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Disclaimer

Any results without a source are to be interpreted as being from the paper
or a direct consequences of the results in the paper.
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Introduction

A large population of indistinguishable agents regulates their states to
low density ones.

The problem is posed as a mean-field game, for which the solutions
depend on two coupled PDE’s (LQ, allows for closed form solution):

Hamilton-Jacobi-Bellman equation.
Fokker-Planck-Kolmogorov equation.

The distribution of the agents is taken to be a sum of polynomials.

The case when the value function is quadratic is considered.

The dynamics of a single agent is given by a linear SDE and driven by
a Brownian motion and under the influence of a control and an
adversarial disturbance.
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Results

Main Result

The main result of the paper is that the PDE’s associated with the
mean-field game are transformed into two sets of ODE’s with two point
boundry value conditions.

Secondary Result

A secondary result is, under some assumption, that the proposed
mean-field equilibrium is exponentially stochastically stable.
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Motivations

Problems of this type arise in different fields, however the main reason for
studying this type of problem is in connection with opinion dynamics, in
particular in social networks.
Crowd averse attitudes imply that the players tend to have different
opinions, disensus if you will.
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Player Dynamics

In a mean field game with a large number of players, let the individual
state of a player be denoted by x . Further let x0 be the initial state of the
player, which is realized by the probability distribution for m0, the initial
player probability density.{

dxt = [αxt + βut ]dt + σ[xtdBt + ζtdt]

x(0) = x0.
(1)

where xt ∈ R is the state of the player, ut ∈ R the control input of the
player, Bt ∈ R is a Brownian motion and ζt ∈ R is an adversarial
disturbance.
The constants α ∈ R, β ∈ R and σ ∈ R are model parameters.
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Player Density

On a macroscopic level the game is obtained by looking at the probability
density functions on the state space:


m : R× [0,∞)→ [0,∞)

(x , t)→ mt(x)∫
Rmt(x)dx = 1, for every t.

(2)

Then the average state distribution at time t can be defined as

m̄t :=

∫
R
xmt(x)dx . (3)
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First Assumption

Assume that the probability density distribution is polynomial in state.
Then the density is given by

mt(x) = a0t +
∑n

j=1
1
j ajtx

j , in R× [0,T ]

m0(x) = a00 +
∑n

j=1
1
j aj0x

j

aj0 given for all j = 0, . . . , n.

(4)

The sum of polynomial terms can in some sense be interpreted as the
Taylor approximation of a general distribution mt(x).
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Cost Functional

Each agent is given a cost functional which penalizes the final state g(xT ),
a stage cost function c(xt , ut ,m) and a quadratic penalty on the unknown
disturbance,

J(x0, u,m, ζ) = E
[∫ T

0

(
c(xt , ut , m̄t)− γ2|ζt |2

)
dt + g(xT )

]
. (5)

Where


c(xt , ut ,m) = a0t + a1tx +

1

2
a2tx

2︸ ︷︷ ︸
mean-field term

+b
2u

2
t , b > 0

g(xT ,mT (xT )) = a0T + a1T x + 1
2a2T x

2

(6)
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Robust Mean-Field Problem

Let Bt is a one-dimensional Brownian motion defined on (Ω,F ,P), a
probability space with the natural filtration process Ft . Let x0 be
independant of B and from density m0(x). Futher let m∗t be the optimal
mean-field trajectory. Then the robust mean-field problem in R and (0,T ]
is given by

(P)

 inf
{ut}t

sup
{ζt}t

J(x , u,m∗, ζ)

dxt = [αxt + βut + σζt ]dt + σxtdBt .
(7)
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Worst-Case Disturbance

Let vt(x) be the upper value of the robust optimization problem under
worst-case disturbance, starting at t in state x . Considering a quadratic v .

vt(x) = q0t + q1tx + 1
2q2tx

2, in R× [0,T ]

vT (x) = g(xT ,mT (xT ))

= q0T + q1T x + 1
2q2T x

2 = a0T + a1T x + 1
2a2T x

2

(8)

Expressing this concept in terms of the cost functional:

J(x , u,m, ζ) = E
[∫ T

t

(
c(xs , us , m̄s)− γ2|ζs |2

)
ds + g(xT )

]
.
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HJB Equation

HJB equation on (8) and for given (4)
0 = ∂tvt +

[
−β2

2b +
(

σ
2γ

)2
]

(∂xvt)
2 + αx∂xvt

+a0t + a1tx + 1
2a2tx

2 + 1
2σ

2x2∂2
xxvt , in R× [0,T ]

vT (x) = q0T + q1T x + 1
2q2T x

2, in R.

(9)

forms the first part of the coupled PDE system.
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FPK Equation

Using Fokker-Planck-Kolmogorov equation on (4) and (8)
0 = ∂tmt +

∑n
j=1 ajt

[ (
1 + 1

j

)(
α− β2

b q2t + σ2

2γ2 q2t

)
x jt

+
(
−β2

b q1t + σ2

2γ2 q1t

)
x j−1
t

]
+ a0t

(
α− β2

b q2t + σ2

2γ2 q2t

)
−1

2σ
2∂2

xx(x2mt), in R× [0,T ]

m0(x) = a00 +
∑n

j=1
1
j aj0x

j , in R.

(10)

forms the second part of the coupled system of PDE’s.
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Optimal Control and Worst Disturbance

The authors state, in the form of a theorem, that for the system generated
by (9) and (10) the optimal control and the worst disturbance are given by:{

u∗t = −β
b ∂xvt = −β

b (q1t + q2txt)

ζ∗t = σ
2γ2∂xvt = σ

2γ2 (q1t + q2txt)
(11)

This result means that to find the optimal control the two PDE’s, (9) and
(10), must be solved in terms of v and m with given boundry conditions.
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Solving the PDE System

The solution process works as follows:

1 Fix m and solve (9)

2 Calculate the optimal u from (11)

3 Plug into (10)

4 repeat steps(1)-(3) until fixed point in v and m is found.

The existence of a solution in terms of (v ,m) is guaranteed under some
assumptions like m0 being absolutely continuous with continuous density
and a finite second moment. The proof of this is from the paper ”Mean
field games” by Lasry & Lions.
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Connection to this Course

In this course we have focused on the maximum principle. To apply the
maximum principle to the above given system first formulate the
Hamiltonian:

H = {using course notation} = bp + σq − f (12)

where f (x , u) = a0t + a1tx + 1
2a2tx

2 + b
2u

2 − γ2ζ2 and p is adjoint. Then{
∂uH = βp − bu = 0

∂ζH = σp + 2γ2ζ = 0
=⇒

{
u∗t = −β

b p

ζ∗t = σ
2γ2 p

(13)

with {
dp = −Ĥxdt + qdBt
p(T ) = −a1T − a2T x̂T

(14)

With some identification (13) corresponds to (11).
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Main Result

Theorem (ODE Equivalence)



q̇0t +

[
−β2

2b +
(

σ
2γ

)2
]
q2

1t + a0t = 0

q̇1t +

[
−β2

2b +
(

σ
2γ

)2
]

(2q1tq2t) + αq1t + a1t = 0

1
2 q̇2t +

[
−β2

2b +
(

σ
2γ

)2
]
q2

2t + αq2t + σ2

2 q2t + 1
2a2t = 0

qjT = ajT , j = 0, 1, 2

ȧ0t + a1t

(
−β2

b q1t + σ2

2γ2 q1t

)
+ a0t

(
α− β2

b q2t + σ2

2γ2 q2t

)
−1

2σ
22a0t = 0

1
j ȧjt + ajt

[
α(1 + 1

j ) + (−β2

b + σ2

2γ2 )(1 + 1
j )q2t

]
+ aj+1t(−β2

b + σ2

2γ2 )q1t

−1
2σ

2 (j+2)(j+1)
j ajt = 0, j = 1, 2, ..., n − 1

1
n ȧnt + ant(1 + 1

n )
(
α− β2

b q2t + σ2

2γ2 q2t

)
− 1

2σ
2 (n+2)(n+1)

n ant = 0

aj0 given for all j = 0, 1, ..., n

(15)
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Main Result continued

Then the theorem (15) states that the optimal control and the worst
disturbance are given by:{

ũt = −β
b (q2txt + q1t)

ω̃t = σ
2γ2 (q2txt + q1t)

(16)
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Asymptotic Stability in Short

Plug the optimal control and worst case disturbance parameters into the
dynamics for xt , which then yields a closed loop system.
Furthermore under an assumption on κ > 0 a stability theorem is used in
unison with a corollary then if [σ2 − 2κ] < 0 then lim

t→∞
xt = 0 a.s.
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Conclusions

two coupled PDE’s can be transformed to a system of ODE’s with
two point boundry.
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The End
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