
Relaxed optimal control

Alexander Aurell

November 3, 2016



Outline

Introduction
Example 1

Relaxed controls
Set of relaxed controls

The relaxed control problem
Strong formulation
Young measure
Chattering Lemma
Example 2
Example 3
Conclusion



Example 1

Let U = {−1, 1} be the set of control values.

Let U [0, 1] be the set of all measurable functions

u : [0, 1]→ U.

An element of U [0, 1] is called an admissible control.

Let the state xu be governed by the dynamics

xu(t) =

∫ t

0
u(s)ds, t ∈ [0, 1], u ∈ U [0, 1].

We want to minimize the cost functional

J(u) =

∫ 1

0
xu(s)2ds

over U [0, 1].
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Example 1

Claim 1

inf
u∈U [0,1]

J(u) = 0.

A sequence (un)n such that J(un)→ 0 can be constructed. Let

un(t) = (−1)k , if t ∈
[k
n
,

(k + 1)

n

)
, 0 ≤ k ≤ n − 1

Then |xun(t)| ≤ n−1, which implies J(un) ≤ n−2. Therefore

inf
u∈U [0,1]

J(u) = 0.
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There is no u ∈ U [0, 1] such that J(u) = 0!

J(u) = 0⇒ xu(t) = 0 ∀t ∈ [0, 1]. This in turn implies that
u(t) = 0 which is not in U [0, 1].

Problem: the sequence (un) has no limit in U [0, 1]!

Relaxed controls allows us to find a limit in a larger space. Each
u ∈ U [0, 1] with the P(U)-valued process (δu(t); t ∈ [0, 1])
through the map

u(t) =

∫
U
aδu(t)(da)

Define qn(dt, da) := δun(t)(da)dt ∈ P([0, 1]× U) for previously
defined un. Does qn(dt, da) converge?



Example 1

There is no u ∈ U [0, 1] such that J(u) = 0!

J(u) = 0⇒ xu(t) = 0 ∀t ∈ [0, 1]. This in turn implies that
u(t) = 0 which is not in U [0, 1].

Problem: the sequence (un) has no limit in U [0, 1]!

Relaxed controls allows us to find a limit in a larger space. Each
u ∈ U [0, 1] with the P(U)-valued process (δu(t); t ∈ [0, 1])
through the map

u(t) =

∫
U
aδu(t)(da)

Define qn(dt, da) := δun(t)(da)dt ∈ P([0, 1]× U) for previously
defined un. Does qn(dt, da) converge?



Example 1

There is no u ∈ U [0, 1] such that J(u) = 0!

J(u) = 0⇒ xu(t) = 0 ∀t ∈ [0, 1]. This in turn implies that
u(t) = 0 which is not in U [0, 1].

Problem: the sequence (un) has no limit in U [0, 1]!

Relaxed controls allows us to find a limit in a larger space. Each
u ∈ U [0, 1] with the P(U)-valued process (δu(t); t ∈ [0, 1])
through the map

u(t) =

∫
U
aδu(t)(da)

Define qn(dt, da) := δun(t)(da)dt ∈ P([0, 1]× U) for previously
defined un. Does qn(dt, da) converge?



Example 1

There is no u ∈ U [0, 1] such that J(u) = 0!

J(u) = 0⇒ xu(t) = 0 ∀t ∈ [0, 1]. This in turn implies that
u(t) = 0 which is not in U [0, 1].

Problem: the sequence (un) has no limit in U [0, 1]!

Relaxed controls allows us to find a limit in a larger space. Each
u ∈ U [0, 1] with the P(U)-valued process (δu(t); t ∈ [0, 1])
through the map

u(t) =

∫
U
aδu(t)(da)

Define qn(dt, da) := δun(t)(da)dt ∈ P([0, 1]× U) for previously
defined un. Does qn(dt, da) converge?



Example 1
Claim 2

qn(dt, da)⇒ µ∗t (da)dt :=
1

2
(δ−1 + δ1)(da)dt

For any ϕ ∈ Cb([0, 1]× U),∫
[0,1]×U

ϕ(t, a)qn(dt, da) =
n−1∑
k=0

∫ k+1
n

k
n

ϕ(t, (−1)k)dt

Since [0, 1] is compact, t 7→ ϕ(t,±1) is uniformly continuous over
[0, 1]. So given ε > 0, there exists an m0 > 0 such that for all
m ≥ m0, |ϕ(t, a)− ϕ(s, a)| < ε whenever |t − s| < m−1.

Fix m > m0 and let n = 2m. We have∫ 1

0
ϕ(t, a)dt =

m−1∑
j=0

∫ 2j+1
2m

2j
2m

ϕ(t, a)dt +

∫ 2j+2
2m

2j+1
2m

ϕ(t, a)dt.
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Claim 2 cont.

qn(dt, da)⇒ µ∗t (da)dt :=
1

2
(δ−1 + δ1)(da)dt

For each j ∈ {0, . . . ,m − 1}, the Mean-Value Theorem yields∣∣∣∣∣
∫ 2j+1

2m

2j
2m

ϕ(t, a)dt −
∫ 2j+2

2m

2j+1
2m

ϕ(t, a)dt

∣∣∣∣∣ < ε

2m

Hence, for n = 2m, we have∣∣∣∣∣
n−1∑
k=0

∫ k+1
n

k
n

ϕ(t, (−1)k)dt − 1

2

∫ 1

0
ϕ(t,−1) + ϕ(t, 1)dt

∣∣∣∣∣ < ε

2

The case n = 2m + 1 is treated in similar fashion.
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Example 1

Consider the control problem associated with P(U)-valued
processes µ = (µt ; t ∈ [0, 1]),

minimize J (µ) =

∫ 1

0
(xµ(t))2dt

subject to xµ(t) =

∫ t

0

∫
U
aµs(da)ds.

Note that if µt(da)dt = δu(t)(da)dt we have J (µ) = J(u).
Therefore the problem above is an extension of the original
problem.

Again infµ J (µ) = 0. For µ∗(da)dt := 1
2(δ−1 + δ1)(da)dt we have

xµ
∗
(t) = 0, t ≥ 0, which implies that J (µ∗) = 0. Hence

inf
µ
J (µ) = J (µ∗).
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Example 1

Moreover,
inf
u
J(u) = inf

µ
J (µ)

A candidate for the set of relaxed controls is R ⊂ P([0, 1]× U)
such that

I q(da, dt) projected on U coincides with a (Ft-adapted)
P(U)-valued process µt(da),

I q(da, dt) projected on [0, 1] coincides with the Lebesgue
measure dt.

Essentially: q(da, dt) = µt(da)dt.



Set of relaxed controls

Let (U, d) be a separable metric space. Example suggests that the
set of admissible controls U [0,T ] embeds into R through the map

Ψ : u ∈ U [0,T ] 7→ Ψ(u)(dt, da) = δu(t)(da)dt ∈ R

Strict control: at each t we assign a fixed value u(t) ∈ U to the
control process.
Relaxed control : at each t we randomly choose a control from U
with (random) probability µt(da).

In view of Ψ: J(u) = J (δu) ≥ infµ∈R J (µ).

In Example 1: infµ∈R J (µ) = infu∈U [0,1] J(u). When can we
expect this?
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The full stochastic control problem

Let U, U [0,T ] and R be defined in line with previous slides. Let

dx(t) = b(t, x(t), u(t))dt + σ(t, x(t), u(t))dWt ,

x(0) = x0.

We want to minimize

J(u) = E
[∫ T

0
f (t, x(t), u(t))dt + h(X (T ))

]
, u ∈ U [0,T ].

The relaxed cost functional is

J (µ) = E
[∫ T

0

∫
U
f (t, x(t), a)µt(da)dt + h(x(T ))

]
, µ ∈ R.

Standing assumption: b, σ, f , h are bounded and continuous in
(x , u).
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Strong vs weak solutions of the dynamics

We can solve the dynamics in a strong (pathwise) or a weak
(distributional) sense.

Strong solution:
Given a filtered probability space (Ω,F , (Ft ; t ∈ [0,T ]),P), an
Ft-adapted standard Wiener process W , an admissible control
u ∈ U [0, 1] and an initial value x0, an Ft-adapted continuous
process (x(t); t ∈ [0, 1]) is a strong solution if

x(t) = x0+

∫ t

0
b(s, x(s), u(s))ds+

∫ t

0
σ(s, x(s), u(s))dWs , P−a.s.

together with some integrability of the coefficients.



Strong vs weak solution of the dynamics
We can solve the dynamics in a strong (pathwise) or a weak
(distributional) sense.

Weak control:
The tuple (Ω,F , (Ft),P,W , u, x) is called a weak control if

I (Ω,F , (Ft),P) is a filtered probability space

I u is a Ft-adapted U-valued process.

I x is and Ft-adapted and continuous process such that
x(0) = x0 and

Mϕ(t) := ϕ(x(t))− ϕ(x(0))−
∫ t

0
Lusϕ(x(s))ds

is a P-martingale for each ϕ ∈ C 2
b (R).

Here, Lu is infinitesimal generator associated to the the dynamics

Lutϕ(x) =
1

2
σ2(t, x , u)ϕ′′(x) + b(t, x , u)ϕ′(x).



Strong vs weak relaxation of the dynamics

The two types of solution suggest two types of relaxation.

Strong relaxation:
Integrate the coefficients b and σ against the relaxed control
µt(da),

x(t) = x0 +

∫ t

0

∫
U
b(s, x(s), a)µs(da)ds

+

∫ t

0

∫
U
σ(s, x(s), a)µs(da)dWs



Strong vs weak relaxation of the dynamics

The two types of solution suggest two types of relaxation.

Weak relaxed control:
The tuple (Ω,F , (Ft),P,W , µ, x) is called a weak control if

I (Ω,F , (Ft),P) is a filtered probability space

I µ is a Ft-adapted P(U)-valued process such that I(0,t]µt is
Ft-measurable.

I x is and Ft-adapted and continuous process such that
x(0) = x0 and

Mϕ(t) := ϕ(x(t))− ϕ(x(0))−
∫ t

0

∫
U
Lasϕ(x(s))µs(da)ds

is a P-martingale for each ϕ ∈ C 2
b (R).

Here, Lu is infinitesimal generator associated to the the dynamics



Young measure

Theorem 1

Assume that the sequence (un)n of Ft-predictable and U-
valued controls is uniformly integrable,

lim
c→∞

sup
n

E
[∫ T

0
|un(t)|I{|un(t)|≥c}dt

]
= 0.

Then there exists a subsequence (unj )j of (un)n and, for a.e.
t ∈ [0,T ], a random probability measure µt on U such that

δunj (t)(da)dt converges weakly to µt(da)dt, P− a.s.

The process (µt(da); t ∈ [0,T ]) is called the family of Young
measures associated with the subsequence (unj )j .



Young measure

A more restricted situation:

Lemma 1

Assume that U is a convex and compact subset of Rd . Then
there for all relaxed controls µt(da)dt there exists a strict
control u such that∫ t

0

∫
U
aµs(da)ds =

∫ t

0
u(s)ds, t ∈ [0,T ], P− a.s.



Chattering Lemma

Young measure: get relaxed control from sequence of strict
controls.

Chattering Lemma is a result in the other direction.

Theorem 2

Assume that U is a compact set. Let (µt) be a predictable
P(U)-valued process. Then there exists a sequence (un(t))n
of predictable U-valued processes such that

δun(t)(da)dt ⇒ µt(da)dt, P− a.s.

Can it be so that with Chattering Lemma and some continuity of
J , we have infµ∈R J (µ) ≥ infu∈U [0,T ] J(u)?
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Example 2

Let U = {−1, 1} and consider the following problem

minimize J(u) = E [h(x(1))]

subject to x(t) = x0 +

∫ t

0
u(s)dWs .

where h is some smooth function. Since u ∈ {−1, 1}, 〈x〉t = t and
x(t)− x0 is a standard Wiener process. Therefore

g(t, x0) = inf
u∈U [0,1]

E
[
h(x0 +

∫ t

0
u(s)dWs)

]
satisfies the heat equation

∂g

∂t
(t, x) =

1

2

∂2g

∂x2
(t, x), g(0, x) = h(x).



Example 2

The heat equation implies that g(t, x) 6= h(x), t > 0. Consider the
relaxed control µt(da) = 1

2(δ−1(da) + δ1(da)). The strongly
relaxed control is

x(t) = x0 +

∫ 1

0

∫
U
aµs(da)dWs = x0 +

∫ 1

0

1

2
(−1 + 1)dWs = x0,

So

J (µ) = E
[
h(x0 +

∫ 1

0

∫
U
aµs(da)dWs)

]
= E [h(x0)] = h(x0)

and



Example 3: U = {a1, . . . , an}

Every relaxed control µt(da)dt is a convex combination of Dirac
measures on the elements of U,

µt(da)dt =
n∑

i=1

c itδai (da)dt, (1)

c it is a [0, 1]-valued process and
∑n

i=1 c
i
t = 1.

The martingale Mϕ

has the form

Mϕ(t) = ϕ(x(t))− ϕ(x(0))−
∫ t

0

n∑
i=1

c isL
ai
s︸ ︷︷ ︸

=:Ls

ϕ(x(s))ds. (2)
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Example 2: U = {a1, . . . , an}
Note that Mϕ(t) =

∫ t
0 dϕ(x(s))−

∫ t
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c is
1

2
σσ∗(s, x(s), ai )ϕ

′′(x(s))ds

dϕ(x(s)) = ϕ′(x(s))dx(s) +
1

2
ϕ′′(x(s))d〈x〉s
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For the strong relaxation,

dx(s) =
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c isb(s, x(s), ai )ds +
n∑

i=1

c isσ(s, x(s), ai )dWs

d〈x〉s =

(
n∑

i=1

c isσ(s, x(s), ai )

)2

ds

(4)
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A characterization of the weakly relaxed process

Def: Orthogonal martingale measure

The random function m : Ω × [0,T ] × U is a continuous
martingale measure with covariance measure ν : [0,T ]×U×
U if

I m(·,A) is a continuous square-integrable martingale for
all A ∈ B(U),

I the process

m(t,A)m(t,B)−
∫
[0,t]×A×B

ν(dt, dx , dy) (5)

is a martingale. If ν is supported on the diagonal of the
set U ×U, i.e. ν(dt, dx , dy) = δx(dy)ν̃(dx , dt), then m
is an orthogonal martingale measure with intensity ν̃.



A characterization of the weakly relaxed process

Theorem 3

Let P be the solution to relaxed martingale problem. Then P
is the probability law of x satisfying

dx(t) =

∫
U
b(t, x(t), a)µt(da)dt +

∫
U
σ(t, x(t), a)m(dt, da)

(6)
where m is an orthogonal continuous martingale measure with
intensity µt(da)dt.



A characterization of the weakly relaxed process

Theorem 4

Let m be a continous orthogonal martingale-measure with
intensity µt(da)dt. Then there exists a Wiener process W
and a sequence of predictable U-valued processes (un) such
that for all continuous and bounded ϕ : U → R and for all
t ∈ [0,T ]

lim
n→∞

E

[(
mt(ϕ)−

∫ t

0
ϕ(un(s))dWs

)2
]

= 0 (7)

where mt(ϕ) =
∫ t
0

∫
U ϕ(a)m(ds, da).



A characterization of the weakly relaxed process

For the strongly relaxed dynamics, the martingale measure is

m(t,A) =

∫ t

0

∫
A
µs(da)dWs

=

∫ t

0

∫
A

n∑
i=1

c isδai (da)dWs =

∫ t

0

n∑
i=1

c isI{ai∈A}dWs

(8)

The quadratic variation process is not supported only on the
diagonal of U × U!

ν(dt, da, db) = µt(da)µt(db)dt (9)



Example 2: U = {a1, . . . , an}
Candidate orthogonal martingale measure:

m(t,A) =

∫ t

0

n∑
i=1

√
c isIai∈AdW

i
s (10)

Indeed,

ν(dt, da, db) = δa(db)
n∑

i=1

√
c isδai (da)dt︸ ︷︷ ︸

=µt(da)dt

(11)

Thus the weakly relaxed dynamics are

dx(t) =

∫
U
b(t, x(t), a)µt(da)dt +

∫
U
σ(t, x(t), a)m(dt, da)

=
n∑

i=1

b(t, x(t), ai )c
i
tdt +

n∑
i=1

σ(t, x(t), ai )
√
c itdW

i
t

(12)



Conclusions

Summary:

I infu∈U J(u) = infµ∈R J (µ)

I Weak relaxation preserves convergence

Further applications of relaxed control

I Decision theory (posterior risk)

I Game theory (mixed strategies)
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