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Introduction

Goal:
To model biological collective decision mechanisms. Examples:

I Honey bees searching for a new colony

I Collective navigation in fish schools

The two important properties that characterize such systems are

I Aggregation of agents

I Decentralized control
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The model: the dynamics

N agents live in Rn over a time interval [0,T ].

They follow identical and independent linear dynamics, for
i = 1, . . .N: {

ẋi = Axi + Bui
xi |t=0 = x0i

(1)

where x0i ∈ Rn, ui ∈ Rm.



The model: the costs

The agents want to finish at one of two destinations pa, pb ∈ Rn

while not using too much effort. Agent i wants to minimize the
cost functional

Ji (ui ; x̄ , x
0
i ) =

∫ T

0

q

2
‖xi − x̄‖2 +

r

2
‖ui‖2 dt

+
M

2
min

(
‖xi |t=T − pa‖2, ‖xi |t=T − pb‖2

)
(2)

where q, r ,M > 0 and M is large compared to the other stuff.

Note:
The agents are cost coupled.



The model: strategy towards solution

How do we find/approximate a Nash equilibrium to this problem?

Strategy proposed in the paper:

I (Decentralization) Introduce a path x∗ that all agents respond
to instead of the mean x̄ .

I (Consistency) Choose x∗ so that it will be replicated by x̄
when players are optimally tracking x∗.

I (Optimization) Find the optimal control u∗i while tracking x∗

I Apply u∗ to the original problem and get an ε−Nash
equilibrium.
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Tracking problem: decentralized problem

Assume that x∗ is a continuous path and that agent i solves the
control problem

inf
ui
Ji (ui ; x

∗, x0i ) = min

(
inf
ui
Jai (ui , x

∗, x0i ), inf
ui
Jbi (ui , x

∗, x0i )

)
dxi = Axi + Bui
xi |t=0 = x0i

(P)
where, for e ∈ {a, b},

Jei (ui ; x
∗, x0i ) =

∫ T

0

q

2
‖xi − x∗‖2 +

r

2
‖ui‖2 dt +

M

2
‖xi (T )− pe‖



Tracking problem: the optimal control 1

The optimal control is

u∗i =

{
uai if Jai (uai , x

∗, x0i ) ≤ Jbi (ubi , x
∗, x0i )

ubi if Jai (uai , x
∗, x0i ) > Jbi (ubi , x

∗, x0i )

Note:
The choice of either uai or ubi is made at time 0 and kept
throughout the game. The choice depends only on the initial
position x0i and the parameter values.



Tracking problem: the optimal control 2

Solving the optimal control yields

uei (t) = −1

r
BT (α(t)xi + βe(t)) , e ∈ {a, b}

with corresponding optimal cost

Jei (uei , x
∗, x0i ) =

1

2
(x0i )Tα(0)x0i + βe(0)Tx0i + δe(0)

where α, β, δ are solutions to three coupled ODEs.



Tracking problem: the optimal control 3

Lemma:
The tracking problem (P) has a unique optimal control

u∗i (t) =

{
−1

r B
T (α(t)xi + βa(t)) if x0i ∈ Da(x∗)

−1
r B

T
(
α(t)xi + βb(t)

)
if x0i /∈ Da(x∗)

where α, βe , δe are the unique solutions to the coupled ODEs for
e = a, b and

Da(x∗) =

{
x ∈ Rn

∣∣∣ (βa(0)− βb(0)
)T

x ≤ δb(0)− δa(0)

}
Note:
Given any x∗, there exists a basin of attraction Da(x∗) such that
all players initially present in this region will go to pa.
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Replicated by the mean: the mean’s dynamics

For consistency we require x∗ = x̄ . The dynamics of x̄ when all
players are optimaly tracking x∗ is

˙̄x(t) = −KTx̄ − q

r
BBT

∫ t

T
φK (t, σ)x∗(σ) dσ +

M

r
BBTφK (t,T )pλ

(3)
Note:
All data in (3) is given except the tracked path x∗ and λ, the
number of players initially in Da(x∗).

For any λ ∈ {0, . . . ,N} let Tλ : C ([0,T ],Rn)→ C ([0,T ],Rn)
where Tλ(x∗) is the unique solution of (3), that is

x̄ = Tλ(x∗), λ players initially in Da(x∗)



Replicated the mean: fixed point of Tλ

Lemma: Let λ ∈ {0, . . . ,N}. The map Tλ has a unique fixed point
equal to

R1(t)x̄0 + R2(t)pλ.

Let the players be ordered according to their initial positions,

βT0 x
0
1 ≤ · · · ≤ βT0 x0N

Theorem (replication): A path x∗ that is replicated by the mean
when all players are optimally tracking it exists if and only if there
exists λ ∈ {0, . . . ,N} such that

βT0 x
0
λ − δ0 − θ1 ≤ λθ2 < βT0 x

0
λ+1 − δ0 − θ1. (Ineq)

In this case x∗ is the unique fixed point of Tλ.
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Nash equilibria: u∗ gives ε-Nash

Assume that ‖x0i ‖ is uniformly bounded from above.

Theorem (existence):
Assume that λ ∈ {0, . . . ,N} that satisfies (Ineq). Let Σ be the set
of decentralized controls that generates a fixed point of Tλ. Then
Σ is an ε-Nash equilibrium with respect to the costs
Ji (ui ,

1
N

∑N
j=1 xj(uj), x

0
i ) where ε = o(1/N).

Theorem (uniqueness):
Assume that exists N0 such that if N ≥ N0 then

max
λ
‖x0λ+1 − x0λ‖ ≤ k

1

N
,

where k is independent of N. Then for all N ≥ N0 there exists at
most one ε-Nash equilibrium.



Summary of problem solution

Given data: (x01 , . . . , x
0
N), A, B, q, r , M, pa, pb

1. Find λ that solves (Ineq)

2. By replication theorem, λ gives x∗ that is a fixed point for Tλ

3. For i = 1, . . . ,N, find u∗i that solves (P) given x∗ and x0i
4. By replication theorem, these u∗i gives a mean agent

trajectory that replicates x∗.

5. By existence theorem, these u∗i constitute an ε-Nash
equilibrium to the original problem.
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Simulations: setup

Simulations from the paper will be presented.

Input data:

n = m = 2, N = 20, A = B = I2,

pa = −pb = (−10, 0), T = 1

(x01 , . . . , x
0
N) given for each case

Cases 1&2: q = r = 1, M = 10000

Case 3: q = 10, r = 1, M = 1000



Simulations: Case 1



Simulations: Case 2



Simulations: Case 3



What then?

What will happen if we introduce

I only statistical knowledge of the initial positions?

I noise in the dynamics/costs?



What then?

What will happen if we introduce

I only statistical knowledge of the initial positions?

I noise in the dynamics/costs?

Other ideas:

I N →∞?

I Moving destinations?

I When can we have decentralization?

Thank you!
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