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Problem Introduction

Regulation of power grids to ensure that supply matches demands.

Balance has to be achieved on different time scales, corresponding to
time scales of both supply and demand.

The need for balancing regulation has increased due to the fickle
nature of several renewable sources, such as wind power.

To achieve balance great use can be made of the inherent flexibility
certain systems of loads, such as electric vehicle charging, heating and
ventilation, irrigation, pool maintenance, etc.

The goal is to control a large set of loads to achieve balance.

G.Svensson (KTH - sci) Power Grids November 3, 2015 3 / 21



Model Introduction

An aggregate of loads can be modeled as a dynamical system.

Design a signal to be broadcasted to the loads, based on a
measurement of aggregate power output, such that the deviation in
power consumption tracks a reference signal.

Each load operates according to some randomized policy based on its
internal state and a common signal ζ.

In earlier works it has been shown that localized randomized policies
can be designed so that control of the loads on grid level become easy.

The analysis is based on a mean field limit and a LTI (Linear Time
Invariant) approximation of the aggregate nonlinear model.
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Contributions

The main contributions fall in two sub-categories, the first is the modelling
and quatification of risk:

1 The average measure is not a sufficient measure of QoS (Quality of
Service). It is found that the QoS follows an approximate gaussian
distribution, hence each load will eventually recieve very poor service.

2 The variance can be estimated as a function of the randomized
policies and the power spectral density.

The second sub-category treats the addition of a local control and how
this can eliminate risk:

1 The distribution of QoS is then truncated through the addition of the
local control.

2 This local bounding has minimal impact on the grid level performance.
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Power Spectral Density

For continued signals that describe, for example, stationary physical
processes, it makes sense to define a power spectral density (PSD), which
describes how the power of a signal or time series is distributed over the
different frequencies. In statistics one might study the variance of a set of
data, but because of the analogy with electrical signals, it is customary to
refer to it as the power spectrum even when it is not, physically speaking,
power. The average power P of a signal x(t) is the following time average:

P = lim
t→∞

1

2T

∫ T

−T
x(t)2dt
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Cont.

In analyzing the frequency content of the signal x(t), it is advantageous to
work with a truncated Fourier transform x̂T (ω), where the signal is
integrated only over a finite interval [0, T]:

x̂T (ω) =
1√

2πT

∫ T

0
x(t)e−iωt dt.

Then the power spectral density can be defined as:

Sxx(ω) = lim
T→∞

E
[
|x̂T (ω)|2

]
.

Using such formal reasoning, one may already guess that for a stationary
random process, the power spectral density Sxx(ω) and the autocorrelation
function of this signal γ(τ) = 〈X (t)X (t + τ)〉 should be a Fourier
transform pair.[Source:Wikipedia]
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System Architecture

The system architecture under consideration is based on the following
components:

1 There are N homogeneous loads that recieve a common signal from
the BA, ζt ∈ R.

2 Each load evolves as a contolled Markov chain on a finite state space,
X = {x1, ..., xd}, were the transition probability is determined by the
current state and the signal ζt . The common dynamics are defined by
the controlled transition matrix {Pζ : ζ ∈ R}. So for the i :th load:

P{X i
τ+1 = y |X i

τ = x , ζt = ζ} = Pζ(x , y), for each x , y ∈ X . (1)

3 The BA has measurements of the normalized aggregate power
consumption, y ∈ R and the desired normalized deviation in power
consumption r ∈ R.

Remark: time index t is used on grid level and τ for the loads due to
supposed difference in sampling frequency.
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Power Consumption

The power consumption from load i at time t is assumed to be a function
of the state, denoted U(X i

t ). The normalized power consumption is
denoted as:

yNt =
1

N

∑
i

U(X i
t ) (2)

and the nominal behaviour of each load is given by the dynamics for which
ζ ≡ 0, in which case the loads are independent.Further it is assumed that
the Markov chains are ergodic and that P0 has a unique invariant
distribution π0. The average nominal power usage becomes:

ȳ0 =
∑
i

π0(x)U(x) (3)
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Cont.

Combining the ergodic Markov chains with the LLN (Law of Large
Numbers) for i.i.d. sequences, for large N and t, implies

yNt ≈ ȳ0, for ζ ≡ 0. (4)

To track a signal ζ should be chosen such that rt ≈ ỹt , ∀t where
ỹt = yt − ȳ0 is the deviation from nominal. Then an error feed-back of the
form: {

ζt = Gcet

et = rt − ỹt
(5)

can be used, where Gc is a transfer function that depends on a linear
approximation of the dependency of y on ζ. This can be obtained via a
mean field construction.
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Mean Field Model

Consider the empirical distributions,

µNt :=
1

N

∑
i

I{X i
t = x}, x ∈ X . (6)

Under some general conditions the empirical distributions converge to a
solution of the nonlinear state space model equations,

µt+1 = µtPζt , where
∑
x∈X

µt = 1. (7)

µt represents the fraction of loads in each state. The power output is then
given by, {

yNt → yt , as N →∞
yt =

∑
x∈X µt(x)U(x).

(8)
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Linearization

The unique equilibrium with ζ ≡ 0 is µt ≡ π0 and yt ≡ ȳ0. Linearization
around this equilibrium gives the linear state space model,{

Φt+1 = AΦt + Bζt , where A = PT
0 ,Bj =

∑
x π0(x)ξ(x , x j)

γt = CΦt , where Ci = U(x i )
(9)

where ξ = d
dζPζ

∣∣∣
ζ=0

and,

{
Φt(i) ≈ µt(x i )− π0(x i ), for i = 1, ..., d

γt ≈ ỹt .
(10)
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Super-Sampling and Intelligent Pools

The authors go on to talk about a method to keep track of times at
both load level and grid level. Several loads are grouped together.
This is called super-sampling.

Then they apply the theory to power control for pool cleaning (in
Florida).

A linear control is constructed of the form of (5) based on the mean
field model. They show that it behaves as predicted by mean field
approximation.
The distribution of QoS for the system illustrates the risk for individual
loads (risk of under/over cleaning)
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Mean Field Model for an Individual Load and QoS

Remark: In the mean field limit the aggregate dynamics are deterministic,
following the discrete time nonlinear control model given by (7), while the
individual loads remains probabilistic.
When looking at one load of many the pair (µNt , ζ

N
t ) can be replaced by

their mean field limits (µt , ζt).
The analysis of a single load in state X (t) is consitent with (1), where
X (t) denotes the Markov chain,

P{Xτ+1 = y |Xτ = x , r0, ..., rτ} = Pζ(x , y), for each x , y ∈ X . (11)

With some manipulations it is found that the load evolves according to a
random linear system, like the deterministic dynamics of (7),
where the state space has been lifted to a d-dimensional simplex, S , and
for the i :th load at time τ , the element Γτ ∈ S is the degenerate
distribution whose mass is concentrated at x if Xτ = x ; that is Γτ = δx .
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Measure of QoS

Let the following measure of QoS for an individual load be,

Lτ =
τ∑

k=0

βk`(Xτ−k) (12)

where β ∈ (0, 1) is a discount factor and,

` =

{
τs if the load was on for the period

0 if the load was off for the period.
(13)

Where τs is the interval length. To eliminate local risk a simple ”opt-out”
mechanism is introduced at local level. A load ignores a command to
switch states if Lτ+1 /∈ [b−, b+], where b−andb+ are the lower and upper
bounds on the allowed interval.
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PSD of QoS
The main goal now is to estimate the statistics of {Lτ} in steady state.
For β ≈ 1, a Gaussian approximation is possible hence it is sufficent to
estimate the power spectral density, SL. The (PSD) is estimated through
the following steps:

1 Consider the linearized state space approximation of Γ,

Γτ+1 = ΓτP0 + Dτ+1. (14)

2 The disturbance, D in (14), is approximated by the sum of two
uncorrelated components,

Dτ+1 = BT
τ ζτ + (Γτ+1 − ΓτPζτ ), with BT

τ = Γτξ. (15)

3 The approximation in (15) is based on analysis of input ζ compared
to the Markov model from ζ ≡ 0.

4 Given data for r obtain an approximation of its (PSD) and from that
an estimate for the (PSD) of ζ can be obtained.
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Variance of QoS

From the bove approximations the (PSD), SL, for Lτ can be obtained via
a series of z-transforms. This makes a stable factorization possible,

SL(θ) = GL(e jθ)GL(e−jθ)T , (16)

where GL is a stable spectral factor in the form of a row vector of transfer
functions. Let {gk} denote its impulse response, G (z) =

∑∞
k=0 gkz

k , the
variance of QoS is obtained as,

σ2L =
∞∑
k=0

‖ gk ‖2 . (17)

Can also be expressed in terms of an integral when appropiate.
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Intelligent Pools

The authors present numerical results for the case of pool pumps with and
without the option to opt-out. The results are in accordance with the
ideas in the paper, with local control the risk of low QoS is basically
eliminated.[include figures]

G.Svensson (KTH - sci) Power Grids November 3, 2015 18 / 21



Conclusions

The main contribution is the approximation of the QoS for an
individual load, both first and second order statistics.

Strict bounds on QoS can be guaranteed while still having near
perfect tracking at grid level.

It has been shown how useful the linear model can be for mean field
like problems.
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The End
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