On the mean-field type approach to crowd dynamics: the behavior of pedestrians near walls

Alexander Aurell

Department of Mathematics, KTH Stockholm

ICIAM, Valencia, July 14-19, 2019
(Based on joint work with Boualem Djehiche (KTH))

Pedestrian crowds in confined domains

Example: Unidirectional pedestrian flow

Experimental results show that average pedestrian speed in a cross-section of a corridor can be higher in the center than near the walls ${ }^{2}$, but also higher near the walls ${ }^{3}$, depending on the circumstances (congestion, etc).

Figure 2. Velocity distributions as measured in the environment E_{1} (\bar{v}^{+}in red, \bar{v}^{-}in blue). Error bars are obtained as standard deviations of values of \bar{v} averaged over time windows of length 1200 s .
doi:10.1371/iournal.pone.0050720.q002

[^0]
Pedestrian crowds in confined domains

Treatment of walls in pedestrian crowd models

Modeling approach	Wall modeling
Social force	Repulsive forces, disutility
Cellular automata (CA)	Forbidden cells
Continuum limit of CA	Neumann/no-flux boundary conditions
Hughes flow model	Neumann/no-flux boundary conditions, oblique reflection
Mean-field games/control/type games	Neumann/no-flux boundary conditions, disutility

Neumann/no-flux boundary conditions on the pedestrian density correspond to reflection.

Pedestrian crowds in confined domains: the mean-field approach

Disutility

S Hoogendoorn and P Bovy. "Pedestrian route-choice and activity scheduling theory and models".
In: Transportation Research Part B: Methodological 38.2 (2004), pp. 169-190
C Dogbé. "Modeling crowd dynamics by the mean-field limit approach". In: Mathematical and Computer Modelling 52.9-10 (2010), pp. 1506-1520

Neumann/No-flux

A Lachapelle and M-T Wolfram. "On a mean field game approach modeling congestion and aversion in pedestrian crowds". In: Transportation research part B: methodological 45.10 (2011), pp. 1572-1589

M Burger et al. "On a mean field game optimal control approach modeling fast exit scenarios in human crowds". In: Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on. IEEE. 2013, pp. 3128-3133
M Burger et al. "Mean field games with nonlinear mobilities in pedestrian dynamics". In:
Discrete and Continuous Dynamical Systems-Series B (2014)
M Cirant. "Multi-population mean field games systems with Neumann boundary conditions". In: Journal de Mathématiques Pures et Appliquées 103.5 (2015), pp. 1294-1315

Y Achdou, M Bardi, and M Cirant. "Mean field games models of segregation". In: Mathematical Models and Methods in Applied Sciences 27.01 (2017), pp. 75-113

In this talk we will introduce
sticky reflected SDEs of mean-field type with boundary diffusion as an alternative approach to wall modeling in the mean-field approach to crowd dynamics.

Outline

1. Sticky reflected SDEs of mean-field type with boundary diffusion
2. Weak optimal control of sticky reflected SDEs of mean-field type with boundary diffusion
3. Particle picture
4. Example: Unidirectional pedestrian flow in a tight corridor

Sticky reflected SDEs of mean-field type with boundary diffusion

Consider the SDE system

$$
\left\{\begin{array}{l}
d X_{t}=\frac{1}{2} d \ell_{t}^{0}(X)+1_{\left\{X_{t}>0\right\}} d B_{t}, \quad X_{0}=x_{0} \tag{1}\\
1_{\left\{X_{t}=0\right\}} d t=\frac{1}{2 \gamma} d \ell_{t}^{0}(X)
\end{array}\right.
$$

where

- $x_{0} \in \mathbb{R}_{+}$,
- $\gamma \in(0, \infty)$ is a given constant,
- $\ell_{0}(X)$ is the local time of X at 0 ,
- B is a standard Brownian motion.

Engelberg and Peskir (2014) ${ }^{2}$:
System (1) has no strong solution but a unique weak solution, called a reflected Brownian motion X in \mathbb{R}_{+}sticky at 0 .

[^1]
Sticky reflected SDEs of mean-field type with boundary diffusion

Grothaus and Vosshall (2017) ${ }^{2}$ extentend the result to a bounded domain $\mathcal{D} \subset \mathbb{R}^{d}$ with sticky C^{2}-smooth boundary $\partial \mathcal{D}$.

To write down the sticky reflected SDE with boundary diffusion system, let

- $n(x)$ be the outward normal of $\partial \mathcal{D}$ at x,
- $\pi(x):=E-n(x)(n(x))^{*}$, the orthogonal projection on the tangent space of $\partial \mathcal{D}$ at x,
- $\kappa(x):=(\pi(x) \nabla) \cdot n(x)$, the mean curvature of $\partial \mathcal{D}$ at x.

These quantities are uniformly bounded over $\partial \mathcal{D}$.

[^2]
Sticky reflected SDEs of mean-field type with boundary diffusion

Furthermore, let

- $\Omega:=C\left([0, T] ; \mathbb{R}^{d}\right)$ be path space,
- \mathcal{F} the Borel σ-field over Ω,
- $X_{t}(\omega)=\omega(t)$ the coordinate process,
- \mathbb{F} the $m \in \mathcal{P}(\Omega)$-completed filtration generated by X.

[^3]
Sticky reflected SDEs of mean-field type with boundary diffusion

Furthermore, let

- $\Omega:=C\left([0, T] ; \mathbb{R}^{d}\right)$ be path space,
- \mathcal{F} the Borel σ-field over Ω,
- $X_{t}(\omega)=\omega(t)$ the coordinate process,
- \mathbb{F} the $m \in \mathcal{P}(\Omega)$-completed filtration generated by X.

There exists a unique probability measure \mathbb{P} on (Ω, \mathcal{F}) under which

$$
\left\{\begin{array}{l}
d X_{t}=1_{\mathcal{D}}\left(X_{t}\right) d B_{t}+1_{\partial \mathcal{D}}\left(X_{t}\right)\left(d B_{t}^{\partial \mathcal{D}}-\frac{1}{2 \gamma} n\left(X_{t}\right) d t\right) \\
d B_{t}^{\partial \mathcal{D}}=\pi\left(X_{t}\right) \circ d B_{t}=-\frac{1}{2} \kappa\left(X_{t}\right) n\left(X_{t}\right) d t+\pi\left(X_{t}\right) d B_{t} \\
B \text { standard Brownian motion in } \mathbb{R}^{d}, X_{0}=x_{0} \in \overline{\mathcal{D}}, \gamma>0
\end{array}\right.
$$

and X is $C([0, T] ; \overline{\mathcal{D}})$-valued \mathbb{P}-a.s. (in particular, X is \mathbb{P}-a.s. uniformly bounded). ${ }^{2}$

[^4]
Sticky reflected SDEs of mean-field type with boundary diffusion

$$
d X_{t}=\left(1_{\mathcal{D}}\left(X_{t}\right)+1_{\partial \mathcal{D}}\left(X_{t}\right) \pi\left(X_{t}\right)\right) d B_{t}-1_{\partial \mathcal{D}}\left(X_{t}\right) \frac{1}{2}\left(\kappa\left(X_{t}\right)+\frac{1}{\gamma}\right) n\left(X_{t}\right) d t
$$

The sticky reflected SDE with boundary diffusion is composed of

- interior diffusion $1_{\mathcal{D}}\left(X_{t}\right) d B_{t}$,
- boundary diffusion $1_{\partial \mathcal{D}}\left(X_{t}\right) d B_{t}^{\partial \mathcal{D}}$
- normal sticky reflection $-1_{\partial \mathcal{D}}\left(X_{t}\right) \frac{1}{2 \gamma} n\left(X_{t}\right) d t$

> From now on, we abbreviate $d X_{t}=: \sigma\left(X_{t}\right) d B_{t}+a\left(X_{t}\right) d t$.

$$
\sigma\left(X_{t}\right):=1_{\mathcal{D}}\left(X_{t}\right)+1_{\partial \mathcal{D}}\left(X_{t}\right) \pi\left(X_{t}\right), a\left(X_{t}\right):=-1_{\partial \mathcal{D}}\left(X_{t}\right) \frac{1}{2}\left(\kappa\left(X_{t}\right)+\frac{1}{\gamma}\right) n\left(X_{t}\right) .
$$

are bounded.

The stickiness level γ

γ represents the level of stickiness of $\partial \mathcal{D}$.
Let

- λ be the Lebesgue measure on \mathbb{R}^{d},
- s be the surface measure on $\partial \mathcal{D}$,
- $\rho:=1_{\mathcal{D}} \alpha \lambda+1_{\partial \mathcal{D}} \alpha^{\prime} s, \quad \alpha, \alpha^{\prime} \in \mathbb{R}$.

Choosing

$$
\alpha=\bar{\alpha} / \lambda(\mathcal{D}), \alpha^{\prime}=(1-\bar{\alpha}) / s(\partial \mathcal{D}), \quad \bar{\alpha} \in[0,1]
$$

ρ becomes a probability measure on \mathbb{R}^{d} with full support on $\overline{\mathcal{D}}$.
The measure ρ is in fact the invariant distribution of X_{t} whenever

$$
\frac{1}{\gamma}=\frac{\bar{\alpha}}{(1-\bar{\alpha})} \frac{s(\partial \mathcal{D})}{\lambda(\mathcal{D})}
$$

$\bar{\alpha} \rightarrow 1$ as $\gamma \rightarrow 0$, and the invariant distribution ρ concentrates on \mathcal{D}
$\bar{\alpha} \rightarrow 0$ as $\gamma \rightarrow \infty$, and the invariant distribution ρ concentrates on $\partial \mathcal{D}$

Sticky reflected SDEs of mean-field type with boundary diffusion

Interaction and control is introduced via Girsanov transformation (Dominated case).

Let

- $|x|_{t}:=\sup _{0 \leq s \leq t}\left|x_{s}\right|, 0 \leq t \leq T$,
- $U \subset \mathbb{R}^{d}$ be compact and $\mathcal{U}=:\{u:[0, T] \times \Omega \rightarrow U \mid u \mathbb{F}$-prog.meas. $\}$,
- $\mathbb{Q}(t):=\mathbb{Q} \circ X_{t}^{-1}$ denote the t-marginal distribution of X under $\mathbb{Q} \in \mathcal{P}(\Omega)$,
- $\beta:[0, T] \times \Omega \times \mathcal{P}\left(\mathbb{R}^{d}\right) \times U \rightarrow \mathbb{R}^{d}$ be a measurable function such that
(A) $\left(\beta\left(t, X, Q(t), u_{t}\right)\right)_{t \leq T}$ is \mathbb{F}-prog.meas. for every $\mathbb{Q} \in \mathcal{P}(\Omega)$ and $u \in \mathcal{U}$.
(B) For every $t \in[0, T], \omega \in \Omega, u \in U$, and $\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$,

$$
|\beta(t, x, \mu, u)| \leq C\left(1+|x|_{T}+\int_{\mathbb{R}^{d}}|y| \mu(d y)\right)
$$

(C) For every $t \in[0, T], \omega \in \Omega, u \in U$, and $\mu, \mu^{\prime} \in \mathcal{P}\left(\mathbb{R}^{d}\right)$,

$$
\left|\beta(t, \omega, \mu, u)-\beta\left(t, \omega, \mu^{\prime}, u\right)\right| \leq C \cdot d_{T V}\left(\mu, \mu^{\prime}\right)
$$

Sticky reflected SDEs of mean-field type with boundary diffusion

Given $\mathbb{Q} \in \mathcal{P}(\Omega)$ and $u \in \mathcal{U}$, let

$$
L_{t}^{u, \mathbb{Q}}:=\mathcal{E}_{t}\left(\int_{0}^{*} \beta\left(s, X, \mathbb{Q}(s), u_{s}\right) d B_{s}\right) .
$$

Lemma 1

The positive measure $\mathbb{P}^{u, \mathbb{Q}}$ defined by $d \mathbb{P}^{u, \mathbb{Q}}=L_{t}^{u, \mathbb{Q}} d \mathbb{P}$ on \mathcal{F}_{t}, for all $t \in[0, T]$, is a probability measure on Ω. Moreover, under $\mathbb{P}^{u, \mathbb{Q}}$ the coordinate process satisfies

$$
X_{t}=x_{0}+\int_{0}^{t}\left(\sigma\left(X_{s}\right) \beta\left(s, X, \mathbb{Q}(s), u_{s}\right)+a\left(X_{s}\right)\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) d B_{s}^{u, \mathbb{Q}}
$$

where $B{ }^{u, \mathbb{Q}}$ is a standard $\mathbb{P}^{u, \mathbb{Q}}$-Brownian motion.

Proof of Lemma 1

Step 1. If φ is a process such that \mathbb{P}^{φ}, defined by $d \mathbb{P}^{\varphi}=L_{T}^{\varphi} d \mathbb{P}$ on \mathcal{F}_{T} where $L_{t}^{\varphi}:=\mathcal{E}_{t}\left(\int_{0}^{\varphi} \varphi_{s} d B_{s}\right)$, is a probability measure on Ω, the coordinate process under \mathbb{P}^{φ} satisfies

$$
d X_{t}=\left(\sigma\left(X_{t}\right) \varphi_{t}+a\left(X_{t}\right)\right) d t+\sigma\left(X_{t}\right) d B_{t}^{\varphi}
$$

where B^{φ} is a \mathbb{P}^{φ}-Brownian motion. Smoothness of $\partial \mathcal{D}$ together with Burkholder-Davis-Gundy's inequality yields

$$
\begin{aligned}
E^{\varphi}\left[|X|_{T}^{p}\right] & \leq C E^{\varphi}\left[\left|x_{0}\right|^{p}+\int_{0}^{T}\left|\sigma\left(X_{s}\right) \varphi_{s}+a\left(X_{s}\right)\right|^{p} d s+\left|\int_{0}^{\cdot} \sigma\left(X_{s}\right) d B_{s}^{\varphi}\right|_{T}^{p}\right] \\
& \leq C\left(1+\int_{0}^{T} E^{\varphi}\left[\left|\varphi_{s}\right|^{p}\right] d s\right)
\end{aligned}
$$

where E^{φ} denotes expectation taken under \mathbb{P}^{φ}.

Proof of Lemma 1

Step 2. Consider the measure $\mathbb{P}_{n}^{u, \mathbb{Q}}$ given (on \mathcal{F}_{t}) by

$$
d \mathbb{P}_{n}^{u, \mathbb{Q}}=\mathcal{E}_{t}\left(\int_{0}^{\cdot} \beta\left(s, X, \mathbb{Q}(s), u_{s}\right) 1_{\left\{|X|_{s} \leq n\right\}} d B_{s}\right) d \mathbb{P} .
$$

Use TV-distance to show that $\mathbb{P}_{n}^{u, \mathbb{Q}} \in \mathcal{P}(\Omega)$. By Step 1, (B), and (C),

$$
\begin{aligned}
E_{n}^{u, \mathbb{Q}}\left[|X|_{T}^{p}\right] & \leq C\left(1+\int_{0}^{T} E_{n}^{u, \mathbb{Q}}\left[\left|\beta\left(s, X, \mathbb{Q}(s), u_{s}\right)\right|^{p}\right] d s\right) \\
& \leq C\left(1+d_{T V}(\mathbb{Q}(s), \mathbb{P}(s))^{p}+\int_{0}^{T} E_{n}^{u, \mathbb{Q}}\left[\left|\beta\left(s, X, \mathbb{P}(s), u_{s}\right)\right|^{p}\right] d s\right) \\
& \leq C\left(1+\int_{0}^{T} E_{n}^{u, \mathbb{Q}}\left[C\left(1+|X|_{s}^{p}+E^{\mathbb{P}}\left[|X|_{s}^{p}\right]\right)\right] d s\right) \\
& \leq C\left(1+\int_{0}^{T} E_{n}^{u, \mathbb{Q}}\left[|X|_{s}^{p}\right] d s\right) .
\end{aligned}
$$

By Gronwall's inequality $E_{n}^{u, \mathbb{Q}}\left[|X|_{T}^{p}\right] \leq C_{p}$, where C_{p} depends only on p, T, the Lipschitz and linear growth constant of β, and $\left|x_{0}\right|^{\beta}$.

Proof of Lemma 1

Step 3. By the same lines as the proof of Proposition (A.1) in El-Karoui \& Hamadène $(2003)^{2}$ (see also Benes $(1971)^{3}$), the likelihood $L^{u, \mathbb{Q}}$ is a martingale for every $\mathbb{Q} \in \mathcal{P}(\Omega)$ and $u \in \mathcal{U}$, hence $\mathbb{P}^{u, Q} \in \mathcal{P}(\Omega)$.

Step 4. By Girsanov's theorem the coordinate process under $\mathbb{P}^{u, \mathbb{Q}}$ satisfies

$$
X_{t}=x_{0}+\int_{0}^{t}\left(\sigma\left(X_{s}\right) \beta\left(s, X, \mathbb{Q}(s), u_{s}\right)+a\left(X_{s}\right)\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) d B_{s}^{\mathbb{Q}} .
$$

[^5]
Sticky reflected SDEs of mean-field type with boundary diffusion

For a given $u \in \mathcal{U}$, consider the map

$$
\Phi: \mathcal{P}(\Omega) \ni \mathbb{Q} \mapsto \mathbb{P}^{u, \mathbb{Q}} \in \mathcal{P}(\Omega)
$$

Proposition 1
The map Φ is well-defined and admits a unique fixed point. Moreover, for every $p \geq 2$, the fixed point, denoted \mathbb{P}^{u}, belongs to $\mathcal{P}_{p}(\Omega)$, i.e.

$$
E^{u}\left[|X|_{T}^{p}\right] \leq C_{p}<\infty
$$

where the constant C_{p} depends only on p, T, the Lipschitz and the linear-growth constant of β, and $\left|x_{0}\right|^{p}$.

Proof of Proposition 1

Step 1. By Lemma 1, the map is well-defined.
Step 2. Given $\mathbb{Q}, \widetilde{\mathbb{Q}} \in \mathcal{P}(\Omega)$, by Csiszár-Kullback-Pinsker's inequality and the fact that $\int_{0}^{\prime}\left(d B_{s}-\beta_{s}^{\mathbb{Q}} d s\right)$ is a martingale under $\Phi(\mathbb{Q})$,

$$
\begin{aligned}
& D_{T}^{2}(\Phi(\mathbb{Q}), \Phi(\widetilde{\mathbb{Q}})) \leq E^{\Phi(\mathbb{Q})}\left[\log \left(L_{T}^{\mathbb{Q}} / L_{T}^{\widetilde{\mathbb{Q}}}\right)\right] \\
& =E^{\Phi(\mathbb{Q})}\left[\int_{0}^{T}\left(\beta_{s}^{\mathbb{Q}}-\beta_{s}^{\widetilde{\mathbb{Q}}}\right) d B_{s}-\frac{1}{2} \int_{0}^{T}\left(\beta_{s}^{\mathbb{Q}}\right)^{2}-\left(\beta_{s}^{\widetilde{\mathbb{Q}}}\right)^{2} d s\right] \\
& =E^{\Phi(\mathbb{Q})}\left[\int_{0}^{T}\left(\beta_{s}^{\mathbb{Q}}-\beta_{s}^{\widetilde{\mathbb{Q}}}\right) \beta_{s}^{\mathbb{Q}}-\frac{1}{2}\left(\beta_{s}^{\mathbb{Q}}\right)^{2}+\frac{1}{2}\left(\beta_{s}^{\widetilde{\mathbb{Q}}}\right)^{2} d s\right] \\
& =\frac{1}{2} \int_{0}^{T} \mathbb{E}^{\Phi(\mathbb{Q})}\left[\left(\beta_{s}^{\mathbb{Q}}-\beta_{s}^{\widetilde{\mathbb{Q}}}\right)^{2}\right] d s \\
& \leq C \int_{0}^{T} d_{T V}^{2}(\mathbb{Q}(s), \widetilde{\mathbb{Q}}(s)) d s \leq C \int_{0}^{T} D_{s}^{2}(\mathbb{Q}, \widetilde{\mathbb{Q}}) d s .
\end{aligned}
$$

Proof of Proposition 1

Step 3. Iterating the inequality, we obtain for every $N \in \mathbb{N}$,

$$
D_{T}^{2}\left(\Phi^{N}(\mathbb{Q}), \phi^{N}(\widetilde{\mathbb{Q}})\right) \leq \frac{C^{N} T^{N}}{N!} D_{T}^{2}(\mathbb{Q}, \widetilde{\mathbb{Q}}),
$$

where Φ^{N} denotes the N-fold composition of Φ. Hence Φ^{N} is a contraction for N large enough, thus admitting a unique fixed point.

Proof of Proposition 1

Step 3. Iterating the inequality, we obtain for every $N \in \mathbb{N}$,

$$
D_{T}^{2}\left(\Phi^{N}(\mathbb{Q}), \Phi^{N}(\widetilde{\mathbb{Q}})\right) \leq \frac{C^{N} T^{N}}{N!} D_{T}^{2}(\mathbb{Q}, \widetilde{\mathbb{Q}})
$$

where Φ^{N} denotes the N-fold composition of Φ. Hence Φ^{N} is a contraction for N large enough, thus admitting a unique fixed point.

Step 4. Under \mathbb{P}^{u}, the fixed point of Φ given $u \in \mathcal{U}$, the coordinate process satisfies

$$
d X_{t}=\left(\sigma\left(X_{t}\right) \beta\left(t, X, \mathbb{P}^{u}(t), u_{t}\right)+a\left(X_{t}\right)\right) d t+\sigma\left(X_{t}\right) d B_{t}^{u}
$$

where B^{u} is a \mathbb{P}^{u}-Brownian motion. Following the calculations of Lemma 1, we get the estimate

$$
\left\|\mathbb{P}^{u}\right\|_{p}^{p}=E^{u}\left[|X|_{T}^{p}\right] \leq C_{p}\left(1+E^{u}\left[\int_{0}^{T}|X|_{s}^{p} d s\right]\right)
$$

where C_{p} depends only on p, T, the Lipschitz and the linear growth constant of β, and $\left|x_{0}\right|^{p}$. Gronwall's inequality then yields $E^{u}\left[|X|_{T}^{p}\right] \leq C_{p}<\infty$.

Sticky reflected SDEs of mean-field type with boundary diffusion

Theorem 2
Under (A)-(C) there exists for each $u \in \mathcal{U}$ a unique weak solution $\left(\mathbb{P}^{u}\right)$ to the sticky reflected SDE of mean-field type with boundary diffusion

$$
d X_{t}=\sigma\left(X_{t}\right) d B_{t}^{u}+\left(a\left(X_{t}\right)+\sigma\left(X_{t}\right) \beta\left(t, X_{t}, \mathbb{P}^{u}(t), u_{t}\right)\right) d t
$$

Under \mathbb{P}^{u} the t-marginal distribution of X. is $\mathbb{P}^{u}(t)$ for $t \in[0, T]$ and X. is almost surely $C([0, T] ; \overline{\mathcal{D}})$-valued. Furthermore, $\mathbb{P}^{u} \in \mathcal{P}_{p}(\Omega)$.

Weak optimal control of sticky reflected SDEs of mean-field type

Let

$$
\begin{aligned}
& f:[0, T] \times \Omega \times \mathcal{P}\left(\mathbb{R}^{d}\right) \times U \rightarrow \mathbb{R} \\
& g: \mathbb{R}^{d} \times \mathcal{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}
\end{aligned}
$$

Consider the following finite time-horizon problem:

$$
\left\{\min _{u \in \mathcal{U}} J(u)=E^{u}\left[\int_{0}^{T} f\left(t, X, \mathbb{P}^{u}(t), u_{t}\right) d t+g\left(X_{T}, \mathbb{P}^{u}(T)\right)\right]\right.
$$

Weak optimal control of sticky reflected SDEs of mean-field type

Let

$$
\begin{aligned}
& f:[0, T] \times \Omega \times \mathcal{P}\left(\mathbb{R}^{d}\right) \times U \rightarrow \mathbb{R} \\
& g: \mathbb{R}^{d} \times \mathcal{P}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}
\end{aligned}
$$

Consider the following finite time-horizon problem:

$$
\left\{\begin{aligned}
\min _{u \in \mathcal{U}} J(u) & =E^{u}\left[\int_{0}^{T} f\left(t, X, \mathbb{P}^{u}(t), u_{t}\right) d t+g\left(X_{T}, \mathbb{P}^{u}(T)\right)\right] \\
& =E\left[\int_{0}^{T} L_{t}^{u} f\left(t, X, \mathbb{P}^{u}(t), u_{t}\right) d t+L_{T}^{u} g\left(X_{T}, \mathbb{P}^{u}(T)\right)\right] \\
\text { s.t. } d L_{t}^{u} & =L_{t}^{u} \beta\left(t, X, \mathbb{P}^{u}(t), u(t)\right) d B_{t}, \quad L_{0}^{u}=1 \\
X & \text { is the coordinate process, }
\end{aligned}\right.
$$

Problem (2) is a weak form mean-field type control problem. The probability space is controlled via the likelihood L^{u}.

Weak optimal control of sticky reflected SDEs of mean-field type

Additional assumptions on β, f, and g :
(D) For $\phi \in\{\beta, f\}$,

$$
\phi_{t}^{u}=\phi\left(t, X, E^{u}\left[r_{\phi}\left(X_{t}\right)\right], u_{t}\right)=\phi\left(t, X, E\left[L_{t}^{u} r_{\phi}\left(X_{t}\right)\right], u_{t}\right),
$$

and $g_{T}^{u}=g\left(X_{T}, E\left[L_{T}^{\mu} r_{g}\left(X_{T}\right)\right]\right)$, where $r_{\beta}, r_{f}, r_{g}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$.
(E) The functions $(t, x, y, u) \mapsto(f, \beta)(t, x, y, u)$ and $(x, y) \mapsto g(x, y)$ are twice continuously differentiable with respect to y. Moreover, β, f and g and all their derivatives up to second order with respect to y are continuous in (y, u), and bounded.
(D)-(E) can be relaxed, current form used for the sake of technical simplicity.

Weak optimal control of sticky reflected SDEs of mean-field type

In view of (A)-(E) Pontryagin's type stochastic maximum principle is available ${ }^{2}$.
Theorem 3
Assume that $\left(\hat{u}, L^{\hat{u}}\right)$ is an optimal solution to the mean-field type control problem (2). Then for all $v \in U$ and a.e. $t \in[0, T]$ it holds \mathbb{P}-a.s. that

$$
\mathcal{H}\left(L_{t}^{\hat{u}}, v, p_{t}, q_{t}\right)-\mathcal{H}\left(L_{t}^{\hat{u}}, \hat{u}_{t}, p_{t}, q_{t}\right)+\frac{1}{2}[\delta(L \beta)(t)]^{T} P_{t}[\delta(L \beta)(t)] \leq 0
$$

where

$$
\begin{gathered}
\mathcal{H}\left(L_{t}^{u}, u_{t}, p_{t}, q_{t}\right):=L_{t}^{u} \beta_{t}^{u} q_{t}-L_{t}^{u} f_{t}^{u} \\
\delta(L \beta)(t):=L_{t}^{\hat{u}}\left(\beta\left(t, X, E\left[L_{t}^{\hat{u}} r_{\beta}\left(X_{t}\right)\right], v\right)-\beta_{t}^{\hat{u}}\right) \\
\left\{\begin{array}{c}
d p_{t}=-\left(q_{t} \beta_{t}^{\hat{u}}+E\left[q_{t} L_{t}^{\hat{u}} \nabla_{y} \beta_{t}^{\hat{u}}\right] r_{\beta}\left(X_{t}\right)-f_{t}^{\hat{u}}-E\left[L_{t}^{\hat{u}} \nabla_{y} f_{t}^{\hat{u}}\right] r_{f}\left(X_{t}\right)\right) d t+q_{t} d B_{t} \\
p_{T}=-g_{T}^{\hat{u}}-E\left[L_{T}^{\hat{u}} \nabla_{y} g_{T}^{\hat{u}}\right] r_{g}\left(X_{T}\right) \\
d P_{t}=-\left(\left(\beta_{t}^{\hat{u}}+E\left[L_{t}^{\hat{u}} \nabla_{y} \beta_{t}^{\hat{u}}\right] r_{\beta}\left(X_{t}\right)\right)^{2} P_{t}+2\left(\hat{\beta}_{t}^{\hat{u}}+E\left[L_{t}^{\hat{u}} \nabla_{y} \beta_{t}^{\hat{u}}\right] r_{\beta}\left(X_{t}\right)\right) Q_{t}\right. \\
\left.+E\left[q_{t} \nabla_{y} \beta_{t}^{\hat{u}}\right] r_{\beta}\left(X_{t}\right)-E\left[\nabla_{y} f_{t}^{\hat{u}}\right] r_{f}\left(X_{t}\right)\right) d t+Q_{t} d B_{t} \\
P_{T}=0,
\end{array}\right.
\end{gathered}
$$

[^6]
Identifying optimal controls when U is convex.

Whenever U is convex, the optimality condition simplifies to

$$
\mathcal{H}\left(L_{t}^{\hat{u}}, v, p_{t}, q_{t}\right)-\mathcal{H}\left(L_{t}^{\hat{u}}, \hat{u}_{t}, p_{t}, q_{t}\right) \leq 0, \quad \forall v \in U ; \mathbb{P} \text {-a.s., a.e.- } t \in[0, T]
$$

Assume that \hat{u} is optimal. A matching argument yields

$$
q_{t}=-\nabla_{x} \phi\left(X_{t}, t\right) \sigma\left(X_{t}\right)
$$

where $\phi\left(X_{T}, T\right)$ is the terminal condition for p,

$$
\left.\phi\left(X_{t}, t\right):=g\left(X_{t}, E^{\hat{u}}\left[r_{g}\left(X_{t}\right)\right]\right)+E^{\hat{u}}\left[\nabla_{y} g\left(X_{t}, E^{\hat{u}}\left[r_{g}\left(X_{t}\right)\right)\right]\right)\right] r_{g}\left(X_{t}\right)
$$

and the optimality condition (variation of \mathcal{H}) relates \hat{u} to q,

$$
q_{t} \nabla_{u} \beta_{t}^{\hat{u}}=\nabla_{u} f_{t}^{\hat{u}}, \quad \mathbb{P} \text {-a.s., a.e.- } t \in[0, T]
$$

Example: Unidirectional pedestrian flow

Experimental results show that average pedestrian speed in a cross-section of a corridor can be higher in the center than near the walls ${ }^{2}$, but also higher near the walls ${ }^{3}$, depending on the circumstances (congestion, etc).

Figure 2. Velocity distributions as measured in the environment E_{1} (\bar{v}^{+}in red, \bar{v}^{-}in blue). Error bars are obtained as Fig. 5. Speeds as function of the lateral position in a cross-section upstream of the standard deviations of values of \bar{v} averaged over time windows bottleneck during congestion.

[^7]
Example: Unidirectional pedestrian flow

Let \mathcal{D} be a long narrow corridor with exit x_{T} and entrance x_{0} in opposite ends.

$$
\left\{\begin{array}{l}
\min _{u \in \mathcal{U}} \frac{1}{2} E\left[\int_{0}^{1} L_{t}^{u} f\left(t, X ., E\left[L_{t}^{u} r_{f}\left(X_{t}\right)\right], u_{t}\right) d t+L_{T}^{u}\left|X_{T}-x_{T}\right|^{2}\right] \\
\text { s.t. } d L_{t}^{u}=L_{t}^{u} u_{t} d B_{t}, L_{0}^{u}=1
\end{array}\right.
$$

f is a congestion-type running cost:

$$
f\left(t, X_{.}, E\left[L_{t}^{u} r_{f}\left(X_{t}\right)\right], u_{t}\right)=\mathcal{C}\left(X_{t}\right)\left\{1+h\left(t, X_{\cdot}, E^{u}\left[r_{f}\left(X_{t}\right)\right]\right)\right\}\left|u_{t}\right|^{2}
$$

where

- $|u|^{2}, c_{f}>0$, is the cost of moving in free space;
- $h|u|^{2}$ is the additional cost to move in congested areas;
- $\mathcal{C}\left(X_{t}\right):=\xi 1_{\Gamma}\left(X_{t}\right)+1_{\mathcal{D}}\left(X_{t}\right), \xi>0$, monitors f on the boundary $\partial \mathcal{D}$.

Lower ξ yields lower overall cost of moving on $\partial \mathcal{D}$ and vice versa.

Example: Unidirectional pedestrian flow

Assuming U is convex, an optimal control satisfies

$$
\hat{u}_{t}=\frac{\sigma\left(X_{t}\right)\left(X_{t}-x_{T}\right)}{\mathcal{C}\left(X_{t}\right)\left(1+h\left(t, X ., E^{\hat{u}}\left[r_{f}\left(X_{t}\right)\right]\right)\right.}, \quad \mathbb{P} \text {-a.s., a.e.- } t \in[0, T] .
$$

\hat{u} implements the following strategy:

- Move towards the exit x_{T}, but scale the speed according to the local congestion.

Example: Unidirectional pedestrian flow

$$
\hat{u}_{t}=\frac{\sigma\left(X_{t}\right)\left(X_{t}-x_{T}\right)}{\mathcal{C}\left(X_{t}\right)\left(1+h\left(t, X, E^{\hat{u}}\left[r_{f}\left(X_{t}\right)\right]\right)\right)}
$$

We will compare two congestion costs

- friendly

$$
h=h_{1}:=\left|X_{2}(t)-E^{\hat{u}}\left[X_{2}(t)\right]\right|
$$

- averse

$$
h=h_{2}:=\frac{1}{\left|X_{2}(t)-E^{\hat{u}}\left[X_{2}(t)\right]\right|}
$$

In both cases,

- $r_{f}\left(\left(x_{1}, x_{2}\right)\right)=x_{2}$
- $X_{2}(t)$ is the y-component of X_{t} (perpendicular to the corridor walls).

Example: Unidirectional pedestrian flow

Estimated cross-section mean speed profiles

(a) Congestion friendly $\left(h=h_{1}\right)$.

(b) Congestion averse ($h=h_{2}$).

- Boundary movement speed is indeed monitored through ξ.

Particle picture: The corresponding microscopic model

Consider $N \in \mathbb{N}$ (non-transformed, independent) sticky reflected SDEs with boundary diffusion

$$
\left\{\begin{align*}
d X_{t}^{i} & =a\left(X_{t}^{i}\right) d t+\sigma\left(X_{t}^{i}\right) d B_{t}^{i} \tag{3}\\
X_{0}^{i} & =x_{i}, \quad i=1, \ldots, N
\end{align*}\right.
$$

Grothaus and Vosshall ${ }^{2}$ (2017):
There exists a unique probability measure \mathbb{P}^{N} on (Ω, \mathscr{F}), where $\Omega:=$ $C\left([0, T] ; \mathbb{R}^{N d}\right)$ and \mathscr{F} is the corresponding filtration. Under \mathbb{P}^{N}, $\left(X^{1}, \ldots, X^{N}\right)$ satisfies (3) and is $C\left([0, T] ; \overline{\mathcal{D}}^{N}\right)$-valued \mathbb{P}^{N}-a.s.

[^8]
Particle picture: The corresponding microscopic model

Weak interaction and control can be introduced in the particle system ${ }^{2}$

Given $\mathbf{u}:=\left(u^{1}, \ldots, u^{N}\right) \in \mathcal{U}^{N}$, let $\mu^{N}(t):=\frac{1}{N} \sum_{i=1} \delta_{X_{t}^{i}}$ and

$$
\begin{aligned}
& d L_{i, t}^{\mathbf{u}}=L_{i, t}^{\mathbf{u}} \beta\left(t, X^{i}, \mu^{N}(t), u_{t}^{i}\right) d B_{t}^{i}, \quad L_{i, 0}^{\mathbf{u}}=1, \quad i=1, \ldots, N . \\
& L_{t}^{N, \mathbf{u}}:=\prod_{i=1}^{N} L_{i, t}^{\mathbf{u}} .
\end{aligned}
$$

$L_{t}^{N, u}$ defines a Girsanov transformation of \mathbb{P}^{N} to $\mathbb{P}^{N, u}$.
Under $\mathbb{P}^{N, u}$ the coordinate process is $C([0, T] ; \overline{\mathcal{D}})$-valued a.s. and satisfies

$$
\left\{\begin{aligned}
d X_{t}^{i} & =\left(\sigma\left(X_{t}^{i}\right) \beta\left(t, X_{t}^{i}, \mu^{N}(t), u_{t}^{i}\right)+a\left(X_{t}^{i}\right)\right) d t+\sigma\left(X_{t}^{i}\right) d B_{t}^{i, u} \\
X_{0}^{i} & =x_{0}^{i}, \quad i=1, \ldots, N,
\end{aligned}\right.
$$

where $B^{i, \mathrm{u}}$ is a $\mathbb{P}^{N, \mathrm{u}}$-Brownian motion. Also, $\mathbb{P}^{N, \mathbf{u}} \in \mathcal{P}_{p}\left(\left(C([0, T] ; \overline{\mathcal{D}})^{N}\right)\right.$.

[^9]
Particle picture: The corresponding microscopic model

Social cost for the particle system:

$$
J_{N}(\mathbf{u}):=\frac{1}{N} \sum_{i=1}^{N} E^{N, \mathbf{u}}\left[\int_{0}^{T} f\left(t, X^{i}, \mu^{N}(t), u_{t}^{i}\right) d t+g\left(X_{T}^{i}, \mu^{N}(T)\right)\right]
$$

Minimization of $J_{N}(\mathbf{u})$ is a cooperative scenario.

Mean-field type optimal control is $\epsilon(N)$-optimal for the collaborative social cost minimization, where $\epsilon(N) \rightarrow 0$ as $N \rightarrow \infty$. Based on results concerning convergence properties of relaxed controls.

Main references: El Karoui, Huu Nguyen and Jean-Blanc (1988) ${ }^{2}$ (controlled standard SDEs), Ölschläger (1984) ${ }^{3}$ (mean-field SDEs without control), Lacker $(2017)^{4}$ (controlled mean-field SDEs).

[^10]
Conclusions

- Mean-field approach to crowd dynamics
- congestion, crowd aversion, etc.
- decision-based modeling with anticipating agents
- correspondence between micro- and macroscopic picture
- Sticky reflected SDEs of mean-field type with boundary diffusion
- as an alternative to reflective boundary conditions in confined domains
- pedestrians no longer "bounce" at the boundary
- pedestrians may interact and take actions while spending time at the boundary
- preserves a micro-macro correspondence for crowds in confined domains

Thank you!

Examples: Convex and compact U

Assume that (\hat{u}, \hat{L}) is an optimal solution for the mean-field type control problem. Recall the first order adjoint equation,

$$
\left\{\begin{align*}
d p_{t}= & -\left(q_{t} \beta_{t}^{\hat{u}}+E\left[q_{t} L_{t}^{\hat{u}} \nabla_{y} \beta_{t}^{\hat{u}}\right] r \beta\left(X_{t}\right)\right. \tag{4}\\
& -f_{t}^{\hat{u}}-E\left[L_{t}^{\left.\left.\hat{u^{*}} \nabla_{y} f_{t}^{\hat{u}}\right] r_{f}\left(X_{t}\right)\right) d t+q_{t} d B_{t},}\right. \\
p_{T}= & -g_{T}^{\hat{u}}-E\left[L_{T}^{\hat{u}} \nabla_{y} g_{T}^{\hat{u}}\right] r_{g}\left(X_{T}\right) .
\end{align*}\right.
$$

Rewriting $E\left[L_{t}^{\hat{u}} Y_{t}\right]=E^{\hat{u}}\left[Y_{t}\right]$ and changing measure to $\mathbb{P}^{\hat{u}}$,

$$
\left\{\begin{array}{l}
d p_{t}=-\left(E^{\hat{u}}\left[q_{t} \nabla_{y} \beta_{t}^{\hat{u}}\right] r \beta\left(X_{t}\right)-f_{t}^{\hat{u}}-E^{\hat{u}}\left[\nabla_{y} f_{t}^{\hat{u}}\right] r_{f}\left(X_{t}\right)\right) d t+q_{t} d B_{t}^{\hat{u}}, \\
p_{T}=-g_{T}^{\hat{u}}-E^{\hat{u}}\left[\nabla_{y} g_{T}^{\hat{u}}\right] r_{g}\left(X_{T}\right) .
\end{array}\right.
$$

Examples: Convex and compact U

Assume that (\hat{u}, \hat{L}) is an optimal solution for the mean-field type control problem. Recall the first order adjoint equation,

$$
\left\{\begin{align*}
d p_{t}= & -\left(q_{t} \beta_{t}^{\hat{u}}+E\left[q_{t} L_{t}^{\hat{u}} \nabla_{y} \beta_{t}^{\hat{u}}\right] r \beta\left(X_{t}\right)\right. \tag{4}\\
& -f_{t}^{\hat{u}}-E\left[L_{t}^{\left.\left.\hat{u^{*}} \nabla_{y} f_{t}^{\hat{u}}\right] r_{f}\left(X_{t}\right)\right) d t+q_{t} d B_{t},}\right. \\
p_{T}= & -g_{T}^{\hat{u}}-E\left[L_{T}^{\hat{u}} \nabla_{y} g_{T}^{\hat{u}}\right] r_{g}\left(X_{T}\right) .
\end{align*}\right.
$$

Rewriting $E\left[L_{t}^{\hat{u}} Y_{t}\right]=E^{\hat{u}}\left[Y_{t}\right]$ and changing measure to $\mathbb{P}^{\hat{u}}$,

$$
\left\{\begin{aligned}
d p_{t} & =-\left(E^{\hat{u}}\left[q_{t} \nabla_{y} \beta_{t}^{\hat{u}}\right] r \beta\left(X_{t}\right)-f_{t}^{\hat{u}}-E^{\hat{u}}\left[\nabla_{y} f_{t}^{\hat{u}}\right] r_{f}\left(X_{t}\right)\right) d t+q_{t} d B_{t}^{\hat{u}}, \\
p_{T} & =-g_{T}^{\hat{u}}-E^{\hat{u}}\left[\nabla_{y} g_{T}^{\hat{u}}\right] r_{g}\left(X_{T}\right) .
\end{aligned}\right.
$$

Whenever U is convex, the optimality condition simplifies to

$$
\mathcal{H}\left(\hat{L}_{t}, v, p_{t}, q_{t}\right)-\mathcal{H}\left(\hat{L}_{t}, \hat{u}_{t}, p_{t}, q_{t}\right) \leq 0, \quad \forall v \in U ; \mathbb{P} \text {-a.s., a.e. } t \in[0, T] .
$$

Example: Convex and compact U

p part of the solution to a BSDE so it is the conditional expectation

$$
\begin{equation*}
p_{t}=-E^{\hat{u}}\left[\phi\left(X_{T}, T\right) \mid \mathcal{F}_{t}\right]+E^{\hat{u}}\left[\int_{t}^{T}(\ldots) d s \mid \mathcal{F}_{t}\right], \tag{5}
\end{equation*}
$$

where as before

$$
\left.\phi\left(X_{t}, t\right):=g\left(X_{t}, E^{\hat{u}}\left[r_{g}\left(X_{t}\right)\right]\right)+E^{\hat{u}}\left[\nabla_{y} g\left(X_{t}, E^{\hat{u}}\left[r_{g}\left(X_{t}\right)\right)\right]\right)\right] r_{g}\left(X_{t}\right)
$$

Example: Convex and compact U

p part of the solution to a BSDE so it is the conditional expectation

$$
\begin{equation*}
p_{t}=-E^{\hat{u}}\left[\phi\left(X_{T}, T\right) \mid \mathcal{F}_{t}\right]+E^{\hat{u}}\left[\int_{t}^{T}(\ldots) d s \mid \mathcal{F}_{t}\right], \tag{5}
\end{equation*}
$$

where as before

$$
\left.\phi\left(X_{t}, t\right):=g\left(X_{t}, E^{\hat{u}}\left[r_{g}\left(X_{t}\right)\right]\right)+E^{\hat{u}}\left[\nabla_{y} g\left(X_{t}, E^{\hat{u}}\left[r_{g}\left(X_{t}\right)\right)\right]\right)\right] r_{g}\left(X_{t}\right) .
$$

By Dynkin's formula,

$$
E^{\hat{u}}\left[\phi\left(X_{T}, T\right) \mid \mathcal{F}_{t}\right]=\phi\left(X_{t}, t\right)+\int_{t}^{T} E^{\hat{u}}\left[(\ldots)(s) \mid \mathcal{F}_{t}\right] d s
$$

Example: Convex and compact U

p part of the solution to a BSDE so it is the conditional expectation

$$
\begin{equation*}
p_{t}=-E^{\hat{u}}\left[\phi\left(X_{T}, T\right) \mid \mathcal{F}_{t}\right]+E^{\hat{u}}\left[\int_{t}^{T}(\ldots) d s \mid \mathcal{F}_{t}\right], \tag{5}
\end{equation*}
$$

where as before

$$
\left.\phi\left(X_{t}, t\right):=g\left(X_{t}, E^{\hat{u}}\left[r_{g}\left(X_{t}\right)\right]\right)+E^{\hat{u}}\left[\nabla_{y} g\left(X_{t}, E^{\hat{u}}\left[r_{g}\left(X_{t}\right)\right)\right]\right)\right] r_{g}\left(X_{t}\right)
$$

By Dynkin's formula,

$$
E^{\hat{u}}\left[\phi\left(X_{T}, T\right) \mid \mathcal{F}_{t}\right]=\phi\left(X_{t}, t\right)+\int_{t}^{T} E^{\hat{u}}\left[(\ldots)(s) \mid \mathcal{F}_{t}\right] d s
$$

Itô-differentiating p from (5) and matching the diffusion coefficients yeilds

$$
q_{t}=-\nabla_{x} \phi\left(X_{t}, t\right) \sigma\left(X_{t}\right)
$$

Example: Convex and compact U

p part of the solution to a BSDE so it is the conditional expectation

$$
\begin{equation*}
p_{t}=-E^{\hat{u}}\left[\phi\left(X_{T}, T\right) \mid \mathcal{F}_{t}\right]+E^{\hat{u}}\left[\int_{t}^{T}(\ldots) d s \mid \mathcal{F}_{t}\right], \tag{5}
\end{equation*}
$$

where as before

$$
\left.\phi\left(X_{t}, t\right):=g\left(X_{t}, E^{\hat{u}}\left[r_{g}\left(X_{t}\right)\right]\right)+E^{\hat{u}}\left[\nabla_{y} g\left(X_{t}, E^{\hat{u}}\left[r_{g}\left(X_{t}\right)\right)\right]\right)\right] r_{g}\left(X_{t}\right)
$$

By Dynkin's formula,

$$
E^{\hat{u}}\left[\phi\left(X_{T}, T\right) \mid \mathcal{F}_{t}\right]=\phi\left(X_{t}, t\right)+\int_{t}^{T} E^{\hat{u}}\left[(\ldots)(s) \mid \mathcal{F}_{t}\right] d s
$$

Itô-differentiating p from (5) and matching the diffusion coefficients yeilds

$$
q_{t}=-\nabla_{x} \phi\left(X_{t}, t\right) \sigma\left(X_{t}\right) .
$$

The optimality condition (variation of \mathcal{H}) relates \hat{u} to q,

$$
q_{t} \nabla_{u} \beta_{t}^{\hat{u}}=\nabla_{u} f_{t}^{\hat{u}}, \quad \mathbb{P} \text {-a.s., a.e. } t \in[0, T] .
$$

Example: Mean-field LQ (convex and compact U)

Consider on some admissible domain $\mathcal{D} \subset \mathbb{R}^{d}$ the mean-field $L Q$ problem of minimizing final variance

$$
\left\{\begin{array}{l}
\min _{u \in \mathcal{U}} \frac{1}{2} E\left[\int_{0}^{T} L_{t}^{u}\left|u_{t}\right|^{2} d t+L_{T}^{u}\left|X_{T}-E\left[L_{T}^{u} X_{T}\right]\right|^{2}\right], \\
\text { s.t. } d L_{t}^{u}=L_{t}^{u} u_{t} d B_{t}, \quad L_{0}^{u}=1,
\end{array}\right.
$$

Example: Mean-field LQ (convex and compact U)

Consider on some admissible domain $\mathcal{D} \subset \mathbb{R}^{d}$ the mean-field $L Q$ problem of minimizing final variance

$$
\left\{\begin{array}{l}
\min _{u \in \mathcal{U}} \frac{1}{2} E\left[\int_{0}^{T} L_{t}^{u}\left|u_{t}\right|^{2} d t+L_{T}^{u}\left|X_{T}-E\left[L_{T}^{u} X_{T}\right]\right|^{2}\right] \\
\text { s.t. } d L_{t}^{u}=L_{t}^{u} u_{t} d B_{t}, \quad L_{0}^{u}=1
\end{array}\right.
$$

The optimality condition says that $\hat{u}_{t}=q_{t}^{*}$ holds for an optimal control.

Example: Mean-field LQ (convex and compact U)

Consider on some admissible domain $\mathcal{D} \subset \mathbb{R}^{d}$ the mean-field $L Q$ problem of minimizing final variance

$$
\left\{\begin{array}{l}
\min _{u \in \mathcal{U}} \frac{1}{2} E\left[\int_{0}^{T} L_{t}^{u}\left|u_{t}\right|^{2} d t+L_{T}^{u}\left|X_{T}-E\left[L_{T}^{u} X_{T}\right]\right|^{2}\right] \\
\text { s.t. } d L_{t}^{u}=L_{t}^{u} u_{t} d B_{t}, \quad L_{0}^{u}=1
\end{array}\right.
$$

The optimality condition says that $\hat{u}_{t}=q_{t}^{*}$ holds for an optimal control.
With $\nabla_{x} \phi\left(X_{t}, t\right)=\left(X_{t}-E^{\hat{u}}\left[X_{t}\right]\right)^{*}$ we identify q_{t} and get:

$$
\hat{u}_{t}=-\left(X_{t}-E^{\hat{u}}\left[X_{t}\right]\right)^{*} \sigma\left(X_{t}\right), \mathbb{P} \text {-a.s. for almost every } t \in[0, T] .
$$

Example: Mean-field LQ (convex and compact U)

Consider on some admissible domain $\mathcal{D} \subset \mathbb{R}^{d}$ the mean-field $L Q$ problem of minimizing final variance

$$
\left\{\begin{array}{l}
\min _{u \in \mathcal{U}} \frac{1}{2} E\left[\int_{0}^{T} L_{t}^{u}\left|u_{t}\right|^{2} d t+L_{T}^{u}\left|X_{T}-E\left[L_{T}^{u} X_{T}\right]\right|^{2}\right] \\
\text { s.t. } d L_{t}^{u}=L_{t}^{u} u_{t} d B_{t}, \quad L_{0}^{u}=1
\end{array}\right.
$$

The optimality condition says that $\hat{u}_{t}=q_{t}^{*}$ holds for an optimal control.
With $\nabla_{x} \phi\left(X_{t}, t\right)=\left(X_{t}-E^{\hat{u}}\left[X_{t}\right]\right)^{*}$ we identify q_{t} and get:

$$
\hat{u}_{t}=-\left(X_{t}-E^{\hat{u}}\left[X_{t}\right]\right)^{*} \sigma\left(X_{t}\right), \mathbb{P} \text {-a.s. for almost every } t \in[0, T] .
$$

\hat{u} takes \mathbb{P} to $\mathbb{P}^{\hat{u}}$ under which the coordinate process solves the non-linear SDE

$$
d X_{t}=\left(a\left(X_{t}\right)-\sigma\left(X_{t}\right)\left(X_{t}-E^{\hat{u}}\left[X_{t}\right]\right)\right) d t+\sigma\left(X_{t}\right) d B_{t}^{\hat{u}}
$$

Total variation distance on $\mathcal{P}(\Omega)$

For $\mu, \nu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$, the total variation distance is defined by the formula

$$
\begin{equation*}
d(\mu, \nu)=2 \sup _{B \in \mathcal{B}\left(\mathbb{R}^{d}\right)}|\mu(B)-\nu(B)| . \tag{6}
\end{equation*}
$$

Define on \mathcal{F} the total variation metric

$$
\begin{equation*}
d(P, Q):=2 \sup _{A \in \mathcal{F}}|P(A)-Q(A)| \tag{7}
\end{equation*}
$$

On the filtration \mathbb{F},

$$
\begin{equation*}
D_{t}(Q, \widetilde{Q}):=2 \sup _{A \in \mathcal{F}_{t}}|Q(A)-\widetilde{Q}(A)|, \quad 0 \leq t \leq T \tag{8}
\end{equation*}
$$

It satisfies

$$
\begin{equation*}
D_{s}(Q, \widetilde{Q}) \leq D_{t}(Q, \widetilde{Q}), \quad 0 \leq s \leq t \tag{9}
\end{equation*}
$$

For $Q, \widetilde{Q} \in \mathcal{P}(\Omega)$ with time marginals $Q_{t}:=Q \circ x_{t}^{-1}$ and $\widetilde{Q}_{t}:=\widetilde{Q} \circ x_{t}^{-1}$, then

$$
\begin{equation*}
d\left(Q_{t}, \widetilde{Q}_{t}\right) \leq D_{t}(Q, \widetilde{Q}), \quad 0 \leq t \leq T \tag{10}
\end{equation*}
$$

Endowed with the total variation metric $D_{T}, \mathcal{P}(\Omega)$ is a complete metric space. Moreover, D_{T} carries out the usual topology of weak convergence.

[^0]: ${ }^{2}$ Winnie Daamen and Serge P Hoogendoorn. "Flow-density relations for pedestrian traffic". In: Traffic and granular flow05. Springer, 2007, pp. 315-322.
 ${ }^{3}$ Francesco Zanlungo, Tetsushi Ikeda, and Takayuki Kanda. "A microscopic social norm model to obtain realistic macroscopic velocity and density pedestrian distributions". In: PloS one 7.12 (2012), e50720.

[^1]: ${ }^{2}$ Hans-Jürgen Engelbert and Goran Peskir. "Stochastic differential equations for sticky Brownian motion". In: Stochastics An International Journal of Probability and Stochastic Processes 86.6 (2014), pp. 993-1021.

[^2]: ${ }^{2}$ Martin Grothaus, Robert Voßhall, et al. "Stochastic differential equations with sticky reflection and boundary diffusion". In: Electronic Journal of Probability 22 (2017).

[^3]: ${ }^{2}$ Martin Grothaus, Robert Voßhall, et al. "Stochastic differential equations with sticky reflection and boundary diffusion". In: Electronic Journal of Probability 22 (2017).

[^4]: ${ }^{2}$ Martin Grothaus, Robert Voßhall, et al. "Stochastic differential equations with sticky reflection and boundary diffusion". In: Electronic Journal of Probability 22 (2017).

[^5]: ${ }^{2}$ Nicole El-Karoui and Said Hamadène. "BSDEs and risk-sensitive control, zero-sum and nonzero-sum game problems of stochastic functional differential equations". In: Stochastic Processes and their Applications 107.1 (2003), pp. 145-169.
 ${ }^{3}$ VE Beneš. "Existence of optimal stochastic control laws". In: SIAM Journal on Control 9.3 (1971), pp. 446-472.

[^6]: ${ }^{2}$ Rainer Buckdahn, Boualem Djehiche, and Juan Li. "A general stochastic maximum principle for SDEs of mean-field type". In: Applied Mathematics \& Optimization 64.2 (2011), pp. 197-216.

[^7]: ${ }^{2}$ Winnie Daamen and Serge P Hoogendoorn. "Flow-density relations for pedestrian traffic". In: Traffic and granular flow05. Springer, 2007, pp. 315-322.
 ${ }^{3}$ Francesco Zanlungo, Tetsushi Ikeda, and Takayuki Kanda. "A microscopic social norm model to obtain realistic macroscopic velocity and density pedestrian distributions". In: PloS one 7.12 (2012), e50720.

[^8]: ${ }^{2}$ Martin Grothaus, Robert Voßhall, et al. "Stochastic differential equations with sticky reflection and boundary diffusion". In: Electronic Journal of Probability 22 (2017).

[^9]: ${ }^{2}$ Martin Grothaus, Robert Voßhall, et al. "Stochastic differential equations with sticky reflection and boundary diffusion". In: Electronic Journal of Probability 22 (2017).

[^10]: ${ }^{2}$ Nicole El Karoui, Du Huù Nguyen, and Monique Jeanblanc-Picqué. "Existence of an optimal Markovian filter for the control under partial observations". In: SIAM journal on control and optimization 26.5 (1988), pp. 1025-1061.
 ${ }^{3}$ Karl Oelschlager et al. "A martingale approach to the law of large numbers for weakly interacting stochastic processes". In: The Annals of Probability 12.2 (1984), pp. 458-479.
 ${ }^{4}$ Daniel Lacker. "Limit theory for controlled McKean-Vlasov dynamics". In: SIAM Journal on Control and Optimization 55.3 (2017), pp. 1641-1672.

