Relaxed optimal control

Alexander Aurell

November 3, 2016

Outline

Introduction
Example 1

Relaxed controls
Set of relaxed controls

The relaxed control problem
Strong formulation
Young measure
Chattering Lemma
Example 2
Example 3
Conclusion

Example 1

Let $U=\{-1,1\}$ be the set of control values.
Let $\mathcal{U}[0,1]$ be the set of all measurable functions

$$
u:[0,1] \rightarrow U
$$

An element of $\mathcal{U}[0,1]$ is called an admissible control.

Example 1

Let $U=\{-1,1\}$ be the set of control values.
Let $\mathcal{U}[0,1]$ be the set of all measurable functions

$$
u:[0,1] \rightarrow U
$$

An element of $\mathcal{U}[0,1]$ is called an admissible control.
Let the state x^{u} be governed by the dynamics

$$
x^{u}(t)=\int_{0}^{t} u(s) d s, \quad t \in[0,1], u \in \mathcal{U}[0,1] .
$$

Example 1

Let $U=\{-1,1\}$ be the set of control values.
Let $\mathcal{U}[0,1]$ be the set of all measurable functions

$$
u:[0,1] \rightarrow U
$$

An element of $\mathcal{U}[0,1]$ is called an admissible control.
Let the state x^{u} be governed by the dynamics

$$
x^{u}(t)=\int_{0}^{t} u(s) d s, \quad t \in[0,1], u \in \mathcal{U}[0,1] .
$$

We want to minimize the cost functional

$$
J(u)=\int_{0}^{1} x^{u}(s)^{2} d s
$$

over $\mathcal{U}[0,1]$.

Example 1

Claim 1

$$
\inf _{u \in \mathcal{U}[0,1]} J(u)=0
$$

Example 1

Claim 1

$$
\inf _{u \in \mathcal{U}[0,1]} J(u)=0
$$

A sequence $\left(u_{n}\right)_{n}$ such that $J\left(u_{n}\right) \rightarrow 0$ can be constructed. Let

$$
u_{n}(t)=(-1)^{k}, \quad \text { if } t \in\left[\frac{k}{n}, \frac{(k+1)}{n}\right), 0 \leq k \leq n-1
$$

Example 1

Claim 1

$$
\inf _{u \in \mathcal{U}[0,1]} J(u)=0
$$

A sequence $\left(u_{n}\right)_{n}$ such that $J\left(u_{n}\right) \rightarrow 0$ can be constructed. Let

$$
u_{n}(t)=(-1)^{k}, \quad \text { if } t \in\left[\frac{k}{n}, \frac{(k+1)}{n}\right), 0 \leq k \leq n-1
$$

Then $\left|x^{u_{n}}(t)\right| \leq n^{-1}$,

Example 1

Claim 1

$$
\inf _{u \in \mathcal{U}[0,1]} J(u)=0
$$

A sequence $\left(u_{n}\right)_{n}$ such that $J\left(u_{n}\right) \rightarrow 0$ can be constructed. Let

$$
u_{n}(t)=(-1)^{k}, \quad \text { if } t \in\left[\frac{k}{n}, \frac{(k+1)}{n}\right), 0 \leq k \leq n-1
$$

Then $\left|x^{u_{n}}(t)\right| \leq n^{-1}$, which implies $J\left(u_{n}\right) \leq n^{-2}$. Therefore

$$
\inf _{u \in \mathcal{U}[0,1]} J(u)=0
$$

Example 1

There is no $u \in \mathcal{U}[0,1]$ such that $J(u)=0$!
$J(u)=0 \Rightarrow x^{u}(t)=0 \forall t \in[0,1]$. This in turn implies that $u(t)=0$ which is not in $\mathcal{U}[0,1]$.

Example 1

There is no $u \in \mathcal{U}[0,1]$ such that $J(u)=0$!
$J(u)=0 \Rightarrow x^{u}(t)=0 \forall t \in[0,1]$. This in turn implies that $u(t)=0$ which is not in $\mathcal{U}[0,1]$.

Problem: the sequence $\left(u_{n}\right)$ has no limit in $\mathcal{U}[0,1]$!

Example 1

There is no $u \in \mathcal{U}[0,1]$ such that $J(u)=0$!
$J(u)=0 \Rightarrow x^{u}(t)=0 \forall t \in[0,1]$. This in turn implies that $u(t)=0$ which is not in $\mathcal{U}[0,1]$.

Problem: the sequence $\left(u_{n}\right)$ has no limit in $\mathcal{U}[0,1]$!
Relaxed controls allows us to find a limit in a larger space. Each $u \in \mathcal{U}[0,1]$ with the $\mathcal{P}(U)$-valued process $\left(\delta_{u(t)} ; t \in[0,1]\right)$ through the map

$$
u(t)=\int_{U} a \delta_{u(t)}(d a)
$$

Example 1

There is no $u \in \mathcal{U}[0,1]$ such that $J(u)=0$!
$J(u)=0 \Rightarrow x^{u}(t)=0 \forall t \in[0,1]$. This in turn implies that $u(t)=0$ which is not in $\mathcal{U}[0,1]$.

Problem: the sequence $\left(u_{n}\right)$ has no limit in $\mathcal{U}[0,1]$!
Relaxed controls allows us to find a limit in a larger space. Each $u \in \mathcal{U}[0,1]$ with the $\mathcal{P}(U)$-valued process $\left(\delta_{u(t)} ; t \in[0,1]\right)$ through the map

$$
u(t)=\int_{U} a \delta_{u(t)}(d a)
$$

Define $q_{n}(d t, d a):=\delta_{u_{n}(t)}(d a) d t \in \mathcal{P}([0,1] \times U)$ for previously defined u_{n}. Does $q_{n}(d t, d a)$ converge?

Example 1

Claim 2

$$
q_{n}(d t, d a) \Rightarrow \mu_{t}^{*}(d a) d t:=\frac{1}{2}\left(\delta_{-1}+\delta_{1}\right)(d a) d t
$$

Example 1

$$
q_{n}(d t, d a) \Rightarrow \mu_{t}^{*}(d a) d t:=\frac{1}{2}\left(\delta_{-1}+\delta_{1}\right)(d a) d t
$$

For any $\varphi \in C_{b}([0,1] \times U)$,

$$
\int_{[0,1] \times U} \varphi(t, a) q_{n}(d t, d a)=\sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} \varphi\left(t,(-1)^{k}\right) d t
$$

Since $[0,1]$ is compact, $t \mapsto \varphi(t, \pm 1)$ is uniformly continuous over $[0,1]$. So given $\varepsilon>0$, there exists an $m_{0}>0$ such that for all $m \geq m_{0},|\varphi(t, a)-\varphi(s, a)|<\varepsilon$ whenever $|t-s|<m^{-1}$.

Example 1

$$
q_{n}(d t, d a) \Rightarrow \mu_{t}^{*}(d a) d t:=\frac{1}{2}\left(\delta_{-1}+\delta_{1}\right)(d a) d t
$$

For any $\varphi \in C_{b}([0,1] \times U)$,

$$
\int_{[0,1] \times U} \varphi(t, a) q_{n}(d t, d a)=\sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} \varphi\left(t,(-1)^{k}\right) d t
$$

Since $[0,1]$ is compact, $t \mapsto \varphi(t, \pm 1)$ is uniformly continuous over $[0,1]$. So given $\varepsilon>0$, there exists an $m_{0}>0$ such that for all $m \geq m_{0},|\varphi(t, a)-\varphi(s, a)|<\varepsilon$ whenever $|t-s|<m^{-1}$.

Fix $m>m_{0}$ and let $n=2 m$. We have

$$
\int_{0}^{1} \varphi(t, a) d t=\sum_{j=0}^{m-1} \int_{\frac{2 j}{2 m}}^{\frac{2 j+1}{2 m}} \varphi(t, a) d t+\int_{\frac{2 j+1}{2 m}}^{\frac{2 j+2}{2 m}} \varphi(t, a) d t
$$

Example 1

Claim 2 cont.

$$
q_{n}(d t, d a) \Rightarrow \mu_{t}^{*}(d a) d t:=\frac{1}{2}\left(\delta_{-1}+\delta_{1}\right)(d a) d t
$$

For each $j \in\{0, \ldots, m-1\}$, the Mean-Value Theorem yields

$$
\left|\int_{\frac{2 j}{2 m}}^{\frac{2 j+1}{2 m}} \varphi(t, a) d t-\int_{\frac{2 j+1}{2 m}}^{\frac{2 j+2}{2 m}} \varphi(t, a) d t\right|<\frac{\varepsilon}{2 m}
$$

Example 1

Claim 2 cont.

$$
q_{n}(d t, d a) \Rightarrow \mu_{t}^{*}(d a) d t:=\frac{1}{2}\left(\delta_{-1}+\delta_{1}\right)(d a) d t
$$

For each $j \in\{0, \ldots, m-1\}$, the Mean-Value Theorem yields

$$
\left|\int_{\frac{2 j}{2 m}}^{\frac{2 j+1}{2 m}} \varphi(t, a) d t-\int_{\frac{2 j+1}{2 m}}^{\frac{2 j+2}{2 m}} \varphi(t, a) d t\right|<\frac{\varepsilon}{2 m}
$$

Hence, for $n=2 m$, we have

$$
\left|\sum_{k=0}^{n-1} \int_{\frac{k}{n}}^{\frac{k+1}{n}} \varphi\left(t,(-1)^{k}\right) d t-\frac{1}{2} \int_{0}^{1} \varphi(t,-1)+\varphi(t, 1) d t\right|<\frac{\varepsilon}{2}
$$

The case $n=2 m+1$ is treated in similar fashion.

Example 1

Consider the control problem associated with $\mathcal{P}(U)$-valued processes $\mu=\left(\mu_{t} ; t \in[0,1]\right)$,

$$
\begin{array}{ll}
\operatorname{minimize} & \mathcal{J}(\mu)=\int_{0}^{1}\left(x^{\mu}(t)\right)^{2} d t \\
\text { subject to } & x^{\mu}(t)=\int_{0}^{t} \int_{U} a \mu_{s}(d a) d s
\end{array}
$$

Example 1

Consider the control problem associated with $\mathcal{P}(U)$-valued processes $\mu=\left(\mu_{t} ; t \in[0,1]\right)$,

$$
\begin{array}{ll}
\operatorname{minimize} & \mathcal{J}(\mu)=\int_{0}^{1}\left(x^{\mu}(t)\right)^{2} d t \\
\text { subject to } & x^{\mu}(t)=\int_{0}^{t} \int_{U} a \mu_{s}(d a) d s
\end{array}
$$

Note that if $\mu_{t}(d a) d t=\delta_{u(t)}(d a) d t$ we have $\mathcal{J}(\mu)=J(u)$. Therefore the problem above is an extension of the original problem.

Example 1

Consider the control problem associated with $\mathcal{P}(U)$-valued processes $\mu=\left(\mu_{t} ; t \in[0,1]\right)$,

$$
\begin{array}{ll}
\operatorname{minimize} & \mathcal{J}(\mu)=\int_{0}^{1}\left(x^{\mu}(t)\right)^{2} d t \\
\text { subject to } & x^{\mu}(t)=\int_{0}^{t} \int_{U} a \mu_{s}(d a) d s
\end{array}
$$

Note that if $\mu_{t}(d a) d t=\delta_{u(t)}(d a) d t$ we have $\mathcal{J}(\mu)=J(u)$. Therefore the problem above is an extension of the original problem.

Again $\inf _{\mu} \mathcal{J}(\mu)=0$. For $\mu^{*}(d a) d t:=\frac{1}{2}\left(\delta_{-1}+\delta_{1}\right)(d a) d t$ we have $x^{\mu^{*}}(t)=0, t \geq 0$, which implies that $\mathcal{J}\left(\mu^{*}\right)=0$. Hence

$$
\inf _{\mu} \mathcal{J}(\mu)=\mathcal{J}\left(\mu^{*}\right)
$$

Example 1

Moreover,

$$
\inf _{u} J(u)=\inf _{\mu} \mathcal{J}(\mu)
$$

A candidate for the set of relaxed controls is $\mathcal{R} \subset \mathcal{P}([0,1] \times U)$ such that

- $q(d a, d t)$ projected on U coincides with a (\mathcal{F}_{t}-adapted) $\mathcal{P}(U)$-valued process $\mu_{t}(d a)$,
- $q(d a, d t)$ projected on $[0,1]$ coincides with the Lebesgue measure $d t$.
Essentially: $q(d a, d t)=\mu_{t}(d a) d t$.

Set of relaxed controls

Let (U, d) be a separable metric space. Example suggests that the set of admissible controls $\mathcal{U}[0, T]$ embeds into \mathcal{R} through the map

$$
\Psi: u \in \mathcal{U}[0, T] \mapsto \Psi(u)(d t, d a)=\delta_{u(t)}(d a) d t \in \mathcal{R}
$$

Set of relaxed controls

Let (U, d) be a separable metric space. Example suggests that the set of admissible controls $\mathcal{U}[0, T]$ embeds into \mathcal{R} through the map

$$
\Psi: u \in \mathcal{U}[0, T] \mapsto \Psi(u)(d t, d a)=\delta_{u(t)}(d a) d t \in \mathcal{R}
$$

Strict control: at each t we assign a fixed value $u(t) \in U$ to the control process.
Relaxed control : at each t we randomly choose a control from U with (random) probability $\mu_{t}(d a)$.

Set of relaxed controls

Let (U, d) be a separable metric space. Example suggests that the set of admissible controls $\mathcal{U}[0, T]$ embeds into \mathcal{R} through the map

$$
\Psi: u \in \mathcal{U}[0, T] \mapsto \Psi(u)(d t, d a)=\delta_{u(t)}(d a) d t \in \mathcal{R}
$$

Strict control: at each t we assign a fixed value $u(t) \in U$ to the control process.
Relaxed control : at each t we randomly choose a control from U with (random) probability $\mu_{t}(d a)$.

In view of $\Psi: J(u)=\mathcal{J}\left(\delta_{u}\right) \geq \inf _{\mu \in \mathcal{R}} \mathcal{J}(\mu)$.

Set of relaxed controls

Let (U, d) be a separable metric space. Example suggests that the set of admissible controls $\mathcal{U}[0, T]$ embeds into \mathcal{R} through the map

$$
\Psi: u \in \mathcal{U}[0, T] \mapsto \Psi(u)(d t, d a)=\delta_{u(t)}(d a) d t \in \mathcal{R}
$$

Strict control: at each t we assign a fixed value $u(t) \in U$ to the control process.
Relaxed control : at each t we randomly choose a control from U with (random) probability $\mu_{t}(d a)$.

In view of $\Psi: J(u)=\mathcal{J}\left(\delta_{u}\right) \geq \inf _{\mu \in \mathcal{R}} \mathcal{J}(\mu)$.
In Example 1: $\inf _{\mu \in \mathcal{R}} \mathcal{J}(\mu)=\inf _{u \in \mathcal{U}[0,1]} J(u)$. When can we expect this?

The full stochastic control problem

Let $U, \mathcal{U}[0, T]$ and \mathcal{R} be defined in line with previous slides. Let

$$
\begin{aligned}
& d x(t)=b(t, x(t), u(t)) d t+\sigma(t, x(t), u(t)) d W_{t} \\
& x(0)=x_{0}
\end{aligned}
$$

We want to minimize

$$
J(u)=\mathbb{E}\left[\int_{0}^{T} f(t, x(t), u(t)) d t+h(X(T))\right], u \in \mathcal{U}[0, T] .
$$

The full stochastic control problem

Let $U, \mathcal{U}[0, T]$ and \mathcal{R} be defined in line with previous slides. Let

$$
\begin{aligned}
& d x(t)=b(t, x(t), u(t)) d t+\sigma(t, x(t), u(t)) d W_{t} \\
& x(0)=x_{0}
\end{aligned}
$$

We want to minimize

$$
J(u)=\mathbb{E}\left[\int_{0}^{T} f(t, x(t), u(t)) d t+h(X(T))\right], u \in \mathcal{U}[0, T] .
$$

The relaxed cost functional is

$$
\mathcal{J}(\mu)=\mathbb{E}\left[\int_{0}^{T} \int_{U} f(t, x(t), a) \mu_{t}(d a) d t+h(x(T))\right], \mu \in \mathcal{R}
$$

Standing assumption: b, σ, f, h are bounded and continuous in (x, u).

Strong vs weak solutions of the dynamics

We can solve the dynamics in a strong (pathwise) or a weak (distributional) sense.

Strong solution:
Given a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t} ; t \in[0, T]\right), \mathbb{P}\right)$, an \mathcal{F}_{t}-adapted standard Wiener process W, an admissible control $u \in \mathcal{U}[0,1]$ and an initial value x_{0}, an \mathcal{F}_{t}-adapted continuous process $(x(t) ; t \in[0,1])$ is a strong solution if
$x(t)=x_{0}+\int_{0}^{t} b(s, x(s), u(s)) d s+\int_{0}^{t} \sigma(s, x(s), u(s)) d W_{s}, \mathbb{P}-$ a.s.
together with some integrability of the coefficients.

Strong vs weak solution of the dynamics

We can solve the dynamics in a strong (pathwise) or a weak (distributional) sense.

Weak control:
The tuple $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), \mathbb{P}, W, u, x\right)$ is called a weak control if

- $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), \mathbb{P}\right)$ is a filtered probability space
- u is a \mathcal{F}_{t}-adapted U-valued process.
- x is and \mathcal{F}_{t}-adapted and continuous process such that $x(0)=x_{0}$ and

$$
M^{\varphi}(t):=\varphi(x(t))-\varphi(x(0))-\int_{0}^{t} L_{s}^{u} \varphi(x(s)) d s
$$

is a \mathbb{P}-martingale for each $\varphi \in C_{b}^{2}(\mathbb{R})$.
Here, L^{u} is infinitesimal generator associated to the the dynamics

$$
L_{t}^{u} \varphi(x)=\frac{1}{2} \sigma^{2}(t, x, u) \varphi^{\prime \prime}(x)+b(t, x, u) \varphi^{\prime}(x)
$$

Strong vs weak relaxation of the dynamics

The two types of solution suggest two types of relaxation.
Strong relaxation: Integrate the coefficients b and σ against the relaxed control $\mu_{t}(d a)$,

$$
\begin{aligned}
x(t)=x_{0} & +\int_{0}^{t} \int_{U} b(s, x(s), a) \mu_{s}(d a) d s \\
& +\int_{0}^{t} \int_{U} \sigma(s, x(s), a) \mu_{s}(d a) d W_{s}
\end{aligned}
$$

Strong vs weak relaxation of the dynamics

The two types of solution suggest two types of relaxation.
Weak relaxed control:
The tuple $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), \mathbb{P}, W, \mu, x\right)$ is called a weak control if

- $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), \mathbb{P}\right)$ is a filtered probability space
- μ is a \mathcal{F}_{t}-adapted $\mathcal{P}(U)$-valued process such that $\mathbb{I}_{(0, t]} \mu_{t}$ is \mathcal{F}_{t}-measurable.
- x is and $\mathcal{F}_{t^{-}}$-adapted and continuous process such that $x(0)=x_{0}$ and

$$
M^{\varphi}(t):=\varphi(x(t))-\varphi(x(0))-\int_{0}^{t} \int_{U} L_{s}^{a} \varphi(x(s)) \mu_{s}(d a) d s
$$

is a \mathbb{P}-martingale for each $\varphi \in C_{b}^{2}(\mathbb{R})$.
Here, L^{u} is infinitesimal generator associated to the the dynamics

Young measure

Theorem 1

Assume that the sequence $\left(u_{n}\right)_{n}$ of \mathcal{F}_{t}-predictable and U valued controls is uniformly integrable,

$$
\lim _{c \rightarrow \infty} \sup _{n} \mathbb{E}\left[\int_{0}^{T}\left|u_{n}(t)\right| \mathbb{I}_{\left\{\left|u_{n}(t)\right| \geq c\right\}} d t\right]=0
$$

Then there exists a subsequence $\left(u_{n_{j}}\right)_{j}$ of $\left(u_{n}\right)_{n}$ and, for a.e. $t \in[0, T]$, a random probability measure μ_{t} on U such that

$$
\delta_{u_{n_{j}}(t)}(d a) d t \text { converges weakly to } \mu_{t}(d a) d t, \mathbb{P}-\text { a.s. }
$$

The process $\left(\mu_{t}(d a) ; t \in[0, T]\right)$ is called the family of Young measures associated with the subsequence $\left(u_{n_{j}}\right)_{j}$.

Young measure

A more restricted situation:

Lemma 1

Assume that U is a convex and compact subset of \mathbb{R}^{d}. Then there for all relaxed controls $\mu_{t}(d a) d t$ there exists a strict control u such that

$$
\int_{0}^{t} \int_{U} a \mu_{s}(d a) d s=\int_{0}^{t} u(s) d s, \quad t \in[0, T], \mathbb{P}-\text { a.s. }
$$

Chattering Lemma

Young measure: get relaxed control from sequence of strict controls.

Chattering Lemma is a result in the other direction.

Chattering Lemma

Young measure: get relaxed control from sequence of strict controls.

Chattering Lemma is a result in the other direction.

Theorem 2

Assume that U is a compact set. Let $\left(\mu_{t}\right)$ be a predictable $\mathcal{P}(U)$-valued process. Then there exists a sequence $\left(u_{n}(t)\right)_{n}$ of predictable U-valued processes such that

$$
\delta_{u_{n}(t)}(d a) d t \Rightarrow \mu_{t}(d a) d t, \mathbb{P}-\text { a.s. }
$$

Chattering Lemma

Young measure: get relaxed control from sequence of strict controls.

Chattering Lemma is a result in the other direction.

Theorem 2

Assume that U is a compact set. Let $\left(\mu_{t}\right)$ be a predictable $\mathcal{P}(U)$-valued process. Then there exists a sequence $\left(u_{n}(t)\right)_{n}$ of predictable U-valued processes such that

$$
\delta_{u_{n}(t)}(d a) d t \Rightarrow \mu_{t}(d a) d t, \mathbb{P}-\text { a.s. }
$$

Can it be so that with Chattering Lemma and some continuity of \mathcal{J}, we have $\inf _{\mu \in \mathcal{R}} \mathcal{J}(\mu) \geq \inf _{u \in \mathcal{U}[0, T]} J(u)$?

Example 2

Let $U=\{-1,1\}$ and consider the following problem

$$
\begin{array}{ll}
\operatorname{minimize} & J(u)=\mathbb{E}[h(x(1))] \\
\text { subject to } & x(t)=x_{0}+\int_{0}^{t} u(s) d W_{s}
\end{array}
$$

where h is some smooth function. Since $u \in\{-1,1\},\langle x\rangle_{t}=t$ and $x(t)-x_{0}$ is a standard Wiener process. Therefore

$$
g\left(t, x_{0}\right)=\inf _{u \in \mathcal{U}[0,1]} \mathbb{E}\left[h\left(x_{0}+\int_{0}^{t} u(s) d W_{s}\right)\right]
$$

satisfies the heat equation

$$
\frac{\partial g}{\partial t}(t, x)=\frac{1}{2} \frac{\partial^{2} g}{\partial x^{2}}(t, x), \quad g(0, x)=h(x)
$$

Example 2

The heat equation implies that $g(t, x) \neq h(x), t>0$. Consider the relaxed control $\mu_{t}(d a)=\frac{1}{2}\left(\delta_{-1}(d a)+\delta_{1}(d a)\right)$. The strongly relaxed control is

$$
x(t)=x_{0}+\int_{0}^{1} \int_{U} a \mu_{s}(d a) d W_{s}=x_{0}+\int_{0}^{1} \frac{1}{2}(-1+1) d W_{s}=x_{0}
$$

So

$$
\mathcal{J}(\mu)=\mathbb{E}\left[h\left(x_{0}+\int_{0}^{1} \int_{U} a \mu_{s}(d a) d W_{s}\right)\right]=\mathbb{E}\left[h\left(x_{0}\right)\right]=h\left(x_{0}\right)
$$

and

Example 3: $U=\left\{a_{1}, \ldots, a_{n}\right\}$

Every relaxed control $\mu_{t}(d a) d t$ is a convex combination of Dirac measures on the elements of U,

$$
\begin{equation*}
\mu_{t}(d a) d t=\sum_{i=1}^{n} c_{t}^{i} \delta_{a_{i}}(d a) d t \tag{1}
\end{equation*}
$$

c_{t}^{i} is a $[0,1]$-valued process and $\sum_{i=1}^{n} c_{t}^{i}=1$.

Example 3: $U=\left\{a_{1}, \ldots, a_{n}\right\}$

Every relaxed control $\mu_{t}(d a) d t$ is a convex combination of Dirac measures on the elements of U,

$$
\begin{equation*}
\mu_{t}(d a) d t=\sum_{i=1}^{n} c_{t}^{i} \delta_{a_{i}}(d a) d t \tag{1}
\end{equation*}
$$

c_{t}^{i} is a $[0,1]$-valued process and $\sum_{i=1}^{n} c_{t}^{i}=1$. The martingale M^{φ} has the form

$$
\begin{equation*}
M^{\varphi}(t)=\varphi(x(t))-\varphi(x(0))-\int_{0}^{t} \underbrace{\sum_{i=1}^{n} c_{s}^{i} L_{s}^{a_{i}}}_{=: \mathcal{L}_{s}} \varphi(x(s)) d s \tag{2}
\end{equation*}
$$

Example 3: $U=\left\{a_{1}, \ldots, a_{n}\right\}$

Every relaxed control $\mu_{t}(d a) d t$ is a convex combination of Dirac measures on the elements of U,

$$
\begin{equation*}
\mu_{t}(d a) d t=\sum_{i=1}^{n} c_{t}^{i} \delta_{a_{i}}(d a) d t \tag{1}
\end{equation*}
$$

c_{t}^{i} is a $[0,1]$-valued process and $\sum_{i=1}^{n} c_{t}^{i}=1$. The martingale M^{φ} has the form

$$
\begin{equation*}
M^{\varphi}(t)=\varphi(x(t))-\varphi(x(0))-\int_{0}^{t} \underbrace{\sum_{i=1}^{n} c_{s}^{i} L_{s}^{a_{i}}}_{=: \mathcal{L}_{s}} \varphi(x(s)) d s \tag{2}
\end{equation*}
$$

Example 2: $U=\left\{a_{1}, \ldots, a_{n}\right\}$

Note that $M^{\varphi}(t)=\int_{0}^{t} d \varphi(x(s))-\int_{0}^{t} \mathcal{L}_{s} \varphi(x(s)) d s$ where

$$
\begin{align*}
\mathcal{L}_{s} \varphi(x(s)) d s= & \sum_{i=1}^{n} c_{s}^{i} b\left(s, x(s), a_{i}\right) \varphi^{\prime}(x(s)) d s \\
& +\sum_{i=1}^{n} c_{s}^{i} \frac{1}{2} \sigma \sigma^{*}\left(s, x(s), a_{i}\right) \varphi^{\prime \prime}(x(s)) d s \tag{3}\\
d \varphi(x(s))= & \varphi^{\prime}(x(s)) d x(s)+\frac{1}{2} \varphi^{\prime \prime}(x(s)) d\langle x\rangle_{s}
\end{align*}
$$

Example 2: $U=\left\{a_{1}, \ldots, a_{n}\right\}$

Note that $M^{\varphi}(t)=\int_{0}^{t} d \varphi(x(s))-\int_{0}^{t} \mathcal{L}_{s} \varphi(x(s)) d s$ where

$$
\begin{align*}
\mathcal{L}_{s} \varphi(x(s)) d s= & \sum_{i=1}^{n} c_{s}^{i} b\left(s, x(s), a_{i}\right) \varphi^{\prime}(x(s)) d s \\
& +\sum_{i=1}^{n} c_{s}^{i} \frac{1}{2} \sigma \sigma^{*}\left(s, x(s), a_{i}\right) \varphi^{\prime \prime}(x(s)) d s \tag{3}\\
d \varphi(x(s))= & \varphi^{\prime}(x(s)) d x(s)+\frac{1}{2} \varphi^{\prime \prime}(x(s)) d\langle x\rangle_{s}
\end{align*}
$$

For the strong relaxation,

$$
\begin{align*}
& d x(s)=\sum_{i=1}^{n} c_{s}^{i} b\left(s, x(s), a_{i}\right) d s+\sum_{i=1}^{n} c_{s}^{i} \sigma\left(s, x(s), a_{i}\right) d W_{s} \\
& d\langle x\rangle_{s}=\left(\sum_{i=1}^{n} c_{s}^{i} \sigma\left(s, x(s), a_{i}\right)\right)^{2} d s \tag{4}
\end{align*}
$$

A characterization of the weakly relaxed process

Def: Orthogonal martingale measure

The random function $m: \Omega \times[0, T] \times U$ is a continuous martingale measure with covariance measure $\nu:[0, T] \times U \times$ U if

- $m(\cdot, A)$ is a continuous square-integrable martingale for all $A \in \mathcal{B}(U)$,
- the process

$$
\begin{equation*}
m(t, A) m(t, B)-\int_{[0, t] \times A \times B} \nu(d t, d x, d y) \tag{5}
\end{equation*}
$$

is a martingale. If ν is supported on the diagonal of the set $U \times U$, i.e. $\nu(d t, d x, d y)=\delta_{x}(d y) \widetilde{\nu}(d x, d t)$, then m is an orthogonal martingale measure with intensity $\widetilde{\nu}$.

A characterization of the weakly relaxed process

Theorem 3

Let \mathbb{P} be the solution to relaxed martingale problem. Then \mathbb{P} is the probability law of x satisfying

$$
\begin{equation*}
d x(t)=\int_{U} b(t, x(t), a) \mu_{t}(d a) d t+\int_{U} \sigma(t, x(t), a) m(d t, d a) \tag{6}
\end{equation*}
$$

where m is an orthogonal continuous martingale measure with intensity $\mu_{t}(d a) d t$.

A characterization of the weakly relaxed process

Theorem 4

Let m be a continous orthogonal martingale-measure with intensity $\mu_{t}(d a) d t$. Then there exists a W iener process W and a sequence of predictable U-valued processes $\left(u_{n}\right)$ such that for all continuous and bounded $\varphi: U \rightarrow \mathbb{R}$ and for all $t \in[0, T]$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left(m_{t}(\varphi)-\int_{0}^{t} \varphi\left(u_{n}(s)\right) d W_{s}\right)^{2}\right]=0 \tag{7}
\end{equation*}
$$

where $m_{t}(\varphi)=\int_{0}^{t} \int_{U} \varphi(a) m(d s, d a)$.

A characterization of the weakly relaxed process

For the strongly relaxed dynamics, the martingale measure is

$$
\begin{align*}
m(t, A) & =\int_{0}^{t} \int_{A} \mu_{s}(d a) d W_{s} \\
& =\int_{0}^{t} \int_{A} \sum_{i=1}^{n} c_{s}^{i} \delta_{a_{i}}(d a) d W_{s}=\int_{0}^{t} \sum_{i=1}^{n} c_{s}^{i} \mathbb{I}_{\left\{a_{i} \in A\right\}} d W_{s} \tag{8}
\end{align*}
$$

The quadratic variation process is not supported only on the diagonal of $U \times U$!

$$
\begin{equation*}
\nu(d t, d a, d b)=\mu_{t}(d a) \mu_{t}(d b) d t \tag{9}
\end{equation*}
$$

Example 2: $U=\left\{a_{1}, \ldots, a_{n}\right\}$

Candidate orthogonal martingale measure:

$$
\begin{equation*}
m(t, A)=\int_{0}^{t} \sum_{i=1}^{n} \sqrt{c_{s}^{i} \mathbb{I}_{a_{i} \in A}} d W_{s}^{i} \tag{10}
\end{equation*}
$$

Indeed,

$$
\begin{equation*}
\nu(d t, d a, d b)=\delta_{a}(d b) \underbrace{\sum_{i=1}^{n} \sqrt{c_{s}^{i}} \delta_{a_{i}}(d a) d t}_{=\mu_{t}(d a) d t} \tag{11}
\end{equation*}
$$

Thus the weakly relaxed dynamics are

$$
\begin{align*}
d x(t) & =\int_{U} b(t, x(t), a) \mu_{t}(d a) d t+\int_{U} \sigma(t, x(t), a) m(d t, d a) \\
& =\sum_{i=1}^{n} b\left(t, x(t), a_{i}\right) c_{t}^{i} d t+\sum_{i=1}^{n} \sigma\left(t, x(t), a_{i}\right) \sqrt{c_{t}^{i}} d W_{t}^{i} \tag{12}
\end{align*}
$$

Conclusions

Summary:

- $\inf _{u \in U} J(u)=\inf _{\mu \in \mathcal{R}} \mathcal{J}(\mu)$
- Weak relaxation preserves convergence

Conclusions

Summary:

- $\inf _{u \in U} J(u)=\inf _{\mu \in \mathcal{R}} \mathcal{J}(\mu)$
- Weak relaxation preserves convergence

Further applications of relaxed control

- Decision theory (posterior risk)
- Game theory (mixed strategies)

