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Introduction: what is modeled?

Opinion propagation:
Dynamics that describe the evolution of the opinions in a large
population as a result of repeated interactions on the individual
level. The level of stubbornness amongst the individuals vary.

Phenomenon that occure in opinion propagation:
Herd behaviour - convergence towards one (consensus) or multiple
(polarization/plurality) opinion values.



Introduction: model set-up

A set of populations is considered, each made up of uniform agents
characterized by a given level of stubbornness.

Individuals are partially stubborn while interested in reaching a
consensus with as many other agents as possible. In Sweden you
need 4% of the election votes to get seats in the parliament.



Introduction: main contribution

Affine controls preserve the Gaussian distribution of population
under the considered model.



Model set-up: dynamics

State process for a generic member of population i ∈ I follows:{
dxi = uidt + ξidWi

xi (0) = x0i

where ui is a control function which may depend on time t, state
xi and the density m(x , t) and ξi is a real number.



Model set-up: cost

Player i wants to maximize the functional

Ji (ui , x0i ) = E
[∫ ∞

0
e−ρtci (xi , ui ,m)dt

]
where

ci (xi , ui ,m) = (1− αi )
∑
j∈I

(νj ln(mj(xi (t)), t))

− αi (xi (t)− m̄0i )
2

− βu2
i .



Model set-up: cost

Lets look at the terms in the running cost...

I
∑

j∈I νj ln (mj(xi (.), .)): player i wants to share its opinion
with as many other players as possible.

I (xi (.)− m̄0i )
2: player i dislikes departing from the initial mean

of its population.

I βu2
i : the usual energy penalization.

The parameter αi is determining the level of stubbornness of the
players in population i .



Model set-up: problem statement

The problem to solve, in ui , for each population is

Maximize Ji (ui ; x0i ) = E
[∫ ∞

0
e−ρtci (xi , ui ,m)dt

]
(Pi )

Subjec to dxi = uidt + ξidWi

xi (0) = x0i

ui admissible



The mean-field equations

Theorem 1
The mean-field system corresponding to (Pi ) is described by the
equations: for all i ∈ I ,

∂tvi (xi , t) + (1− αi )
∑
j∈I

νj ln(mj(xi , t))− αi (xi − m̄0i )
2

+
1

2β
(∂xvi (xi , t))2 +

ξ2
i

2
∂2
xxvi (xi , t)− ρvi (xi , t) = 0 (1)

∂tmi (xi , t) + ∂x

[
mi (xi , t)

(
− 1

2β
∂xvi (xi , t)

)]
−

ξ2
i

2
∂2
xxmi (xi , t) = 0 (2)

mi (xi , 0) = m0i (3)



The mean-field equations

The optimal control to in (Pi ) is given by

u∗i (xi , t) = − 1

2β
∂xvi (xi , t)

So far so good. What happens if we restrics ourselves to linear
strategies only?



Inverse Fokker-Planck problem

Consider the Fokker-Planck problem in one dimension:

∂tmi (xi , t)−
ξ2
i

2
∂2
xxmi (xi , t) + ∂x (ui (xi , t)mi (xi , t)) .

If we assume that mi : S → R, where S ⊂ R2, that mi ∈ C 2(S)
and that mi is a probability density function for each t which is
positive for all (x , t) ∈ S . Then ui is the solution to

ui (xi , t) =
1

mi (xi , t)

(
C (t) +

ξ2
i

2
∂xmi (xi , t)−

∫ xi

x0i

∂tmi (x , t)dx

)
where C (t) is an arbitrary function.



Gaussian Distribution Preserving Strategies

Assume that population i has initial density

mi (xi , 0) =
1

σ0i

√
2π

e
−(xi − µ0i )

2

2σ2
0i

and that the agents in this population implement a linear control
strategy

ui (x , t) = p̂i (t)x + q̂(t), q̂, p̂ ∈ C 1(R+)

Then

xi (t) = eP̂i (t)
(
x0i +

∫ t

0
e−P̂i (τ)qi (τ)dτ + ξi

∫ t

0
e−P̂i (τ)dWi

)

where P̂i (t) =

∫ t

0
p̂i (τ)dτ .



Gaussian Distribution Preserving Strategies

Furthermore, the density of population i is for each time t equal to

mi (xi , t) =
1

σi (t)
√

2π
e
−(xi − µi (t))2

2σ2
i (t)

where

σ2
i (t) = e2P̂i (t)

(
σ2

0i + ξ2
i

∫ t

0
e−2P̂i (τ)dτ

)
,

µi (t) = eP̂i (t)
(
µ0i +

∫ t

0
e−P̂i (τ)qi (τ)dτ

)
Note:
The implemented ui is not necessarily optimal.



Gaussian Distribution Preserving Strategies
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Gaussian Distribution Preserving Strategies



Two crowd seeking populations

A detailed example with two populations.

If the agents of two populations apply linear strategies then the
utility function becomes:

Ji (x0i ) = sup
ui

E
[∫ ∞

0
e−ρt

{
(1− αi )

=
2∑

j=1

−
vj
2

(
ln(2πσ2

j (t)) +
(xi (t)− m̄j(t))2

σ2
j (t)

)

= −αi (xi (t)− m̄0i )
2 − βu2

i

}
dt

]

The populations follow the same dynamics as previously.



Two crowd seeking populations

Two assuptions are made on the crowds:

A1. At time 0 the two popilations have a Gaussian distribution

A2. The agens adopt linear strategies that track a weighted sum:

ui (x , t) = di (aim̄i (t) + bim̄j(t) + cim̄0i − xi ) (4)

di > 0

1 = ai + bi + ci

Note:
Assumption 1 together with the dynamics of the population implies
that the strategies (4) are GDPS.



Extending the state space

By introducing the dynamics of m̄i , i = 1, 2, into the model it is
possible to characterize an optimal control. The extended state
space equations are: for i = 1, 2, j 6= i ,

dxi = uidt + ξidWi

xi (0) = x0i

˙̄mi (t) = di (bim̄j(t) + cim̄0i − (bi + ci )m̄i (t))

m̄i (0) = µ0i



Extending the state space

Time for some rewriting...

Denote by γi = −di (bi + ci ). Then the state space equations can
be written as dxi

dm̄i

dm̄j

 =

0 0 0
0 γi dibi
0 djbj γj

 xi
m̄i

m̄j

 dt

+

1 0 0
0 ci 0
0 0 cj

 ui
m̄0i

m̄0j

 dt +

ξi0
0

 dWi



Extending the state space

An even more compact notation is

˙̄m(t) =

[
−γi dibi
djbj γj

]
︸ ︷︷ ︸

M

[
m̄i (t)
m̄j(t)

]
︸ ︷︷ ︸

m̄

+

[
ci 0
0 cj

]
︸ ︷︷ ︸

C

[
m̄0i

m̄0j

]
︸ ︷︷ ︸

m̄0

Adding the constant vector m̄0 to the state vector, the problem
becomes

sup
u

E
[∫ ∞

0
e−ρt c̃i (x , u,m, θ)dt

]
 dxi
dm̄
dm̄0

 =

0 0 0
0 M C
0 0 0

 xi
m̄
m̄0

 dt +

1
0
0

 uidt +

ξi0
0

 dWi



Extending the state space

Finally, by letting Xi =
[
xi m̄ m̄0

]T
we get the LQ problem

inf
u

E
[∫ ∞

0
e−ρt

(
XT
i Q̃Xi + βu2

i

)
dt

]
,

dXi = (FXi + GUi ) dt + LdWi .

The solution to an LQ problem of this kind is well known. Consider
the new value function Vi (Xi , t) that solves

∂tVt(Xi , t) + H(Xi , ∂Xi
Vi (Xi , t)) +

1

2
∂2
i ∂

2
xxVi (Xi , t) = 0.

If we assume that the value function is quadratic
Vi (Xi , t) = XT

i P(t)Xi , then P(t) is the solution to the Riccati
equation

Ṗ(t)−ρP(t)+P(t)F+FTP(t)−P(t)
(
GR−1GT

)
P(t)+Q̃+W = 0



Extending the state space

If P solves the Riccati equation then the optimal control is given by

û∗i (t) = − 1

β
GTP(t)Xi

=
1

β
(P11(t)xi (t) + P12(t)m̄i + P13(t)m̄j

+P14(t)m̄0i + P15(t)m̄0j)

Conclusion:
The extended state space model allows us to characterize an
optimal control under assumptions (A1)-(A2).



Model behavior

The mean m̄i (t) converges to a finite value.

The variance σ2
i (t) converges exponentially to

ξ2
i

2di
. The term

ln(2πσ2
j (t)) +

(xi (t)−µ2
j (t))

2σ2
j (t)

therefore grows to infinity if there is no

disturbance in population j , i.e. ξj = 0. A consequence is that an
optimal strategy (in the no disturbance case) must satisfy
ρ− 2di > 0 or guarantee that all states converge to a single
consensus.



Model behavior

Recall that under A2, ui = di (aim̄i (t) + bim̄j(t) + cim̄0i − xi )
where ai + bi + ci = 1.

The mean of population i converges to

m̄si =
(cicj + bjci )m̄0i + bicjm̄0j

cicj + bjci + bicj

Note: If ci , cj 6= 0 then m̄si 6= m̄sj .



Model behavior

A population with ai = bi = 0 is called hard core stubborn. A
population with ci = 0 is called most gregarious. Some extreme
cases:

I If population i is hard core stubborn, then m̄i (t) = m̄0i . If
bi = 0 but ai 6= 0, m̄si = m̄0i .

I If both populations are most gregarious, consensus is reached
at

m̄si = m̄sj =
bidim̄j + bjdjm̄i

bidi + bjdj
.

I If population i is most gregarious and population j is not,
then m̄si = m̄sj = m̄0j . However, if population j is not hard
core stubborn then m̄j(t) 6= m̄0j .



Conclusions

Multi-population scenario for mean-field game model of opinion
and stubbornness.

State space extension technique gives possibility to study
mean-field equilibria under different stubbornness levels.

Stuff not in the paper:
What is the approximation error for a finite number of players?
Suggestion on numerical scheme for the equilibrium computation.
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