX̂t

, Ẑt , ût , pt))
]}

dt

− ∂zH(t, X̂t ,PXt , Ẑt , ût , pt)dWt ,

p0 = ∂xh(X̂0,PX̂0
) + E

[
∗(∂µh(X̂0,PX̂t

))
]
.

(29)
Then for a.e. t, P-a.s.,

ût = argmax
α∈U

H(t, X̂t ,PX̂t
, Ẑt , α, pt). (30)

Theorem - sufficient conditions

Suppose that H is concave in (x , µ, z, u), h is convex in (x , µ) and û· satisfies

(30) P-a.s. for a.e. t. Then (X̂·, Ẑ·, û·) solves the control problem.
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Tagged pedestrian motion: control of mean-field BSDEs

 min
u·∈U

1

2
E

[∫ 1

0
λ1u

2
t + λ2(Xt − E [Xt ])

2dt + λ3(X0 − [0.2, 0.2]T )2

]
,

s.t. dXt = (ut + Wt)dt + ZtdWt , Y1 = [2, 2]T .

(31)

Upper row: (λ1, λ2, λ3) = (50, 50, 10).
Lower row: (λ1, λ2, λ3) = (50, 0, 10).

Simulations based on the least-square Monte Carlo method1.

1C Bender and J Steiner. “Least-squares Monte Carlo for backward SDEs”. In: Numerical methods in finance. Springer, 2012,
pp. 257–289.
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Mean-field type games with BSDE dynamics

Nash equilibrium: for i = 1, . . . ,#players,

Best replyi (own eq. control; other’s eq. controls)

≤ Best replyi (any control; other’s eq. controls).
(32)

In what follows,

I Best reply functional depends on marginal state distributions

I State dynamics are mean-field BSDEs

We start with an example...
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Mean-field type games with BSDE dynamics: LQ example

Two players seek the Nash equilibrium: player 1 has state dynamics{
dX 1

t = (a1u
1
t + c11W

1
t + c12W

2
t )dt + Z 11

t dW 1
t + Z 12

t dW 2
t ,

X 1
T = x1

T ,
(33)

and wants to minimize

J1(u1
· ; u

2
· ) = E

[∫ T

0

r1

2
(u1

t )2 +
ρ1

2
(X 1

t − E [X 2
t ])2dt +

ν1

2
(X 1

0 − x1
0 )2

]
. (34)

Player 2 has state dynamics{
dX 2

t = (a2u
2
t + c21W

1
t + c22W

2
t )dt + Z 21

t dW 1
t + Z 22

t dW 2
t ,

X 2
T = x2

T ,
(35)

and wants to minimize

J2(u2
· ; u

1
· ) = E

[∫ T

0

r2

2
(u2

t )2 +
ρ2

2
(X 2

t − E [X 1
t ])2dt +

ν2

2
(X 2

0 − x2
0 )2

]
. (36)

Alongside, a central planner wants to minimize the social cost

J(u1
· , u

2
· ) =

2∑
i=1

J i (ui
·; u
−i
· ). (37)
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Mean-field type games with BSDE dynamics: LQ example

x1
T a1 c11 c12 r1 ρ1 ν1 x1

0

-2 1 .3 0 1 1 1 N (0, 0.1)

x2
T a2 c21 c22 r2 ρ2 ν2 x2

0

2 1 0 .3 1 1 1 N (0, 0.1)

Game: find û1
· , û

2
· such that for i = 1, 2,

J i (u·; û
−i
· ) ≥ J i (ûi

·; û
−i
· ), ∀u· ∈ U i

,

where
dX i

t = (aiu
i
t + ci1W

1
t + ci2W

2
t )dt

+ Z i1
t dW 1

t + Z i2
t dW 2

t ,

X i
T = x i

T ,

J i (ui
·; u
−i
· ) =

E
[ ∫ T

0

r2

2
(u2

t )2 +
ρ2

2
(X 2

t − E [X 1
t ])2dt

+
ν2

2
(X 2

0 − x2
0 )2

]

Optimal control: find ū1
· , ū

2
· such that

J(u·, v·) ≥ J(ū1
· , ū

2
· )

for all (u·, v·) ∈ U1 × U2, where

J = J1 + J2.

Social cost: Mean player cost.
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Mean-field type games with BSDE dynamics: LQ example

x1
T a1 c11 c12 r1 ρ1 ν1 x1

0

-2 1 .3 0 1 4 1 N (0, 0.1)

x2
T a2 c21 c22 r2 ρ2 ν2 x2

0

2 1 0 .3 1 0 1 N (2, 0.1)

Game: find û1
· , û

2
· such that for i = 1, 2,

J i (u·; û
−i
· ) ≥ J i (ûi

·; û
−i
· ), ∀u· ∈ U i

,

where
dX i

t = (aiu
i
t + ci1W

1
t + ci2W

2
t )dt

+ Z i1
t dW 1

t + Z i2
t dW 2

t ,

X i
T = x i

T ,

J i (ui
·; u
−i
· ) =

E
[ ∫ T

0

r2

2
(u2

t )2 +
ρ2

2
(X 2

t − E [X 1
t ])2dt

+
ν2

2
(X 2

0 − x2
0 )2

]

Optimal control: find ū1
· , ū

2
· such that

J(u·, v·) ≥ J(ū1
· , ū

2
· )

for all (u·, v·) ∈ U1 ×U2, where J = J1 + J2.

Social cost: Mean player cost.
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Mean-field type games with BSDE dynamics: SMP

On (Ω,F ,F := {Ft}t≥0,P), satisfying the usual conditions, lives

I d1- and d2-dimensional Wiener processes W 1
· and W 2

·

I two terminal values x1
T , x

2
T ∈ L2

FT
(Ω;Rd)

I F0-measurable ξ (additional randomness at t = 0)

These five objects are independent and (W 1
· ,W

2
· , ξ) generate F.

Let (U i , dU i ) be separable metric space, admissible controls for player i are

U i =

{
u : [0,T ]→ U i | F− adapted , E

∫ T

0

dU i (us)
2ds <∞

}
(38)

Given a pair of admissible controls (u1
· , u

2
· ), the state dynamics are

dX i
t = bi (Θi

t ,Θ
−i
t ,Zt)dt + Z i,1

t dW 1
t + Z i,2

t dW 2
t , X i

T = x i
T , i = 1, 2, (39)

where Θi
t := (X i

t ,P ◦ (X i
t )−1, ui

t) and Zt = [Z 11
t Z 12

t Z 21
t Z 22

t ].
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Mean-field type games with BSDE dynamics: SMP

Assumption 1: bi (·, 0, . . . , 0) is square integrable and given v , bi (·, v) is
Ft-progressively measurable.
Assumption 2: Given a pair of admissible controls, bi is Lipschitz-continuous
in all other arguments (Wasserstein 2-metric for measures, trace-norm for
matrices).
These assumptions implies existence and uniqueness.1

Theorem

Under assumption 1 and 2, there exists a unique solution (X i
· , [Z

i1
· ,Z

i2
· ]),

i = 1, 2, to the mean-field BSDE system modelling player state dynam-
ics. Furthermore, Z ij

· is square integrable and E [supt∈[0,T ] X
2
t ] <∞.

The best reply (’cost’) functional of player i is

J i (ui
·; u
−i
· ) = E

[∫ T

0

f i (Θi
t ,Θ
−i
t )dt + hi (θi0, θ

−i
0 )

]
, (40)

where θit = (X i
t ,P ◦ (X i

t )−1). Goal: characterize Nash equilibria to this game.

1Rainer Buckdahn, Juan Li, and Shige Peng. “Mean-field backward stochastic differential equations and related partial differential
equations”. In: Stochastic Processes and their Applications 119.10 (2009), pp. 3133–3154.
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Mean-field type games with BSDE dynamics: SMP

1. Assume that there exists an equilibrium control pair û1
· , û

2
· . Make a spike

variation of û1
· ; for some u· ∈ U1 and Eε ⊂ [0,T ] of size |Eε| = ε,

ūε,1t :=

{
û1
t , t ∈ [0,T ]\Eε,

ut , t ∈ Eε.
(41)

Whenever player 1 uses ūε,1· , denote state dynamics by X̄ i,ε
· , i = 1, 2.

2. Compare the perturbed control’s best reply to the equilibrium,

J1(ūε,1· ; û2
· )− J1(û1

· , û
2
· ) = E

[∫ T

0

f̄ ε,1t − f̂ 1
t dt + h̄ε,10 − ĥ1

0

]
. (42)

3. Approximate the cost difference,

h̄ε,i0 − ĥi
0 =

2∑
j=1

{
∂x j ĥ

i
0(X̄ ε,j

0 − X̂ i
0) + E

[
(∂µj ĥ

i
0)∗(X̄ ε,j

0 − X̂ j
0)
]}

+
2∑

j=1

{
o
(
|X̄ ε,j

0 − X̂ j
0|
)

+ o
(
E [|X̄ ε,j

0 − X̂ j
0|

2]1/2
)}

.

(43)
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Mean-field type games with BSDE dynamics: SMP

Assumption 3: bi , f i , hi are, for all t, a.s. differentiable at the equilibrium,
where their derivatives are a.s. uniformly bounded for all t and
∂y j ĥ

i
0 + E [∗(∂µj ĥi

0)] ∈ L2
F0

(Ω;Rd).

Assumption 4: bi is a.s. Lipschitz in the controls, for all t.

4. Find the first variation processes:
Let assumptions 1-4 be in place and let (Y i

· , [V
i1
· ,V

i2
· ]), i = 1, 2 solve the linear

BSDE system
dY i

t =
(∑2

j=1{∂x j b̂
i
tY

j
t + E [(∂µj b̂i

t)
∗Y j

t ]}+
∑2

j,k=1 ∂z j,k b̂
i
tV

jk
t

+δ1b
i (t)1Eε(t)

)
dt +

∑2
j=1 V

ij
t dW

j
t ,

Y i
T = 0

(44)

where δiφ(t) := φ(θ̂it , ū
ε,i
t , Θ̂−i

t , Ẑt)− φ̂t . Then

sup
0≤t≤T

E

[
|Y i

t |2 +
2∑

j=1

∫ t

0

‖V ij
s ‖2

Fds

]
≤ Cε2

sup
0≤t≤T

E

[
|X̄ ε,i

t − X̂ i
t − Y i

t |2 +
2∑

j=1

∫ t

0

‖Z̄ ε,ijs − Ẑ ij
s − V ij

s ‖2
Fds

]
≤ Cε2.

(45)
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Mean-field type games with BSDE dynamics: SMP

Using step 4,

E [h̄ε,10 − ĥ1
0] = E

[
2∑

j=1

∂x j ĥ
1
0Y

j
0 + E [(∂µj ĥ

1
0)∗Y j

0 ]

]
+ o(ε). (46)

5. Find the duality relation by introducing the adjoint process:
Let assumptions 1-3 hold and let p1j

· be given by{
dp1j

t = −
{
∂x j Ĥ

1
t + E [∗(∂µj Ĥ1

t )]
}
dt −

∑2
k=1 ∂z jk Ĥ

1
t dW

k
t .

p1j
0 = ∂x j ĥ

1
0 + E [∗(∂µj ĥ1

0)]
(47)

where Ĥ1 := b̂1
t p

11
t + b̂2

t p
12
t − f̂ 1

t is player 1’s Hamiltonian, evaluated at the
equilibrium. Then the following duality relation holds

E

[
2∑

j=1

p1j
0 Y j

0

]
= −E

[∫ T

0

2∑
j=1

p1j
t δ1b

j(t)1Eε(t) + Y j
t

(
∂x j f̂

1
t + E [∗(∂µj f̂

1
t )]
)
dt

]
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Mean-field type games with BSDE dynamics: SMP

Use step 5 to conclude that

E
[
h̄ε,10 − ĥ1

0

]
= E

[
2∑

j=1

p1j
0 Y j

0

]
+ o(ε). (48)

6. Approximate the running cost difference, and get

J1(ūε,1· ; û2
· )− J1(û1

· , û
2
· ) = −E

[∫ T

0

δ1H
1(t)1Eε(t)dt

]
+ o(ε). (49)

Step 1-6 has lead us from functional minimization to pointwise minimization!1

Step 1-6 can be done for a spike pertubation of player 2’s control. The last
relationship between best reply difference and Hamiltonian difference yields
necessary and sufficient conditions for Nash equilibria.

1Alexander Aurell. “Mean-Field Type Games between Two Players Driven by Backward Stochastic Differential Equations”. In: (2018).
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Mean-field type games with BSDE dynamics: SMP

Necessary conditions

Suppose that (X̂ i
· , [Ẑ

i,1
· , Ẑ

i,2
· ]), i = 1, 2, is an equilibrium for the MFTG

and that pij
· , i , j = 1, 2, solves the adjoint equations. Then, for i = 1, 2,

ûi
t = max

α∈U i
H i (θ̂it , α, Θ̂

−i
t , Ẑt , p

i,1
t , pi,2

t ), a.s., a.e.t (50)

Sufficient conditions

Suppose ûi satisfies (50). Suppose furthermore that

(x1, µ1, u1, x2, µ2, u2) 7→ H i (x i , µi , ui , x−i , µ−i , u−i , z , pi1, pi2) (51)

is concave a.s. and

(x1, µ1, x2,mu2) 7→ hi (x i , µi , x−i , µ−i ) (52)

is convex a.s. Then û1
· , û

2
· constitute a Nash equilibrium control.
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Revisiting the LQ example

Our LQ example satisfies the sufficient conditions. Pointwise minimization of
the Hamiltonian yields

ûi
t =

ai
ri
pii
t . (53)

Steps 1-6 can be carried out for the central planner problem, though the first
variation and adjoint processes and the Hamiltonian will have different forms.
The central planner’s optimal control for player i is

ûi
t =

ai
ri
pi
t . (54)

Both (53) and (54) can be found explicitly (up to a set of Ricatti ODEs).
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Revisiting the LQ example

Improvement on a societal level can be quantified by the price of anarchy 1

PoA := sup
(û1
· ,û

2
· ) Nash

J(û1
· , û

1
· )
/

min
ui·∈U i ,i=1,2

J(u1
· , u

2
· ). (55)
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Figure: Variation of ρ2, weight for mean-field cost, in [0.2, 2].

1Christos Papadimitriou. “Algorithms, games, and the internet”. In: Proceedings of the thirty-third annual ACM symposium on
Theory of computing. ACM. 2001, pp. 749–753. 35 / 39



Revisiting the LQ example
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Figure: Variation of r2, weight on control, in [0.2, 4].
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Revisiting the LQ example
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Figure: Variation of ν1, weight on initial cost, in [0.2, 4].
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Revisiting the LQ example

x1
T a1 c11 c12 r1 ρ1 ν1 x1

0

-2 1 0.3 0 1 1 1 N (0, 0.1)

x2
T a2 c21 c22 r2 ρ2 ν2 x2

0

2 1 0 0.3 1 1 1 N (0, 0.1)

0 0.5 1 1.5 2
T

1

1.02

1.04

1.06

1.08

1.1

P
oA

Figure: Variation of time horizon T in [0.2, 2].
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Conclusion

I Many variations on control problems involving control-dependent marginal
distribution out there.

I Model suggested for certain pedestrian movement.

I Mean-field type game of players evolving according to BSDEs.

Thank you!
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